Skip to main content
Erschienen in: Journal of Scientific Computing 2/2018

23.10.2017

Stability and Convergence Analysis of Finite Difference Schemes for Time-Dependent Space-Fractional Diffusion Equations with Variable Diffusion Coefficients

Erschienen in: Journal of Scientific Computing | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we study and analyze Crank–Nicolson temporal discretization with high-order spatial difference schemes for time-dependent Riesz space-fractional diffusion equations with variable diffusion coefficients. To the best of our knowledge, there is no stability and convergence analysis for temporally 2nd-order or spatially jth-order (\(j\ge 3\)) difference schemes for such equations with variable coefficients. We prove under mild assumptions on diffusion coefficients and spatial discretization schemes that the resulting discretized systems are unconditionally stable and convergent with respect to discrete \(\ell ^2\)-norm. We further show that several spatial difference schemes with jth-order (\(j=1,2,3,4\)) truncation error satisfy the assumptions required in our analysis. As a result, we obtain a series of temporally 2nd-order and spatially jth-order (\(j=1,2,3,4\)) unconditionally stable difference schemes for solving time-dependent Riesz space-fractional diffusion equations with variable coefficients. Numerical results are presented to illustrate our theoretical results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Agrawal, O.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 29, 145–155 (2002)MathSciNetCrossRefMATH Agrawal, O.: Solution for a fractional diffusion-wave equation defined in a bounded domain. Nonlinear Dyn. 29, 145–155 (2002)MathSciNetCrossRefMATH
2.
Zurück zum Zitat Benson, D., Wheatcraft, S., Meerschaert, M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)CrossRef Benson, D., Wheatcraft, S., Meerschaert, M.: The fractional-order governing equation of Lévy motion. Water Resour. Res. 36, 1413–1423 (2000)CrossRef
3.
Zurück zum Zitat Bouchaud, J., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)MathSciNetCrossRef Bouchaud, J., Georges, A.: Anomalous diffusion in disordered media: statistical mechanisms, models and physical applications. Phys. Rep. 195, 127–293 (1990)MathSciNetCrossRef
4.
Zurück zum Zitat Çelik, C., Duman, M.: Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)MathSciNetCrossRefMATH Çelik, C., Duman, M.: Crank–Nicolson method for the fractional diffusion equation with the Riesz fractional derivative. J. Comput. Phys. 231, 1743–1750 (2012)MathSciNetCrossRefMATH
5.
Zurück zum Zitat Chen, M., Deng, W., Wu, Y.: Superlinearly convergent algorithms for the two-dimensional space time Caputo Riesz fractional diffusion equation. Appl. Numer. Math. 70, 22–41 (2013)MathSciNetCrossRefMATH Chen, M., Deng, W., Wu, Y.: Superlinearly convergent algorithms for the two-dimensional space time Caputo Riesz fractional diffusion equation. Appl. Numer. Math. 70, 22–41 (2013)MathSciNetCrossRefMATH
6.
Zurück zum Zitat Chen, M., Deng, W.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52, 1418–1438 (2014)MathSciNetCrossRefMATH Chen, M., Deng, W.: Fourth order accurate scheme for the space fractional diffusion equations. SIAM J. Numer. Anal. 52, 1418–1438 (2014)MathSciNetCrossRefMATH
7.
Zurück zum Zitat del Castillo-Negrete, D., Carreras, B., Lynch, V.: Fractional diffusion in Plasma turbulence. Phys. Plasmas 11, 3854–3864 (2004)CrossRef del Castillo-Negrete, D., Carreras, B., Lynch, V.: Fractional diffusion in Plasma turbulence. Phys. Plasmas 11, 3854–3864 (2004)CrossRef
8.
Zurück zum Zitat Ding, H., Li, C.: High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. 71, 759–784 (2017)MathSciNetCrossRefMATH Ding, H., Li, C.: High-order numerical algorithms for Riesz derivatives via constructing new generating functions. J. Sci. Comput. 71, 759–784 (2017)MathSciNetCrossRefMATH
9.
Zurück zum Zitat Hao, Z., Sun, Z., Cao, W.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)MathSciNetCrossRefMATH Hao, Z., Sun, Z., Cao, W.: A fourth-order approximation of fractional derivatives with its applications. J. Comput. Phys. 281, 787–805 (2015)MathSciNetCrossRefMATH
10.
Zurück zum Zitat Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)MATH Hilfer, R. (ed.): Applications of Fractional Calculus in Physics. World Scientific, Singapore (2000)MATH
11.
Zurück zum Zitat Lei, S., Huang, Y.: Fast algorithms for high-order numerical methods for space-fractional diffusion equations. Int. J. Comput. Math. 94, 1062–1078 (2017)MathSciNetCrossRefMATH Lei, S., Huang, Y.: Fast algorithms for high-order numerical methods for space-fractional diffusion equations. Int. J. Comput. Math. 94, 1062–1078 (2017)MathSciNetCrossRefMATH
12.
Zurück zum Zitat Lin, X., Ng, M., Sun, H.: A multigrid method for linear systems arising from time-dependent two-dimensional space-fractional diffusion equations. J. Comput. Phys. 336, 69–86 (2017)MathSciNetCrossRefMATH Lin, X., Ng, M., Sun, H.: A multigrid method for linear systems arising from time-dependent two-dimensional space-fractional diffusion equations. J. Comput. Phys. 336, 69–86 (2017)MathSciNetCrossRefMATH
13.
Zurück zum Zitat Liu, Q., Liu, F., Gu, Y., Zhuang, P., Chen, J., Turner, I.: A meshless method based on point interpolation method (PIM) for the space fractional diffusion equation. Appl. Math. Comput. 256, 930–938 (2015)MathSciNetMATH Liu, Q., Liu, F., Gu, Y., Zhuang, P., Chen, J., Turner, I.: A meshless method based on point interpolation method (PIM) for the space fractional diffusion equation. Appl. Math. Comput. 256, 930–938 (2015)MathSciNetMATH
14.
Zurück zum Zitat Meerschaert, M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equation. J. Comput. Appl. Math. 172, 65–77 (2004)MathSciNetCrossRefMATH Meerschaert, M., Tadjeran, C.: Finite difference approximations for fractional advection-dispersion flow equation. J. Comput. Appl. Math. 172, 65–77 (2004)MathSciNetCrossRefMATH
15.
Zurück zum Zitat Meerschaert, M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)MathSciNetCrossRefMATH Meerschaert, M., Tadjeran, C.: Finite difference approximations for two-sided space-fractional partial differential equations. Appl. Numer. Math. 56, 80–90 (2006)MathSciNetCrossRefMATH
16.
Zurück zum Zitat Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATH Metzler, R., Klafter, J.: The random walk’s guide to anomalous diffusion: a fractional dynamics approach. Phys. Rep. 339, 1–77 (2000)MathSciNetCrossRefMATH
17.
Zurück zum Zitat Ng, M.: Iterative Methods for Toeplitz Systems. Oxford University Press, Oxford (2004)MATH Ng, M.: Iterative Methods for Toeplitz Systems. Oxford University Press, Oxford (2004)MATH
18.
Zurück zum Zitat Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH Podlubny, I.: Fractional Differential Equations. Academic Press, New York (1999)MATH
19.
Zurück zum Zitat Solomon, T., Weeks, E., Swinney, H.: Observation of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow. Phys. Rev. 71, 3975–3979 (1993) Solomon, T., Weeks, E., Swinney, H.: Observation of anomalous diffusion and Lévy flights in a 2-dimensional rotating flow. Phys. Rev. 71, 3975–3979 (1993)
20.
Zurück zum Zitat Sousa, E., Li, C.: A weighted finite difference method for the fractional diffusion equation based on the Riemann Liouville derivative. Appl. Numer. Math. 90, 22–37 (2015)MathSciNetCrossRefMATH Sousa, E., Li, C.: A weighted finite difference method for the fractional diffusion equation based on the Riemann Liouville derivative. Appl. Numer. Math. 90, 22–37 (2015)MathSciNetCrossRefMATH
21.
Zurück zum Zitat Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comp. 84, 1703–1727 (2015)MathSciNetCrossRefMATH Tian, W., Zhou, H., Deng, W.: A class of second order difference approximations for solving space fractional diffusion equations. Math. Comp. 84, 1703–1727 (2015)MathSciNetCrossRefMATH
22.
Zurück zum Zitat Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^2 N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)MathSciNetCrossRefMATH Wang, H., Wang, K., Sircar, T.: A direct \(O(N\log ^2 N)\) finite difference method for fractional diffusion equations. J. Comput. Phys. 229, 8095–8104 (2010)MathSciNetCrossRefMATH
23.
Zurück zum Zitat Yang, Z., Yuan, Z., Nie, Y., Wang, J., Zhu, X., Liu, F.: Finite element method for nonlinear Riesz space fractional diffusion equations on irregular domains. J. Comput. Phys. 330, 863–883 (2017)MathSciNetCrossRefMATH Yang, Z., Yuan, Z., Nie, Y., Wang, J., Zhu, X., Liu, F.: Finite element method for nonlinear Riesz space fractional diffusion equations on irregular domains. J. Comput. Phys. 330, 863–883 (2017)MathSciNetCrossRefMATH
24.
Zurück zum Zitat Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)MathSciNetCrossRefMATH Zeng, F., Liu, F., Li, C., Burrage, K., Turner, I., Anh, V.: A Crank–Nicolson ADI spectral method for a two-dimensional Riesz space fractional nonlinear reaction-diffusion equation. SIAM J. Numer. Anal. 52, 2599–2622 (2014)MathSciNetCrossRefMATH
25.
Zurück zum Zitat Zhang, Y., Ding, H.: High-order algorithm for the two-dimension Riesz space-fractional diffusion equation. Int. J. Comput. Math. 94, 2063–2073 (2017)MathSciNetCrossRef Zhang, Y., Ding, H.: High-order algorithm for the two-dimension Riesz space-fractional diffusion equation. Int. J. Comput. Math. 94, 2063–2073 (2017)MathSciNetCrossRef
26.
Zurück zum Zitat Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)MathSciNetCrossRefMATH Zhuang, P., Liu, F., Anh, V., Turner, I.: Numerical methods for the variable-order fractional advection-diffusion equation with a nonlinear source term. SIAM J. Numer. Anal. 47, 1760–1781 (2009)MathSciNetCrossRefMATH
Metadaten
Titel
Stability and Convergence Analysis of Finite Difference Schemes for Time-Dependent Space-Fractional Diffusion Equations with Variable Diffusion Coefficients
Publikationsdatum
23.10.2017
Erschienen in
Journal of Scientific Computing / Ausgabe 2/2018
Print ISSN: 0885-7474
Elektronische ISSN: 1573-7691
DOI
https://doi.org/10.1007/s10915-017-0581-x

Weitere Artikel der Ausgabe 2/2018

Journal of Scientific Computing 2/2018 Zur Ausgabe