Skip to main content

2014 | OriginalPaper | Buchkapitel

13. Spider Silk: A Sticky Situation

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

This chapter takes a look at the structural and surface properties of various types of spider silk that enable such remarkable performance as a fiber, as well as its past and potential uses in engineering. Though there are various types of spider webs such as tangle and sheet webs, the orb web is the most common and is spun and constructed by orb-weaving spiders, Araneus and Nephila. Orb-weaving spiders are capable of producing seven different types of silk threads, each with distinct combinations of amino acid composition, function, and gland and spinneret used in production (Saravanan, J Textile Apparel Technol Manag 5(1):1–20, 2006). Dragline silk, known to be the toughest of all types of silk, serves as the framework of the spider’s web, as well as its lifeline (Heim et al., Angew Chem Int Ed 48:3584–3596, 2009). Despite inevitable variations in the material properties of dragline silk across different species of spiders, it is still found to be tougher than most biological fibers and even man-made fibers (Swanson et al., Evolution 60(12):2539–2551, 2007). While spiders use dragline silk for web framework and as a lifeline, they also spin threads to capture their prey, which are called capture threads (Vollrath, Rev Mol Biotechnol 74(2):67–83, 2000). The adhesive properties of capture threads are made possible by an interlocking mechanism (Hawthorn, Biol J Linn Soc 77(1):1–8, 2002) and van der Waals and capillary forces (Sahni et al., J Adhes 87:595–614, 2011). Spider silk has numerous future engineering applications. New biopolymer materials to be used in the medical field are a possibility with the manipulation of spider silk proteins (Römer and Scheibel, Prion 2(4):154–161, 2008). Also, spider silk is being applied to a diverse array of applications within the military arena, including, but not limited to, being used as an underwater anchoring adhesive (Military Times, Navy bets on spider silk research with USU funding, http://​www.​militarytimes.​com/​article/​20130807/​NEWS04/​308070038/​Navy-bets-spider-silk-research-USU-funding, 2013).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Almelling C, Radtke C, Vogt PM (2013) Technical and biomedical uses of nature’s strongest fiber: spider silk. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin Heidelberg. doi:10.1007/978-3-642-33989-9_36 Almelling C, Radtke C, Vogt PM (2013) Technical and biomedical uses of nature’s strongest fiber: spider silk. In: Nentwig W (ed) Spider ecophysiology. Springer, Berlin Heidelberg. doi:10.​1007/​978-3-642-33989-9_​36
Zurück zum Zitat Bruns S, Stark Y, Marten D, Allmeling C, Kasper C, Stahl F, Scheper T (2010) A preliminary study on spider silk as biomaterial for peripheral nerve regeneration. ESACT Proceedings. Cells Culture 4:573–578. doi:10.1007/978-90-481-3419-9_99 CrossRef Bruns S, Stark Y, Marten D, Allmeling C, Kasper C, Stahl F, Scheper T (2010) A preliminary study on spider silk as biomaterial for peripheral nerve regeneration. ESACT Proceedings. Cells Culture 4:573–578. doi:10.​1007/​978-90-481-3419-9_​99 CrossRef
Zurück zum Zitat Fredriksson C, Hedhammar M, Feinstein R, Nordling K, Kratz G, Johansson J, Huss F, Rising A (2009) Tissue response to subcutaneously implanted recombinant spider silk: an in vivo study. Materials 2:1908–1922. doi:10.3390/ma2041908 CrossRef Fredriksson C, Hedhammar M, Feinstein R, Nordling K, Kratz G, Johansson J, Huss F, Rising A (2009) Tissue response to subcutaneously implanted recombinant spider silk: an in vivo study. Materials 2:1908–1922. doi:10.​3390/​ma2041908 CrossRef
Zurück zum Zitat McCook HC (1890) The strength of spiders and spider-webs. Popular Science Monthly 37:42 McCook HC (1890) The strength of spiders and spider-webs. Popular Science Monthly 37:42
Zurück zum Zitat Opell BD (2001) Cribellum and calamistrum ontogeny in the spider family Uloboridae: linking functionally related but separate silk spinning features. J Arachnol 29(2):20–26 Opell BD (2001) Cribellum and calamistrum ontogeny in the spider family Uloboridae: linking functionally related but separate silk spinning features. J Arachnol 29(2):20–26
Zurück zum Zitat Römer L, Scheibel T (2008) The elaborate structure of spider silk. Prion 2(4):154–161CrossRef Römer L, Scheibel T (2008) The elaborate structure of spider silk. Prion 2(4):154–161CrossRef
Zurück zum Zitat Saravanan D (2006) Spider silk—structure, properties, and spinning. J Textile Apparel Technol Manag 5(1):1–20 Saravanan D (2006) Spider silk—structure, properties, and spinning. J Textile Apparel Technol Manag 5(1):1–20
Zurück zum Zitat Wendt H, Hillmer A, Reimers K, Kuhbier JW, Schäfer-Nolte F, Allmeling C, Kasper C, Vogt PM (2011) Artificial skin—culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres. PLoS One 6(7):e21833. doi:10.1371/journal.pone.0021833 CrossRef Wendt H, Hillmer A, Reimers K, Kuhbier JW, Schäfer-Nolte F, Allmeling C, Kasper C, Vogt PM (2011) Artificial skin—culturing of different skin cell lines for generating an artificial skin substitute on cross-weaved spider silk fibres. PLoS One 6(7):e21833. doi:10.1371/journal.pone.0021833 CrossRef
Metadaten
Titel
Spider Silk: A Sticky Situation
verfasst von
Michelle Lee
Copyright-Jahr
2014
DOI
https://doi.org/10.1007/978-3-319-03125-5_13

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.