Skip to main content
Erschienen in: Journal of Computer and Systems Sciences International 2/2022

01.04.2022 | CONTROL IN DETERMINISTIC SYSTEMS

Stabilization of a System of Unstable Pendulums: Discrete and Continuous Case

verfasst von: P. A. Meleshenko, V. A. Nesterov, M. E. Semenov, A. M. Solovyov, K. I. Sypalo

Erschienen in: Journal of Computer and Systems Sciences International | Ausgabe 2/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We study the dynamics of a system of unstable pendulums under the conditions of elastic links under the influence of an external driving force, which is treated as a control, i.e., the problem of controlling an unstable system with a deficit of control actions is presented. In addition, the case of nonlinear elastic bonds (with cubic nonlinearity) is presented. The transition from a discrete to a continuous system is considered, which describes a material that is a continuous analog of a discrete system, which is in a nonequilibrium and structurally unstable state. The dynamic characteristics of an unstable system and material (under the conditions of a deficit of control actions) are studied, and the values of the parameters that ensure its stabilization are identified. The necessary and sufficient conditions for stabilization of a system of inverted elastically bound pendulums are found, which are formalized in the form of restrictions on the stiffness coefficient of the elastic connection. For the continuum analog of the system under consideration, it is proved that in order to stabilize an unstable material, it is necessary that its parameters take values that satisfy the following condition: the time of passage of an elastic wave from one end of the system to the other and back should not exceed the period of its natural oscillations. The results of the computational experiments illustrating the theoretical constructions are presented.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat O. Boubaker, “The inverted pendulum: A fundamental benchmark in control theory and robotics,” in Proceedings of the International Conference on Education and e-Learning Innovations ICEELI'2012, Sousse, Tunisia, 2012, pp. 1–6. O. Boubaker, “The inverted pendulum: A fundamental benchmark in control theory and robotics,” in Proceedings of the International Conference on Education and e-Learning Innovations ICEELI'2012, Sousse, Tunisia, 2012, pp. 1–6.
2.
Zurück zum Zitat L. H. Chang and A. C. Lee, “Design of nonlinear controller for bi-axial inverted pendulum system,” IET Control Theory Appl. 1, 979–986 (2007).CrossRef L. H. Chang and A. C. Lee, “Design of nonlinear controller for bi-axial inverted pendulum system,” IET Control Theory Appl. 1, 979–986 (2007).CrossRef
3.
Zurück zum Zitat E. P. Dadios, P. S. Fernandez, and D. J. Williams, “Genetic algorithm on line controller for the flexible inverted pendulum problem,” J. Adv. Comput. Intell. Intell. Inform. 10, 155–160 (2006).CrossRef E. P. Dadios, P. S. Fernandez, and D. J. Williams, “Genetic algorithm on line controller for the flexible inverted pendulum problem,” J. Adv. Comput. Intell. Intell. Inform. 10, 155–160 (2006).CrossRef
4.
Zurück zum Zitat G. Li and X. Liu, “Dynamic characteristic prediction of inverted pendulum under the reduced-gravity space environments,” Acta Astronaut. 67, 596–604 (2010).CrossRef G. Li and X. Liu, “Dynamic characteristic prediction of inverted pendulum under the reduced-gravity space environments,” Acta Astronaut. 67, 596–604 (2010).CrossRef
5.
Zurück zum Zitat R. Lozano, I. Fantoni, and D. J. Block, “Stabilization of the inverted pendulum around its homoclinic orbit,” Syst. Control Lett. 40, 197–204 (2000).MathSciNetCrossRef R. Lozano, I. Fantoni, and D. J. Block, “Stabilization of the inverted pendulum around its homoclinic orbit,” Syst. Control Lett. 40, 197–204 (2000).MathSciNetCrossRef
6.
Zurück zum Zitat J. Tang and G. Ren, “Modeling and simulation of a flexible inverted pendulum system,” Tsinghua Sci. Technol. 14 (Suppl. 2), 22–26 (2009).CrossRef J. Tang and G. Ren, “Modeling and simulation of a flexible inverted pendulum system,” Tsinghua Sci. Technol. 14 (Suppl. 2), 22–26 (2009).CrossRef
7.
Zurück zum Zitat J. J. Wang, “Simulation studies of inverted pendulum based on PID controllers,” Simul. Model. Pract. Theory 19, 440–449 (2011).CrossRef J. J. Wang, “Simulation studies of inverted pendulum based on PID controllers,” Simul. Model. Pract. Theory 19, 440–449 (2011).CrossRef
10.
Zurück zum Zitat M. E. Semenov, A. M. Solovyov, P. A. Meleshenko, and O. I. Kanishcheva, “Stabilization of a flexible inverted pendulum via hysteresis control: The Bouc-Wen approach,” in Vibration Engineering and Technology of Machinery, Proceedings of VETOMAC XV, 2019 (Springer, 2021), pp. 267–279. M. E. Semenov, A. M. Solovyov, P. A. Meleshenko, and O. I. Kanishcheva, “Stabilization of a flexible inverted pendulum via hysteresis control: The Bouc-Wen approach,” in Vibration Engineering and Technology of Machinery, Proceedings of VETOMAC XV, 2019 (Springer, 2021), pp. 267–279.
12.
Zurück zum Zitat M. E. Semenov, A. M. Solovyov, and P. A. Meleshenko, “Stabilization of coupled inverted pendula: From discrete to continuous case,” J. Vibrat. Control 27, 43–56 (2021).MathSciNetCrossRef M. E. Semenov, A. M. Solovyov, and P. A. Meleshenko, “Stabilization of coupled inverted pendula: From discrete to continuous case,” J. Vibrat. Control 27, 43–56 (2021).MathSciNetCrossRef
14.
Zurück zum Zitat P. A. Meleshenko, M. E. Semenov, and A. F. Klinskikh, “Conservative chaos in a simple oscillatory system with non-smooth nonlinearity,” Nonlin. Dyn. 101, 2523–2540 (2020).CrossRef P. A. Meleshenko, M. E. Semenov, and A. F. Klinskikh, “Conservative chaos in a simple oscillatory system with non-smooth nonlinearity,” Nonlin. Dyn. 101, 2523–2540 (2020).CrossRef
15.
Zurück zum Zitat S. Bortoff and M. W. Spong, “Pseudolinearization of the acrobot using spline functions,” in Proceedings of the IEEE Conference on Decision and Control, Tucson, 1992, pp. 593–598. S. Bortoff and M. W. Spong, “Pseudolinearization of the acrobot using spline functions,” in Proceedings of the IEEE Conference on Decision and Control, Tucson, 1992, pp. 593–598.
16.
Zurück zum Zitat M. W. Spong, “The swing up control problem for the acrobot,” IEEE Control Syst. Mag. 15, 49–55 (1995). M. W. Spong, “The swing up control problem for the acrobot,” IEEE Control Syst. Mag. 15, 49–55 (1995).
17.
Zurück zum Zitat R. Olfati-Saber, “Control of underactuated mechanical systems with two degrees of freedom and symmetry,” in Proceedings of the American Control Conference, Chicago, 2000, Vol. 6, pp. 4092–4096. R. Olfati-Saber, “Control of underactuated mechanical systems with two degrees of freedom and symmetry,” in Proceedings of the American Control Conference, Chicago, 2000, Vol. 6, pp. 4092–4096.
18.
Zurück zum Zitat R. Olfati-Saber, “Normal forms for underactuated mechanical systems with symmetry,” IEEE Trans. Autom. Control 47, 305–308 (2002).MathSciNetCrossRef R. Olfati-Saber, “Normal forms for underactuated mechanical systems with symmetry,” IEEE Trans. Autom. Control 47, 305–308 (2002).MathSciNetCrossRef
19.
Zurück zum Zitat S. A. Reshmin, “Decomposition method in the problem of controlling an inverted double pendulum with the use of one control moment,” J. Comput. Syst. Sci. Int. 44, 861 (2005).MATH S. A. Reshmin, “Decomposition method in the problem of controlling an inverted double pendulum with the use of one control moment,” J. Comput. Syst. Sci. Int. 44, 861 (2005).MATH
20.
Zurück zum Zitat S. A. Reshmin and F. L. Chernous’ko, “Synthesis of control in a nonlinear dynamic system based on decomposition,” Prikl. Mat. Mekh. 62, 121–128 (1998).MATH S. A. Reshmin and F. L. Chernous’ko, “Synthesis of control in a nonlinear dynamic system based on decomposition,” Prikl. Mat. Mekh. 62, 121–128 (1998).MATH
21.
Zurück zum Zitat F. L. Chernous’ko, “Decomposition and suboptimal control in dynamic systems,” Prikl. Mat. Mekh. 54, 883–893 (1990).MathSciNet F. L. Chernous’ko, “Decomposition and suboptimal control in dynamic systems,” Prikl. Mat. Mekh. 54, 883–893 (1990).MathSciNet
22.
Zurück zum Zitat F. L. Chernous’ko, I. M. Anan’evskii, and S. A. Reshmin, Control of Nonlinear Dynamical Systems: Methods and Applications (Fizmatlit, Moscow, 2006; Springer Science, New York, 2008). F. L. Chernous’ko, I. M. Anan’evskii, and S. A. Reshmin, Control of Nonlinear Dynamical Systems: Methods and Applications (Fizmatlit, Moscow, 2006; Springer Science, New York, 2008).
24.
Zurück zum Zitat H. Wei, Q. Qian, and H. Qiang, “Optimization of sliding mode controller for double inverted pendulum based on genetic algorithm,” in Proceedings of the 2nd International Symposium on Systems and Control in Aerospace and Astronautics, Shenzhen, China, 2008. https://doi.org/10.1109/ISSCAA.2008.4776281 H. Wei, Q. Qian, and H. Qiang, “Optimization of sliding mode controller for double inverted pendulum based on genetic algorithm,” in Proceedings of the 2nd International Symposium on Systems and Control in Aerospace and Astronautics, Shenzhen, China, 2008. https://​doi.​org/​10.​1109/​ISSCAA.​2008.​4776281
25.
Zurück zum Zitat H. Chaoui and P. Sicard, “Motion and balance neural control of inverted pendulums with nonlinear friction and disturbance,” in Proceedings of the 24th Canadian Conference on Electrical and Computer Engineering CCECE, Niagara Falls, Ontario, Canada, 2011. https://doi.org/10.1109/CCECE.2011.6030657 H. Chaoui and P. Sicard, “Motion and balance neural control of inverted pendulums with nonlinear friction and disturbance,” in Proceedings of the 24th Canadian Conference on Electrical and Computer Engineering CCECE, Niagara Falls, Ontario, Canada, 2011. https://​doi.​org/​10.​1109/​CCECE.​2011.​6030657
29.
Zurück zum Zitat S. A. Reshmin and F. L. Chernous’ko, “A time-optimal control synthesis for a nonlinear pendulum,” J. Comput. Syst. Sci. Int. 46, 9 (2007).MathSciNetCrossRef S. A. Reshmin and F. L. Chernous’ko, “A time-optimal control synthesis for a nonlinear pendulum,” J. Comput. Syst. Sci. Int. 46, 9 (2007).MathSciNetCrossRef
32.
Zurück zum Zitat S. A. Reshmin, F. L. Chernous’ko, and I. M. Ananievski, Control of Nonlinear Dynamical Systems (Springer, Berlin, 2008). S. A. Reshmin, F. L. Chernous’ko, and I. M. Ananievski, Control of Nonlinear Dynamical Systems (Springer, Berlin, 2008).
33.
35.
Zurück zum Zitat A. Scott, M. P. Sørensen, and P. L. Christiansen, Nonlinear Science: Emergence and Dynamics of Coherent Structures (Oxford Univ. Press, Oxford, 1999). A. Scott, M. P. Sørensen, and P. L. Christiansen, Nonlinear Science: Emergence and Dynamics of Coherent Structures (Oxford Univ. Press, Oxford, 1999).
39.
Zurück zum Zitat M. E. Semenov, O. O. Reshetova, A. V. Tolkachev, A. M. Solovyov, and P. A. Meleshenko, “Oscillations under hysteretic conditions: From simple oscillator to discrete Sine-Gordon model,” in Topics in Nonlinear Mechanics and Physics (Springer, Singapore, 2019), pp. 229–253. M. E. Semenov, O. O. Reshetova, A. V. Tolkachev, A. M. Solovyov, and P. A. Meleshenko, “Oscillations under hysteretic conditions: From simple oscillator to discrete Sine-Gordon model,” in Topics in Nonlinear Mechanics and Physics (Springer, Singapore, 2019), pp. 229–253.
40.
Zurück zum Zitat A. V. Tolkachev, M. E. Semenov, P. A. Meleshenko, O. O. Reshetova, A. F. Klinskikh, and E. A. Karpov, “Sine-Gordon system with hysteretic links,” J. Phys.: Conf. Ser. 1096, 012072 (2018). A. V. Tolkachev, M. E. Semenov, P. A. Meleshenko, O. O. Reshetova, A. F. Klinskikh, and E. A. Karpov, “Sine-Gordon system with hysteretic links,” J. Phys.: Conf. Ser. 1096, 012072 (2018).
Metadaten
Titel
Stabilization of a System of Unstable Pendulums: Discrete and Continuous Case
verfasst von
P. A. Meleshenko
V. A. Nesterov
M. E. Semenov
A. M. Solovyov
K. I. Sypalo
Publikationsdatum
01.04.2022
Verlag
Pleiades Publishing
Erschienen in
Journal of Computer and Systems Sciences International / Ausgabe 2/2022
Print ISSN: 1064-2307
Elektronische ISSN: 1555-6530
DOI
https://doi.org/10.1134/S1064230722020113

Weitere Artikel der Ausgabe 2/2022

Journal of Computer and Systems Sciences International 2/2022 Zur Ausgabe

Premium Partner