Skip to main content

2023 | OriginalPaper | Buchkapitel

6. Stacked Denoising Sparse Autoencoder-Based Fuzzy Rule Classifiers

verfasst von : Rahul Kumar Sevakula, Nishchal K. Verma

Erschienen in: Improving Classifier Generalization

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

With time, machine learning experts are unanimously agreeing that finding good features is one of the most important problems in pattern classification [1]. In fact, if given features are good, even a linear classifier would suffice to give excellent classification results.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
2.
Zurück zum Zitat H. Lee, P. Pham, Y. Largman, A.Y. Ng, Unsupervised feature learning for audio classification using convolutional deep belief networks, in Advances in Neural Information Processing Systems 21 (NIPS’09), pp. 1096–1104 (2009) H. Lee, P. Pham, Y. Largman, A.Y. Ng, Unsupervised feature learning for audio classification using convolutional deep belief networks, in Advances in Neural Information Processing Systems 21 (NIPS’09), pp. 1096–1104 (2009)
3.
Zurück zum Zitat A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in Advances in Neural Information Processing Systems 24 (NIPS’12, pp. 1097–1105 (2012) A. Krizhevsky, I. Sutskever, G.E. Hinton, Imagenet classification with deep convolutional neural networks, in Advances in Neural Information Processing Systems 24 (NIPS’12, pp. 1097–1105 (2012)
4.
Zurück zum Zitat C. Chen, C. Zhang, L. Chen, M. Gan, Fuzzy restricted boltzmann machine for the enhancement of deep learning. IEEE Trans. Fuzzy Syst. PP(99), 1 (2015) C. Chen, C. Zhang, L. Chen, M. Gan, Fuzzy restricted boltzmann machine for the enhancement of deep learning. IEEE Trans. Fuzzy Syst. PP(99), 1 (2015)
5.
Zurück zum Zitat O. Fink, E. Zio, U. Weidmann, Fuzzy classification with restricted boltzman machines and echo-state networks for predicting potential railway door system failures. IEEE Trans. Rel. 64(3), 861–868 (2015)CrossRef O. Fink, E. Zio, U. Weidmann, Fuzzy classification with restricted boltzman machines and echo-state networks for predicting potential railway door system failures. IEEE Trans. Rel. 64(3), 861–868 (2015)CrossRef
6.
Zurück zum Zitat H. Ishibuchi, T. Yamamoto, Rule weight specification in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 13(4), 428–435 (2005)CrossRef H. Ishibuchi, T. Yamamoto, Rule weight specification in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 13(4), 428–435 (2005)CrossRef
7.
Zurück zum Zitat H. Ishibuchi, K. Nozaki, H. Tanaka, Distributed representation of fuzzy rules and its application to pattern classification. Fuzzy Sets Syst. 52(1), 21–32 (1992)CrossRef H. Ishibuchi, K. Nozaki, H. Tanaka, Distributed representation of fuzzy rules and its application to pattern classification. Fuzzy Sets Syst. 52(1), 21–32 (1992)CrossRef
8.
Zurück zum Zitat H. Ishibuchi, K. Nozaki, N. Yamamoto, H. Tanaka, Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Trans. Fuzzy Syst. 3(3), 260–270 (1995)CrossRef H. Ishibuchi, K. Nozaki, N. Yamamoto, H. Tanaka, Selecting fuzzy if-then rules for classification problems using genetic algorithms. IEEE Trans. Fuzzy Syst. 3(3), 260–270 (1995)CrossRef
9.
Zurück zum Zitat L.X. Wang, J.M. Mendel, Generating fuzzy rules by learning from examples. IEEE Trans. Syst. Man Cybern. 22(6), 1414–1427 (1992) L.X. Wang, J.M. Mendel, Generating fuzzy rules by learning from examples. IEEE Trans. Syst. Man Cybern. 22(6), 1414–1427 (1992)
10.
Zurück zum Zitat L.X. Wang, The wm method completed: a flexible fuzzy system approach to data mining. IEEE Trans. Fuzzy Syst. 11(6), 768–782 (2003)CrossRef L.X. Wang, The wm method completed: a flexible fuzzy system approach to data mining. IEEE Trans. Fuzzy Syst. 11(6), 768–782 (2003)CrossRef
11.
Zurück zum Zitat Y.C. Chen, N.R. Pal, I. Chung et al., An integrated mechanism for feature selection and fuzzy rule extraction for classification. IEEE Trans. Fuzzy Syst. 20(4), 683–698 (2012)CrossRef Y.C. Chen, N.R. Pal, I. Chung et al., An integrated mechanism for feature selection and fuzzy rule extraction for classification. IEEE Trans. Fuzzy Syst. 20(4), 683–698 (2012)CrossRef
12.
Zurück zum Zitat Y. Jin, Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement. IEEE Trans. Fuzzy Syst. 8(2), 212–221 (2000)CrossRef Y. Jin, Fuzzy modeling of high-dimensional systems: complexity reduction and interpretability improvement. IEEE Trans. Fuzzy Syst. 8(2), 212–221 (2000)CrossRef
13.
Zurück zum Zitat T. Taniguchi, K. Tanaka, H. Ohtake, H.O. Wang, Model construction, rule reduction, and robust compensation for generalized form of takagi-sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 9(4), 525–538 (2001)CrossRef T. Taniguchi, K. Tanaka, H. Ohtake, H.O. Wang, Model construction, rule reduction, and robust compensation for generalized form of takagi-sugeno fuzzy systems. IEEE Trans. Fuzzy Syst. 9(4), 525–538 (2001)CrossRef
14.
Zurück zum Zitat E.G. Mansoori, M.J. Zolghadri, S.D. Katebi, Sgerd: a steady-state genetic algorithm for extracting fuzzy classification rules from data. IEEE Trans. Fuzzy Syst. 16(4), 1061–1071 (2008)CrossRef E.G. Mansoori, M.J. Zolghadri, S.D. Katebi, Sgerd: a steady-state genetic algorithm for extracting fuzzy classification rules from data. IEEE Trans. Fuzzy Syst. 16(4), 1061–1071 (2008)CrossRef
15.
Zurück zum Zitat M. Luo, F. Sun, H. Liu, Hierarchical structured sparse representation for t-s fuzzy systems identification. IEEE Trans. Fuzzy Syst. 21(6), 1032–1043 (2013)CrossRef M. Luo, F. Sun, H. Liu, Hierarchical structured sparse representation for t-s fuzzy systems identification. IEEE Trans. Fuzzy Syst. 21(6), 1032–1043 (2013)CrossRef
16.
Zurück zum Zitat H. Ishibuchi, T. Yamamoto, Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets Syst. 141(1), 59–88 (2004)MATHCrossRef H. Ishibuchi, T. Yamamoto, Fuzzy rule selection by multi-objective genetic local search algorithms and rule evaluation measures in data mining. Fuzzy Sets Syst. 141(1), 59–88 (2004)MATHCrossRef
17.
Zurück zum Zitat D.P. Muni, N.R. Pal, J. Das, Genetic programming for simultaneous feature selection and classifier design. IEEE Trans. Syst. Man Cybern. Part B 36(1), 106–117 (2006) D.P. Muni, N.R. Pal, J. Das, Genetic programming for simultaneous feature selection and classifier design. IEEE Trans. Syst. Man Cybern. Part B 36(1), 106–117 (2006)
18.
Zurück zum Zitat Y. Yam, P. Baranyi, C.T. Yang, Reduction of fuzzy rule base via singular value decomposition. IEEE Trans. Fuzzy Syst. 7(2), 120–132 (1999)CrossRef Y. Yam, P. Baranyi, C.T. Yang, Reduction of fuzzy rule base via singular value decomposition. IEEE Trans. Fuzzy Syst. 7(2), 120–132 (1999)CrossRef
19.
Zurück zum Zitat M. Setnes, R. Babuška, Rule base reduction: some comments on the use of orthogonal transforms. IEEE Trans. Syst. Man Cybern. Part C 31(2), 199–206 (2001) M. Setnes, R. Babuška, Rule base reduction: some comments on the use of orthogonal transforms. IEEE Trans. Syst. Man Cybern. Part C 31(2), 199–206 (2001)
20.
Zurück zum Zitat C.W. Tao, A reduction approach for fuzzy rule bases of fuzzy controllers. IEEE Trans. Syst. Man Cybern. Part B 32(5), 668–675 (2002) C.W. Tao, A reduction approach for fuzzy rule bases of fuzzy controllers. IEEE Trans. Syst. Man Cybern. Part B 32(5), 668–675 (2002)
21.
Zurück zum Zitat L.T. Koczy, K. Hirota, Size reduction by interpolation in fuzzy rule bases. IEEE Trans. Syst. Man Cybern. Part B 27(1), 14–25 (1997) L.T. Koczy, K. Hirota, Size reduction by interpolation in fuzzy rule bases. IEEE Trans. Syst. Man Cybern. Part B 27(1), 14–25 (1997)
22.
Zurück zum Zitat H. Ishibuchi, T. Nakashima, Effect of rule weights in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 9(4), 506–515 (2001)CrossRef H. Ishibuchi, T. Nakashima, Effect of rule weights in fuzzy rule-based classification systems. IEEE Trans. Fuzzy Syst. 9(4), 506–515 (2001)CrossRef
23.
Zurück zum Zitat S. Paul, S. Kumar, Subsethood-product fuzzy neural inference system (supfunis). IEEE Trans. Neural Netw. 13(3), 578–599 (2002)CrossRef S. Paul, S. Kumar, Subsethood-product fuzzy neural inference system (supfunis). IEEE Trans. Neural Netw. 13(3), 578–599 (2002)CrossRef
24.
Zurück zum Zitat M. Russo, Fugenesys-a fuzzy genetic neural system for fuzzy modeling. IEEE Trans. Fuzzy Syst. 6(3), 373–388 (1998)CrossRef M. Russo, Fugenesys-a fuzzy genetic neural system for fuzzy modeling. IEEE Trans. Fuzzy Syst. 6(3), 373–388 (1998)CrossRef
25.
Zurück zum Zitat M.F. Han, C.T. Lin, J.Y. Chang, A compensatory neurofuzzy system with online constructing and parameter learning, in IEEE International Conference Systems Man and Cybernetics (SMC’10), pp. 552–556 (2010) M.F. Han, C.T. Lin, J.Y. Chang, A compensatory neurofuzzy system with online constructing and parameter learning, in IEEE International Conference Systems Man and Cybernetics (SMC’10), pp. 552–556 (2010)
26.
Zurück zum Zitat D. Chakraborty, N.R. Pal, A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification. IEEE Trans. Neural Netw. 15(1), 110–123 (2004)CrossRef D. Chakraborty, N.R. Pal, A neuro-fuzzy scheme for simultaneous feature selection and fuzzy rule-based classification. IEEE Trans. Neural Netw. 15(1), 110–123 (2004)CrossRef
27.
Zurück zum Zitat D. Chakraborty, N.R. Pal, Selecting useful groups of features in a connectionist framework. IEEE Trans. Neural Netw. 19(3), 381–396 (2008)CrossRef D. Chakraborty, N.R. Pal, Selecting useful groups of features in a connectionist framework. IEEE Trans. Neural Netw. 19(3), 381–396 (2008)CrossRef
28.
Zurück zum Zitat Y. Bengio, Learning deep architectures for ai. Foundat. trends® Mach. Learn. 2(1), 1–127 (2009) Y. Bengio, Learning deep architectures for ai. Foundat. trends® Mach. Learn. 2(1), 1–127 (2009)
29.
Zurück zum Zitat M.A. Ranzato, Y.L. Boureau, Y.L. Cun, Sparse feature learning for deep belief networks, in Advances in Neural Information Processing Systems 20 (NIPS’08) (Curran Associates, Inc., 2008), pp. 1185–1192 M.A. Ranzato, Y.L. Boureau, Y.L. Cun, Sparse feature learning for deep belief networks, in Advances in Neural Information Processing Systems 20 (NIPS’08) (Curran Associates, Inc., 2008), pp. 1185–1192
30.
Zurück zum Zitat Y. Bengio, Practical recommendations for gradient-based training of deep architectures, in Neural Networks: Tricks of the Trade (Springer, 2012), pp. 437–478 Y. Bengio, Practical recommendations for gradient-based training of deep architectures, in Neural Networks: Tricks of the Trade (Springer, 2012), pp. 437–478
31.
Zurück zum Zitat P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.A. Manzagol, Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. (JMLR) 11, 3371–3408 (2010)MathSciNetMATH P. Vincent, H. Larochelle, I. Lajoie, Y. Bengio, P.A. Manzagol, Stacked denoising autoencoders: learning useful representations in a deep network with a local denoising criterion. J. Mach. Learn. Res. (JMLR) 11, 3371–3408 (2010)MathSciNetMATH
32.
Zurück zum Zitat Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle et al., Greedy layer-wise training of deep networks. Adv. Neural Inf. Process. Syst. 19, 153 (2007) Y. Bengio, P. Lamblin, D. Popovici, H. Larochelle et al., Greedy layer-wise training of deep networks. Adv. Neural Inf. Process. Syst. 19, 153 (2007)
33.
Zurück zum Zitat R.K. Sevakula, N.K. Verma, Fuzzy rule reduction using sparse auto-encoders, in Proceedings IEEE International Conference Fuzzy Systems (FUZZ-IEEE’15) (IEEE, 2015), pp. 1–6 R.K. Sevakula, N.K. Verma, Fuzzy rule reduction using sparse auto-encoders, in Proceedings IEEE International Conference Fuzzy Systems (FUZZ-IEEE’15) (IEEE, 2015), pp. 1–6
34.
Zurück zum Zitat R.K. Sevakula, N.K. Verma, Fuzzy rule reduction using sparse auto-encoders, in IEEE Workshop on Computational Intelligence (IEEE-WCI’15) (IEEE, 2015), p. (Accepted) R.K. Sevakula, N.K. Verma, Fuzzy rule reduction using sparse auto-encoders, in IEEE Workshop on Computational Intelligence (IEEE-WCI’15) (IEEE, 2015), p. (Accepted)
35.
Zurück zum Zitat A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the em algorithm, J. Royal Stat. Soc. Series B (Methodological), 1–38 (1977) A.P. Dempster, N.M. Laird, D.B. Rubin, Maximum likelihood from incomplete data via the em algorithm, J. Royal Stat. Soc. Series B (Methodological), 1–38 (1977)
36.
Zurück zum Zitat H. Greenspan, J. Goldberger, A. Mayer, Probabilistic space-time video modeling via piecewise gmm. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 384–396 (2004)CrossRef H. Greenspan, J. Goldberger, A. Mayer, Probabilistic space-time video modeling via piecewise gmm. IEEE Trans. Pattern Anal. Mach. Intell. 26(3), 384–396 (2004)CrossRef
37.
Zurück zum Zitat N.K. Verma, M. Hanmandlu, From a gaussian mixture model to nonadditive fuzzy systems. IEEE Trans. Fuzzy Syst. 15(5), 809–827 (2007)CrossRef N.K. Verma, M. Hanmandlu, From a gaussian mixture model to nonadditive fuzzy systems. IEEE Trans. Fuzzy Syst. 15(5), 809–827 (2007)CrossRef
38.
Zurück zum Zitat Z. Huang, Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining Knowl. Dis. 2(3), 283–304 (1998)CrossRef Z. Huang, Extensions to the k-means algorithm for clustering large data sets with categorical values. Data Mining Knowl. Dis. 2(3), 283–304 (1998)CrossRef
39.
Zurück zum Zitat F. Cao, J. Liang, L. Bai, A new initialization method for categorical data clustering. Expert Syst. Appl. 36(7), 10 223–10 228 (2009) F. Cao, J. Liang, L. Bai, A new initialization method for categorical data clustering. Expert Syst. Appl. 36(7), 10 223–10 228 (2009)
40.
Zurück zum Zitat V.N. Vapnik, An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)CrossRef V.N. Vapnik, An overview of statistical learning theory. IEEE Trans. Neural Netw. 10(5), 988–999 (1999)CrossRef
41.
Zurück zum Zitat K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRef K. Deb, A. Pratap, S. Agarwal, T. Meyarivan, A fast and elitist multiobjective genetic algorithm: Nsga-ii. IEEE Trans. Evol. Comput. 6(2), 182–197 (2002)CrossRef
42.
Zurück zum Zitat M. Fazzolari, R. Alcala, Y. Nojima, H. Ishibuchi, F. Herrera, A review of the application of multiobjective evolutionary fuzzy systems: current status and further directions. IEEE Trans. Fuzzy Syst. 21(1), 45–65 (2013)CrossRef M. Fazzolari, R. Alcala, Y. Nojima, H. Ishibuchi, F. Herrera, A review of the application of multiobjective evolutionary fuzzy systems: current status and further directions. IEEE Trans. Fuzzy Syst. 21(1), 45–65 (2013)CrossRef
45.
Zurück zum Zitat J.R. Quinlan, Improved use of continuous attributes in c4.5. J. Artif. Intell. Res. 4, 77–90 (1996)MATHCrossRef J.R. Quinlan, Improved use of continuous attributes in c4.5. J. Artif. Intell. Res. 4, 77–90 (1996)MATHCrossRef
46.
Zurück zum Zitat T. Elomaa, J. Rousu, General and efficient multisplitting of numerical attributes. Mach. Learn. 36(3), 201–244 (1999)MATHCrossRef T. Elomaa, J. Rousu, General and efficient multisplitting of numerical attributes. Mach. Learn. 36(3), 201–244 (1999)MATHCrossRef
47.
Zurück zum Zitat L. Sánchez, I. Couso, J.A. Corrales, Combining gp operators with sa search to evolve fuzzy rule based classifiers. Inf. Sci. 136(1), 175–191 (2001)MATHCrossRef L. Sánchez, I. Couso, J.A. Corrales, Combining gp operators with sa search to evolve fuzzy rule based classifiers. Inf. Sci. 136(1), 175–191 (2001)MATHCrossRef
48.
Zurück zum Zitat A. Gonzblez, R. Pérez, Slave: a genetic learning system based on an iterative approach. IEEE Trans. Fuzzy Syst. 7(2), 176–191 (1999)CrossRef A. Gonzblez, R. Pérez, Slave: a genetic learning system based on an iterative approach. IEEE Trans. Fuzzy Syst. 7(2), 176–191 (1999)CrossRef
49.
Zurück zum Zitat H. Ishibuchi, T. Yamamoto, Comparison of heuristic criteria for fuzzy rule selection in classification problems. Fuzzy Optim. Decis. Making 3(2), 119–139 (2004)MathSciNetMATHCrossRef H. Ishibuchi, T. Yamamoto, Comparison of heuristic criteria for fuzzy rule selection in classification problems. Fuzzy Optim. Decis. Making 3(2), 119–139 (2004)MathSciNetMATHCrossRef
50.
Zurück zum Zitat J. Abonyi, J.A. Roubos, F. Szeifert, Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization J. Abonyi, J.A. Roubos, F. Szeifert, Data-driven generation of compact, accurate, and linguistically sound fuzzy classifiers based on a decision-tree initialization
51.
Zurück zum Zitat S.U. Guan, F. Zhu, Class decomposition for ga-based classifier agents-a pitt approach. IEEE Trans. Syst. Man Cybern. Part B 34(1), 381–392 (2004) S.U. Guan, F. Zhu, Class decomposition for ga-based classifier agents-a pitt approach. IEEE Trans. Syst. Man Cybern. Part B 34(1), 381–392 (2004)
52.
Zurück zum Zitat H. Ishibuchi, T. Yamamoto, T. Nakashima, Hybridization of fuzzy gbml approaches for pattern classification problems. IEEE Trans. Syst. Man Cybern. Part B 35(2), 359–365 (2005) H. Ishibuchi, T. Yamamoto, T. Nakashima, Hybridization of fuzzy gbml approaches for pattern classification problems. IEEE Trans. Syst. Man Cybern. Part B 35(2), 359–365 (2005)
53.
Zurück zum Zitat H. Ishibuchi, T. Yamamoto, T. Nakashima, Additive and nonadditive fuzzy hidden markov models. IEEE Trans. Fuzzy Syst. 18(1), 40–56 (2010)CrossRef H. Ishibuchi, T. Yamamoto, T. Nakashima, Additive and nonadditive fuzzy hidden markov models. IEEE Trans. Fuzzy Syst. 18(1), 40–56 (2010)CrossRef
Metadaten
Titel
Stacked Denoising Sparse Autoencoder-Based Fuzzy Rule Classifiers
verfasst von
Rahul Kumar Sevakula
Nishchal K. Verma
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-5073-5_6

Premium Partner