Skip to main content
Erschienen in: Shape Memory and Superelasticity 2/2023

28.03.2023 | TECHNICAL ARTICLE

Standardization of Shape Memory Alloys from Material to Actuator

verfasst von: D. E. Nicholson, O. Benafan, G. S. Bigelow, D. Pick, A. Demblon, J. H. Mabe, I. Karaman, B. Van Doren, D. Forbes, F. Sczerzenie, L. Fumagalli, C. Wallner

Erschienen in: Shape Memory and Superelasticity | Ausgabe 2/2023

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Development of standard specifications and test methods for shape memory alloys (SMAs) in the context of actuator materials and components are outlined. A material specification centers on mill product wrought NiTi or NiTi + X + X′ based alloys, where X and X′ can be any alloying element addition to the base NiTi. This standard is aimed toward specifying the chemical, mechanical, thermal, and metallurgical requirements of NiTi-based alloys. Two newly proposed standard test methods are aimed toward expanding the applicability of the following published SMA actuator standards: E3097—Standard Test Method for Uniaxial Constant Force Thermal Cycling (UCFTC) and E3098—Standard Test Method for Uniaxial Pre-strain and Thermal Free Recovery (UPFR). First, Force-Controlled Repeated Thermal Cycling (FCRTC), addresses repeated thermal cycling under a constant force and associated terminology. FCRTC’s primary objective is to address failure with regard to the SMA material’s ability to perform its function as an actuator for an application’s required lifecycle. Second, Constant Torque Thermal Cycling (CTTC) deals with thermally cycling SMAs under a constant torque for rotary actuator applications. Key features of each proposed standard and progress on their development are outlined, considering novelty and applicability to actuation from raw material to final actuator component in its application.
Literatur
1.
Zurück zum Zitat Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 1980–2015(56):1078–1113CrossRef Jani JM, Leary M, Subic A, Gibson MA (2014) A review of shape memory alloy research, applications and opportunities. Mater Des 1980–2015(56):1078–1113CrossRef
2.
Zurück zum Zitat Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng G 221(4):535–552CrossRef Hartl DJ, Lagoudas DC (2007) Aerospace applications of shape memory alloys. Proc Inst Mech Eng G 221(4):535–552CrossRef
3.
Zurück zum Zitat Calkins FT, Mabe JH (2010) Shape memory alloy based morphing aerostructures. J Mech Des 132:111012–111021CrossRef Calkins FT, Mabe JH (2010) Shape memory alloy based morphing aerostructures. J Mech Des 132:111012–111021CrossRef
4.
Zurück zum Zitat Benafan O, Moholt MR, Bass M, Mabe JH, Nicholson DE, Calkins FT (2019) Recent advancements in rotary shape memory alloy actuators for aeronautics. Shape Mem Superelasticity 5(4):415–428CrossRef Benafan O, Moholt MR, Bass M, Mabe JH, Nicholson DE, Calkins FT (2019) Recent advancements in rotary shape memory alloy actuators for aeronautics. Shape Mem Superelasticity 5(4):415–428CrossRef
5.
Zurück zum Zitat Calkins FT, Mabe JH: Flight test of a shape memory alloy actuated adaptive trailing edge flap. In: ASME 2016 conference on smart materials, adaptive structures and intelligent systems (2016) Calkins FT, Mabe JH: Flight test of a shape memory alloy actuated adaptive trailing edge flap. In: ASME 2016 conference on smart materials, adaptive structures and intelligent systems (2016)
6.
Zurück zum Zitat Calkins FT, Nicholson DE, Fassmann A, Vijgen P, Yeeles C, Benafan O et al (2022) Shape memory alloy actuated vortex generators: development and flight test. In: SMST2022. ASM International, pp. 6–8 Calkins FT, Nicholson DE, Fassmann A, Vijgen P, Yeeles C, Benafan O et al (2022) Shape memory alloy actuated vortex generators: development and flight test. In: SMST2022. ASM International, pp. 6–8
7.
Zurück zum Zitat Benafan O, Gaydosh DJ, Bigelow GS, Noebe RD, Calkins FT, Nicholson DE (2022) Shape memory alloy actuated vortex generators: alloy design. In: Shape memory and superelastic technology Benafan O, Gaydosh DJ, Bigelow GS, Noebe RD, Calkins FT, Nicholson DE (2022) Shape memory alloy actuated vortex generators: alloy design. In: Shape memory and superelastic technology
8.
Zurück zum Zitat Hartl DJ, Mabe JH, Benafan O, Coda A, Conduit B, Padan R, Van Doren B (2015) Standardization of shape memory alloy test methods toward certification of aerospace applications. Smart Mater Struct 24(8):082001CrossRef Hartl DJ, Mabe JH, Benafan O, Coda A, Conduit B, Padan R, Van Doren B (2015) Standardization of shape memory alloy test methods toward certification of aerospace applications. Smart Mater Struct 24(8):082001CrossRef
9.
Zurück zum Zitat ASTM F2004-17 (2017) Standard test method for transformation temperature of nickel-titanium alloys by thermal analysis. ASTM International, West Conshohocken, 2017. www.astm.org ASTM F2004-17 (2017) Standard test method for transformation temperature of nickel-titanium alloys by thermal analysis. ASTM International, West Conshohocken, 2017. www.​astm.​org
10.
Zurück zum Zitat ASTM F2005-17 (2017) Standard terminology for nickel-titanium shape memory alloys. ASTM International, West Conshohocken, 2017. www.astm.org ASTM F2005-17 (2017) Standard terminology for nickel-titanium shape memory alloys. ASTM International, West Conshohocken, 2017. www.​astm.​org
11.
Zurück zum Zitat ASTM F2063-18 (2018) Standard specification for wrought nickel-titanium shape memory alloys for medical devices and surgical implants. ASTM International, West Conshohocken, 2017. www.astm.org ASTM F2063-18 (2018) Standard specification for wrought nickel-titanium shape memory alloys for medical devices and surgical implants. ASTM International, West Conshohocken, 2017. www.​astm.​org
12.
Zurück zum Zitat ASTM F2082-16 (2016) Standard test method for determination of transformation temperature of nickel-titanium shape memory alloys by bend and free recovery. ASTM International, West Conshohocken, 2017. www.astm.org ASTM F2082-16 (2016) Standard test method for determination of transformation temperature of nickel-titanium shape memory alloys by bend and free recovery. ASTM International, West Conshohocken, 2017. www.​astm.​org
13.
Zurück zum Zitat ASTM F2516-18 (2018) Standard test method for tension testing of nickel-titanium superelastic materials. ASTM International, West Conshohocken, 2017. www.astm.org ASTM F2516-18 (2018) Standard test method for tension testing of nickel-titanium superelastic materials. ASTM International, West Conshohocken, 2017. www.​astm.​org
14.
Zurück zum Zitat ASTM F2633-18 (2018) Standard specification for wrought seamless nickel-titanium shape memory alloy tube for medical devices and surgical implants. ASTM International, West Conshohocken, 2017. www.astm.org ASTM F2633-18 (2018) Standard specification for wrought seamless nickel-titanium shape memory alloy tube for medical devices and surgical implants. ASTM International, West Conshohocken, 2017. www.​astm.​org
15.
Zurück zum Zitat ASTM E3097-17 (2017) Standard test method for mechanical uniaxial constant force thermal cycling of shape memory alloys. ASTM International, West Conshohocken, 2017. www.astm.org ASTM E3097-17 (2017) Standard test method for mechanical uniaxial constant force thermal cycling of shape memory alloys. ASTM International, West Conshohocken, 2017. www.​astm.​org
16.
Zurück zum Zitat ASTM E3098-17 (2017) Standard test method for mechanical uniaxial pre-strain and thermal free recovery of shape memory alloys. ASTM International, West Conshohocken, 2017. www.astm.org ASTM E3098-17 (2017) Standard test method for mechanical uniaxial pre-strain and thermal free recovery of shape memory alloys. ASTM International, West Conshohocken, 2017. www.​astm.​org
17.
Zurück zum Zitat Luna H, Bigelow GS, Benafan O (2022) Ruggedness evaluation of ASTM international standard test methods for shape memory materials: E3098 Standard Test Method for Mechanical Uniaxial Pre-strain and Thermal Free Recovery of Shape Memory Alloys (No. NASA/TM-2022) Luna H, Bigelow GS, Benafan O (2022) Ruggedness evaluation of ASTM international standard test methods for shape memory materials: E3098 Standard Test Method for Mechanical Uniaxial Pre-strain and Thermal Free Recovery of Shape Memory Alloys (No. NASA/TM-2022)
18.
Zurück zum Zitat Bigelow GS, Benafan O, Toom ZD (2022) SMAnalytics—an automated software for the analysis of shape memory alloy test data. In: SMST2022. ASM International, pp 55–56 Bigelow GS, Benafan O, Toom ZD (2022) SMAnalytics—an automated software for the analysis of shape memory alloy test data. In: SMST2022. ASM International, pp 55–56
19.
Zurück zum Zitat Kuner MC, Karakalas AA, Lagoudas DC (2021) ASMADA—a tool for automatic analysis of shape memory alloy thermal cycling data under constant stress. Smart Mater Struct 30(12):125003CrossRef Kuner MC, Karakalas AA, Lagoudas DC (2021) ASMADA—a tool for automatic analysis of shape memory alloy thermal cycling data under constant stress. Smart Mater Struct 30(12):125003CrossRef
20.
Zurück zum Zitat Nicholson DE, Benafan O, Bigelow GS, Sczerzenie F, Forbes D, Van Doren B, Mabe JH, Demblon A, Karaman I (2022) An overview of ASTM standard test methods for shape memory alloy actuation materials. In: SMST2022. ASM International (pp. 59–60) Nicholson DE, Benafan O, Bigelow GS, Sczerzenie F, Forbes D, Van Doren B, Mabe JH, Demblon A, Karaman I (2022) An overview of ASTM standard test methods for shape memory alloy actuation materials. In: SMST2022. ASM International (pp. 59–60)
21.
Zurück zum Zitat ASTM Work Item (WK74640) New test method for load control thermomechanical actuation cycling of shape memory alloys. ASTM International, West Conshohocken. www.astm.org ASTM Work Item (WK74640) New test method for load control thermomechanical actuation cycling of shape memory alloys. ASTM International, West Conshohocken. www.​astm.​org
22.
Zurück zum Zitat ASTM Work Item (WK74655) Constant torque thermal cycling of shape memory alloys. ASTM International, West Conshohocken. www.astm.org ASTM Work Item (WK74655) Constant torque thermal cycling of shape memory alloys. ASTM International, West Conshohocken. www.​astm.​org
23.
Zurück zum Zitat Frick CP, Ortega AM, Tyber J, Maksound AEM, Maier HJ, Liu Y, Gall K (2005) Thermal processing of polycrystalline NiTi shape memory alloys. Mater Sci Eng A 405(1–2):34–49CrossRef Frick CP, Ortega AM, Tyber J, Maksound AEM, Maier HJ, Liu Y, Gall K (2005) Thermal processing of polycrystalline NiTi shape memory alloys. Mater Sci Eng A 405(1–2):34–49CrossRef
24.
Zurück zum Zitat Sharma N, Kumar K, Kumar V (2018) Post-processing of NiTi alloys: Issues and challenges. Powder Metall Met Ceram 56(9):599–609CrossRef Sharma N, Kumar K, Kumar V (2018) Post-processing of NiTi alloys: Issues and challenges. Powder Metall Met Ceram 56(9):599–609CrossRef
25.
Zurück zum Zitat Lahoz R, Puértolas JA (2004) Training and two-way shape memory in NiTi alloys: influence on thermal parameters. J Alloys Compd 381(1–2):130–136CrossRef Lahoz R, Puértolas JA (2004) Training and two-way shape memory in NiTi alloys: influence on thermal parameters. J Alloys Compd 381(1–2):130–136CrossRef
26.
Zurück zum Zitat Atli KC, Karaman I, Noebe RD, Gaydosh D (2013) The effect of training on two-way shape memory effect of binary NiTi and NiTi based ternary high temperature shape memory alloys. Mater Sci Eng A 560:653–666CrossRef Atli KC, Karaman I, Noebe RD, Gaydosh D (2013) The effect of training on two-way shape memory effect of binary NiTi and NiTi based ternary high temperature shape memory alloys. Mater Sci Eng A 560:653–666CrossRef
27.
Zurück zum Zitat Benafan O, Bigelow GS, Garg A, Noebe RD, Gaydosh DJ, Rogers RB (2021) Processing and scalability of NiTiHf high-temperature shape memory alloys. Shape Mem Superelasticity 7(1):109–165CrossRef Benafan O, Bigelow GS, Garg A, Noebe RD, Gaydosh DJ, Rogers RB (2021) Processing and scalability of NiTiHf high-temperature shape memory alloys. Shape Mem Superelasticity 7(1):109–165CrossRef
28.
Zurück zum Zitat Haghgouyan B, Hayrettin C, Baxevanis T, Karaman I, Lagoudas DC (2019) Fracture toughness of NiTi–towards establishing standard test methods for phase transforming materials. Acta Mater 162:226–238CrossRef Haghgouyan B, Hayrettin C, Baxevanis T, Karaman I, Lagoudas DC (2019) Fracture toughness of NiTi–towards establishing standard test methods for phase transforming materials. Acta Mater 162:226–238CrossRef
32.
Zurück zum Zitat Benafan O, Noebe RD, Padula SA II, Brown DW, Vogel S, Vaidyanathan R (2014) Thermomechanical cycling of a NiTi shape memory alloy-macroscopic response and microstructural evolution. Int J Plast 56:99–118CrossRef Benafan O, Noebe RD, Padula SA II, Brown DW, Vogel S, Vaidyanathan R (2014) Thermomechanical cycling of a NiTi shape memory alloy-macroscopic response and microstructural evolution. Int J Plast 56:99–118CrossRef
34.
Zurück zum Zitat Frenzel J, George EP, Dlouhy A, Somsen C, Wagner M-X, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458CrossRef Frenzel J, George EP, Dlouhy A, Somsen C, Wagner M-X, Eggeler G (2010) Influence of Ni on martensitic phase transformations in NiTi shape memory alloys. Acta Mater 58(9):3444–3458CrossRef
35.
Zurück zum Zitat Frenzel J, Wieczorek A, Opahle I, Maaß B, Drautz R, Eggeler G (2015) On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Mater 90:213–231CrossRef Frenzel J, Wieczorek A, Opahle I, Maaß B, Drautz R, Eggeler G (2015) On the effect of alloy composition on martensite start temperatures and latent heats in Ni–Ti-based shape memory alloys. Acta Mater 90:213–231CrossRef
36.
Zurück zum Zitat Karakoc O, Hayrettin C, Evirgen A, Santamarta R, Canadinc D, Wheeler RW, Wang SJ, Lagoudas DC, Karaman I (2019) Role of microstructure on the actuation fatigue performance of Ni-Rich NiTiHf high temperature shape memory alloys. Acta Mater 175:107–120CrossRef Karakoc O, Hayrettin C, Evirgen A, Santamarta R, Canadinc D, Wheeler RW, Wang SJ, Lagoudas DC, Karaman I (2019) Role of microstructure on the actuation fatigue performance of Ni-Rich NiTiHf high temperature shape memory alloys. Acta Mater 175:107–120CrossRef
49.
Zurück zum Zitat Karakoc O, Hayrettin C, Bass M, Wang SJ, Canadinc D, Mabe JH, Lagoudas DC, Karaman I (2017) Effects of upper cycle temperature on the actuation fatigue response of NiTiHf high temperature shape memory alloys. Acta Mater 138:185–197CrossRef Karakoc O, Hayrettin C, Bass M, Wang SJ, Canadinc D, Mabe JH, Lagoudas DC, Karaman I (2017) Effects of upper cycle temperature on the actuation fatigue response of NiTiHf high temperature shape memory alloys. Acta Mater 138:185–197CrossRef
50.
Zurück zum Zitat Padula S, Qiu S, Gaydosh D, Noebe R, Bigelow G, Garg A, Vaidyanathan R (2012) Effect of upper-cycle temperature on the load-biased, strain-temperature response of NiTi. Metall Mater Trans A 43(12):4610–4621CrossRef Padula S, Qiu S, Gaydosh D, Noebe R, Bigelow G, Garg A, Vaidyanathan R (2012) Effect of upper-cycle temperature on the load-biased, strain-temperature response of NiTi. Metall Mater Trans A 43(12):4610–4621CrossRef
51.
Zurück zum Zitat Clingman DJ, Calkins FT, Smith JP: Thermomechanical properties of Ni 60% weight Ti 40% weight." In: Smart structures and materials 2003: active materials: behavior and mechanics, vol 5053. SPIE, pp 219–229 (2003) Clingman DJ, Calkins FT, Smith JP: Thermomechanical properties of Ni 60% weight Ti 40% weight." In: Smart structures and materials 2003: active materials: behavior and mechanics, vol 5053. SPIE, pp 219–229 (2003)
52.
Zurück zum Zitat Grossmann C, Frenzel J, Sampath V, Depka T, Eggeler G (2009) Elementary transformation and deformation processes and the cyclic stability of NiTi and NiTiCu shape memory spring actuators. Metall Mater Trans A 40(11):2530CrossRef Grossmann C, Frenzel J, Sampath V, Depka T, Eggeler G (2009) Elementary transformation and deformation processes and the cyclic stability of NiTi and NiTiCu shape memory spring actuators. Metall Mater Trans A 40(11):2530CrossRef
53.
Zurück zum Zitat Karakoc O, Atli KC, Benafan O, Noebe RD, Karaman I (2022) Actuation fatigue performance of NiTiZr and comparison to NiTiHf high temperature shape memory alloys. Mater Sci Eng A 829:142154CrossRef Karakoc O, Atli KC, Benafan O, Noebe RD, Karaman I (2022) Actuation fatigue performance of NiTiZr and comparison to NiTiHf high temperature shape memory alloys. Mater Sci Eng A 829:142154CrossRef
54.
Zurück zum Zitat Atli KC, Karaman I, Noebe RD (2011) Work output of the two-way shape memory effect in Ti50.5Ni24.5Pd25 high-temperature shape memory alloy. Scr Mater 65(10):903–906CrossRef Atli KC, Karaman I, Noebe RD (2011) Work output of the two-way shape memory effect in Ti50.5Ni24.5Pd25 high-temperature shape memory alloy. Scr Mater 65(10):903–906CrossRef
55.
Zurück zum Zitat Scirè Mammano G, Dragoni E (2014) Functional fatigue of Ni–Ti shape memory wires under various loading conditions. Int J Fatigue 69:71–83CrossRef Scirè Mammano G, Dragoni E (2014) Functional fatigue of Ni–Ti shape memory wires under various loading conditions. Int J Fatigue 69:71–83CrossRef
56.
Zurück zum Zitat Jardine AP, Bartley-Cho JD, Flanagan JS (1999) Improved design and performance of the SMA torque tube for the DARPA Smart Wing Program. In: Smart structures and materials 1999: industrial and commercial applications of smart structures technologies, vol 3674. SPIE, pp 260–269 Jardine AP, Bartley-Cho JD, Flanagan JS (1999) Improved design and performance of the SMA torque tube for the DARPA Smart Wing Program. In: Smart structures and materials 1999: industrial and commercial applications of smart structures technologies, vol 3674. SPIE, pp 260–269
57.
Zurück zum Zitat Mabe JH, Ruggeri RT, Rosenzweig E, Yu CJM (2004) NiTinol performance characterization and rotary actuator design. In: Smart structures and materials 2004: industrial and commercial applications of smart structures technologies, vol 5388. SPIE, pp 95–109 Mabe JH, Ruggeri RT, Rosenzweig E, Yu CJM (2004) NiTinol performance characterization and rotary actuator design. In: Smart structures and materials 2004: industrial and commercial applications of smart structures technologies, vol 5388. SPIE, pp 95–109
58.
Zurück zum Zitat Benafan O, Gaydosh DJ (2018) Constant-torque thermal cycling and two-way shape memory effect in Ni50.3Ti29.7Hf20 torque tubes. Smart Mater Struct 27(7):075035CrossRef Benafan O, Gaydosh DJ (2018) Constant-torque thermal cycling and two-way shape memory effect in Ni50.3Ti29.7Hf20 torque tubes. Smart Mater Struct 27(7):075035CrossRef
59.
Zurück zum Zitat Nicholson DE, Bass MA, Mabe JH, Benafan O, Padula SA, Vaidyanathan R (2016) Heating and loading paths to optimize the performance of trained shape memory alloy torsional actuators. In: Smart materials, adaptive structures and intelligent systems, vol 50480. American Society of Mechanical Engineers, p V001T02A008 Nicholson DE, Bass MA, Mabe JH, Benafan O, Padula SA, Vaidyanathan R (2016) Heating and loading paths to optimize the performance of trained shape memory alloy torsional actuators. In: Smart materials, adaptive structures and intelligent systems, vol 50480. American Society of Mechanical Engineers, p V001T02A008
60.
Zurück zum Zitat Stroud H, Hartl D (2020) Shape memory alloy torsional actuators: a review of applications, experimental investigations, modeling, and design. Smart Mater Struct 29(11):113001CrossRef Stroud H, Hartl D (2020) Shape memory alloy torsional actuators: a review of applications, experimental investigations, modeling, and design. Smart Mater Struct 29(11):113001CrossRef
61.
Zurück zum Zitat Nicholson DE, Padula SA, Benafan O, Bunn JR, Payzant EA, An K, Penumadu D, Vaidyanathan R (2021) Mapping of texture and phase fractions in heterogeneous stress states during multiaxial loading of biomedical superelastic NiTi. Adv Mater 33(5):2005092CrossRef Nicholson DE, Padula SA, Benafan O, Bunn JR, Payzant EA, An K, Penumadu D, Vaidyanathan R (2021) Mapping of texture and phase fractions in heterogeneous stress states during multiaxial loading of biomedical superelastic NiTi. Adv Mater 33(5):2005092CrossRef
Metadaten
Titel
Standardization of Shape Memory Alloys from Material to Actuator
verfasst von
D. E. Nicholson
O. Benafan
G. S. Bigelow
D. Pick
A. Demblon
J. H. Mabe
I. Karaman
B. Van Doren
D. Forbes
F. Sczerzenie
L. Fumagalli
C. Wallner
Publikationsdatum
28.03.2023
Verlag
Springer US
Erschienen in
Shape Memory and Superelasticity / Ausgabe 2/2023
Print ISSN: 2199-384X
Elektronische ISSN: 2199-3858
DOI
https://doi.org/10.1007/s40830-023-00431-3

Weitere Artikel der Ausgabe 2/2023

Shape Memory and Superelasticity 2/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.