Skip to main content

2012 | OriginalPaper | Buchkapitel

Stem Cell Differentiation Depending on Different Surfaces

verfasst von : Sonja Kress, Anne Neumann, Birgit Weyand, Cornelia Kasper

Erschienen in: Tissue Engineering III: Cell - Surface Interactions for Tissue Culture

Verlag: Springer Berlin Heidelberg

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Mesenchymal stem cells and 3D biomaterials are a potent assembly in tissue engineering. Today, a sizable number of biomaterials has been characterized for special tissue engineering applications. However, diverse material properties, such as soft or hard biomaterials, have a specific influence on cell behavior. Not only the cell attachment and proliferation, but also differentiation is controlled by the microenvironment. Material characteristics such as pore size, stiffness, roughness, and geometry affect not only the cell attachment and proliferation, but also the differentiation behavior of mesenchymal stem cells. Optimization of these features might enable direct differentiation without adjustment of the culture medium by applying expensive growth or differentiation factors. Future aspects include the design of multilayered biomaterials, where each zone fulfills a distinct function. Moreover, the embedding of growth and differentiation factors into the matrix with a controlled release rate might be advantageous to direct differentiation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926CrossRef Langer R, Vacanti JP (1993) Tissue engineering. Science 260(5110):920–926CrossRef
2.
Zurück zum Zitat Kohara H, Tabata Y (2010) Review: tissue engineering technology to enhance cell recruitment for regeneration therapy. J Med Biol Eng 30(5):267–276CrossRef Kohara H, Tabata Y (2010) Review: tissue engineering technology to enhance cell recruitment for regeneration therapy. J Med Biol Eng 30(5):267–276CrossRef
3.
Zurück zum Zitat Calori GM et al (2009) Bone morphogenetic proteins and tissue engineering: future directions. Injury 40:67–76CrossRef Calori GM et al (2009) Bone morphogenetic proteins and tissue engineering: future directions. Injury 40:67–76CrossRef
4.
Zurück zum Zitat Porter JR, Ruckh TT, Popat KC (2009) Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 25(6):1539–1560 Porter JR, Ruckh TT, Popat KC (2009) Bone tissue engineering: a review in bone biomimetics and drug delivery strategies. Biotechnol Prog 25(6):1539–1560
5.
Zurück zum Zitat Mauney JR, Volloch V, Kaplan DL (2005) Role of adult mesenchymal stem cells in bone tissue-engineering applications: current status and future prospects. Tissue Eng 11(5–6):787–802CrossRef Mauney JR, Volloch V, Kaplan DL (2005) Role of adult mesenchymal stem cells in bone tissue-engineering applications: current status and future prospects. Tissue Eng 11(5–6):787–802CrossRef
6.
Zurück zum Zitat Quarto R et al (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. New Engl J Med 344(5):385–386CrossRef Quarto R et al (2001) Repair of large bone defects with the use of autologous bone marrow stromal cells. New Engl J Med 344(5):385–386CrossRef
7.
Zurück zum Zitat Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7(5):30–40CrossRef Ma PX (2004) Scaffolds for tissue fabrication. Mater Today 7(5):30–40CrossRef
8.
Zurück zum Zitat Moretti P, HatlapatkaT, Marten D, Lavrentieva A, Majore I, Hass R, Kasper C (eds) (2010) Mesenchymal stromal cells derived from the human umbilical cord tissues: primitive cells with potential for clinical and tissue engineering applications. Springer, Berlin, pp 29–54 Moretti P, HatlapatkaT, Marten D, Lavrentieva A, Majore I, Hass R, Kasper C (eds) (2010) Mesenchymal stromal cells derived from the human umbilical cord tissues: primitive cells with potential for clinical and tissue engineering applications. Springer, Berlin, pp 29–54
9.
Zurück zum Zitat Zuk PA et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295CrossRef Zuk PA et al (2002) Human adipose tissue is a source of multipotent stem cells. Mol Biol Cell 13(12):4279–4295CrossRef
10.
Zurück zum Zitat Majore I et al (2009) Characterization of mesenchymal stem cell-like cultures derived from human umbilical cord. Hum Gene Ther 20(11):1491–1491 Majore I et al (2009) Characterization of mesenchymal stem cell-like cultures derived from human umbilical cord. Hum Gene Ther 20(11):1491–1491
11.
Zurück zum Zitat Majore I et al (2009) Identification of subpopulations in mesenchymal stem cell-like cultures from human umbilical cord. Cell Commun Signal 7 Majore I et al (2009) Identification of subpopulations in mesenchymal stem cell-like cultures from human umbilical cord. Cell Commun Signal 7
12.
Zurück zum Zitat Kogler G et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200(2):123–135CrossRef Kogler G et al (2004) A new human somatic stem cell from placental cord blood with intrinsic pluripotent differentiation potential. J Exp Med 200(2):123–135CrossRef
13.
Zurück zum Zitat Hatlapatka T et al (2011) Optimization of culture conditions for the expansion of umbilical cord-derived mesenchymal stem or stromal cell-like cells using xeno-free culture conditions. Tissue Eng Part C Methods Hatlapatka T et al (2011) Optimization of culture conditions for the expansion of umbilical cord-derived mesenchymal stem or stromal cell-like cells using xeno-free culture conditions. Tissue Eng Part C Methods
14.
Zurück zum Zitat Colley HE et al (2009) Plasma polymer coatings to support mesenchymal stem cell adhesion, growth and differentiation on variable stiffness silicone elastomers. Plasma Process Polym 6(12):831–839 Colley HE et al (2009) Plasma polymer coatings to support mesenchymal stem cell adhesion, growth and differentiation on variable stiffness silicone elastomers. Plasma Process Polym 6(12):831–839
15.
Zurück zum Zitat Takezawa T (2003) A strategy for the development of tissue engineering scaffolds that regulate cell behavior. Biomaterials 24(13):2267–2275CrossRef Takezawa T (2003) A strategy for the development of tissue engineering scaffolds that regulate cell behavior. Biomaterials 24(13):2267–2275CrossRef
16.
Zurück zum Zitat Kim BS, Mooney DJ (1998) Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 16(5):224–230CrossRef Kim BS, Mooney DJ (1998) Development of biocompatible synthetic extracellular matrices for tissue engineering. Trends Biotechnol 16(5):224–230CrossRef
17.
Zurück zum Zitat Eisenbarth E (2007) Biomaterials for tissue engineering. Adv Eng Mater 9(12):1051–1060CrossRef Eisenbarth E (2007) Biomaterials for tissue engineering. Adv Eng Mater 9(12):1051–1060CrossRef
18.
Zurück zum Zitat Kawahara H et al (2004) In vitro study on bone formation and surface topography from the standpoint of biomechanics. J Mater Sci Mater Med 15(12):1297–1307CrossRef Kawahara H et al (2004) In vitro study on bone formation and surface topography from the standpoint of biomechanics. J Mater Sci Mater Med 15(12):1297–1307CrossRef
19.
Zurück zum Zitat Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J Biomater Sci Polym Ed 12(1):107–124CrossRef Hutmacher DW (2001) Scaffold design and fabrication technologies for engineering tissues—state of the art and future perspectives. J Biomater Sci Polym Ed 12(1):107–124CrossRef
20.
Zurück zum Zitat Arinzeh TL et al (2005) A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials 26(17):3631–3638CrossRef Arinzeh TL et al (2005) A comparative study of biphasic calcium phosphate ceramics for human mesenchymal stem-cell-induced bone formation. Biomaterials 26(17):3631–3638CrossRef
21.
Zurück zum Zitat Wang M (2006) Composite Scaffolds for bone tissue engineering. Am J Biochem Biotechnol 2(2):80–84CrossRef Wang M (2006) Composite Scaffolds for bone tissue engineering. Am J Biochem Biotechnol 2(2):80–84CrossRef
22.
Zurück zum Zitat Cao Y et al (2005) Scaffolds, stem cells, and tissue engineering: a potent combination! Aust J Chem 58(10):691–703CrossRef Cao Y et al (2005) Scaffolds, stem cells, and tissue engineering: a potent combination! Aust J Chem 58(10):691–703CrossRef
23.
Zurück zum Zitat Luo W, Jones SR, Yousaf MN (2008) Geometric control of stem cell differentiation rate on surfaces. Langmuir 24(21):12129–12133CrossRef Luo W, Jones SR, Yousaf MN (2008) Geometric control of stem cell differentiation rate on surfaces. Langmuir 24(21):12129–12133CrossRef
24.
Zurück zum Zitat Roosa SMM et al (2010) The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. J Biomed Mater Res Part A 92A(1):359–368CrossRef Roosa SMM et al (2010) The pore size of polycaprolactone scaffolds has limited influence on bone regeneration in an in vivo model. J Biomed Mater Res Part A 92A(1):359–368CrossRef
25.
Zurück zum Zitat Tsuruga E et al (1997) Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem 121(2):317–324 Tsuruga E et al (1997) Pore size of porous hydroxyapatite as the cell-substratum controls BMP-induced osteogenesis. J Biochem 121(2):317–324
26.
Zurück zum Zitat Shor L et al (2007) Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 28(35):5291–5297CrossRef Shor L et al (2007) Fabrication of three-dimensional polycaprolactone/hydroxyapatite tissue scaffolds and osteoblast-scaffold interactions in vitro. Biomaterials 28(35):5291–5297CrossRef
27.
Zurück zum Zitat Hulbert SF et al (1970) Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 4:433–456CrossRef Hulbert SF et al (1970) Potential of ceramic materials as permanently implantable skeletal prostheses. J Biomed Mater Res 4:433–456CrossRef
28.
Zurück zum Zitat Karageorgiou V, Kaplan D (2005) Porosity of 3D biornaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491CrossRef Karageorgiou V, Kaplan D (2005) Porosity of 3D biornaterial scaffolds and osteogenesis. Biomaterials 26(27):5474–5491CrossRef
29.
Zurück zum Zitat Kasten P et al (2008) Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Acta Biomater 4(6):1904–1915CrossRef Kasten P et al (2008) Porosity and pore size of beta-tricalcium phosphate scaffold can influence protein production and osteogenic differentiation of human mesenchymal stem cells: an in vitro and in vivo study. Acta Biomater 4(6):1904–1915CrossRef
30.
Zurück zum Zitat Yannas I (1992) Tissue regeneration by use of collagen-glycosaminoglycan copolymers. Clin Mater 9:179–187CrossRef Yannas I (1992) Tissue regeneration by use of collagen-glycosaminoglycan copolymers. Clin Mater 9:179–187CrossRef
31.
Zurück zum Zitat Khoda AKMB, Ozbolat IT, Koc B (2011) Engineered tissue scaffolds with variational porous architecture. J Biomech Eng Trans ASME 133(1):011001–011012CrossRef Khoda AKMB, Ozbolat IT, Koc B (2011) Engineered tissue scaffolds with variational porous architecture. J Biomech Eng Trans ASME 133(1):011001–011012CrossRef
32.
Zurück zum Zitat Oh SH et al (2010) Investigation of pore size effect on chondrogenic differentiation of adipose stem cells using a pore size gradient scaffold. Biomacromolecules 11(8):1948–1955CrossRef Oh SH et al (2010) Investigation of pore size effect on chondrogenic differentiation of adipose stem cells using a pore size gradient scaffold. Biomacromolecules 11(8):1948–1955CrossRef
33.
Zurück zum Zitat Kuboki Y, Jin QM, Takita H (2001) Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J Bone Joint Surg Am 83A:S105–S115 Kuboki Y, Jin QM, Takita H (2001) Geometry of carriers controlling phenotypic expression in BMP-induced osteogenesis and chondrogenesis. J Bone Joint Surg Am 83A:S105–S115
34.
Zurück zum Zitat Cyster LA et al (2005) The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering. Biomaterials 26(7):697–702CrossRef Cyster LA et al (2005) The influence of dispersant concentration on the pore morphology of hydroxyapatite ceramics for bone tissue engineering. Biomaterials 26(7):697–702CrossRef
36.
Zurück zum Zitat Grimm MJ, Williams JL (1997) Measurements of permeability in human calcaneal trabecular bone. J Biomech 30(7):743–745CrossRef Grimm MJ, Williams JL (1997) Measurements of permeability in human calcaneal trabecular bone. J Biomech 30(7):743–745CrossRef
37.
Zurück zum Zitat Benninghoff D, Drenckhahn D (eds) ( 2003) Anatomie, 16th edn. Fischer, Munich Benninghoff D, Drenckhahn D (eds) ( 2003) Anatomie, 16th edn. Fischer, Munich
38.
Zurück zum Zitat Hakulinen MA et al (2006) Ultrasonic characterization of human trabecular bone microstructure. Phys Med Biol 51(6):1633–1648CrossRef Hakulinen MA et al (2006) Ultrasonic characterization of human trabecular bone microstructure. Phys Med Biol 51(6):1633–1648CrossRef
39.
Zurück zum Zitat Pelham RJ, Wang YL (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94(25):13661–13665CrossRef Pelham RJ, Wang YL (1997) Cell locomotion and focal adhesions are regulated by substrate flexibility. Proc Natl Acad Sci USA 94(25):13661–13665CrossRef
40.
Zurück zum Zitat Ni Y, Chiang MYM (2007) Cell morphology and migration linked to substrate rigidity. Soft Matter 3(10):1285–1292CrossRef Ni Y, Chiang MYM (2007) Cell morphology and migration linked to substrate rigidity. Soft Matter 3(10):1285–1292CrossRef
41.
Zurück zum Zitat Schneider A et al (2006) Polyelectrolyte multilayers with a tunable young’s modulus: influence of film stiffness on cell adhesion. Langmuir 22(3):1193–1200CrossRef Schneider A et al (2006) Polyelectrolyte multilayers with a tunable young’s modulus: influence of film stiffness on cell adhesion. Langmuir 22(3):1193–1200CrossRef
42.
Zurück zum Zitat Yeung T et al (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskelet 60(1):24–34CrossRef Yeung T et al (2005) Effects of substrate stiffness on cell morphology, cytoskeletal structure, and adhesion. Cell Motil Cytoskelet 60(1):24–34CrossRef
43.
Zurück zum Zitat McBeath R et al (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4):483–495CrossRef McBeath R et al (2004) Cell shape, cytoskeletal tension, and RhoA regulate stem cell lineage commitment. Dev Cell 6(4):483–495CrossRef
44.
Zurück zum Zitat Wang HB, Dembo M, Wang YL (2000) Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am J Physiol Cell Physiol 279(5):C1345–C1350 Wang HB, Dembo M, Wang YL (2000) Substrate flexibility regulates growth and apoptosis of normal but not transformed cells. Am J Physiol Cell Physiol 279(5):C1345–C1350
45.
Zurück zum Zitat Engler AJ et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689CrossRef Engler AJ et al (2006) Matrix elasticity directs stem cell lineage specification. Cell 126(4):677–689CrossRef
46.
Zurück zum Zitat Rowlands AS, George PA, Cooper-White JJ (2008) Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am J Physiol Cell Physiol 295(4):C1037–C1044CrossRef Rowlands AS, George PA, Cooper-White JJ (2008) Directing osteogenic and myogenic differentiation of MSCs: interplay of stiffness and adhesive ligand presentation. Am J Physiol Cell Physiol 295(4):C1037–C1044CrossRef
47.
Zurück zum Zitat Wang LS et al (2010) The role of stiffness of gelatin-hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials 31(33):8608–8616CrossRef Wang LS et al (2010) The role of stiffness of gelatin-hydroxyphenylpropionic acid hydrogels formed by enzyme-mediated crosslinking on the differentiation of human mesenchymal stem cell. Biomaterials 31(33):8608–8616CrossRef
48.
Zurück zum Zitat Wan YQ et al (2005) Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide). Biomaterials 26(21):4453–4459CrossRef Wan YQ et al (2005) Adhesion and proliferation of OCT-1 osteoblast-like cells on micro- and nano-scale topography structured poly(L-lactide). Biomaterials 26(21):4453–4459CrossRef
49.
Zurück zum Zitat Brunette DM (2001) Titanium in medicine. In: Tengvall P, Brunette DM, Textor M, Thomsen P (eds) Principles of cell behavior on titanium surfaces and their application to implanted devices. Springer, Berlin, pp 485–512 Brunette DM (2001) Titanium in medicine. In: Tengvall P, Brunette DM, Textor M, Thomsen P (eds) Principles of cell behavior on titanium surfaces and their application to implanted devices. Springer, Berlin, pp 485–512
50.
Zurück zum Zitat Boyan BD et al (2002) Osteoblast-mediated mineral deposition in culture is dependent on surface microtopography. Calcif Tissue Int 71(6):519–529CrossRef Boyan BD et al (2002) Osteoblast-mediated mineral deposition in culture is dependent on surface microtopography. Calcif Tissue Int 71(6):519–529CrossRef
51.
Zurück zum Zitat Perizzolo D, Lacefield WR, Brunette DM (2001) Interaction between topography and coating in the formation of bone nodules in culture for hydroxyapatite- and titanium-coated micro machined surfaces. J Biomed Mater Res 56(4):494–503CrossRef Perizzolo D, Lacefield WR, Brunette DM (2001) Interaction between topography and coating in the formation of bone nodules in culture for hydroxyapatite- and titanium-coated micro machined surfaces. J Biomed Mater Res 56(4):494–503CrossRef
52.
Zurück zum Zitat Castellani R et al (1999) Response of rat bone marrow cells to differently roughened titanium discs. Clin Oral Implant Res 10(5):369–378CrossRef Castellani R et al (1999) Response of rat bone marrow cells to differently roughened titanium discs. Clin Oral Implant Res 10(5):369–378CrossRef
53.
Zurück zum Zitat ter Brugge PJ, Wolke JGC, Jansen JA (2002) Effect of calcium phosphate coating crystallinity and implant surface roughness on differentiation of rat bone marrow cells. J Biomed Mater Res 60(1):70–78CrossRef ter Brugge PJ, Wolke JGC, Jansen JA (2002) Effect of calcium phosphate coating crystallinity and implant surface roughness on differentiation of rat bone marrow cells. J Biomed Mater Res 60(1):70–78CrossRef
54.
Zurück zum Zitat Cavalcanti-Adam EA et al (2007) Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys J 92(8):2964–2974CrossRef Cavalcanti-Adam EA et al (2007) Cell spreading and focal adhesion dynamics are regulated by spacing of integrin ligands. Biophys J 92(8):2964–2974CrossRef
55.
Zurück zum Zitat Zhao LZ et al (2011) Suppressed primary osteoblast functions on nanoporous titania surface. J Biomed Mater Res Part A 96A(1):100–107CrossRef Zhao LZ et al (2011) Suppressed primary osteoblast functions on nanoporous titania surface. J Biomed Mater Res Part A 96A(1):100–107CrossRef
56.
Zurück zum Zitat Arnold M et al (2004) Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem 5(3):383–388CrossRef Arnold M et al (2004) Activation of integrin function by nanopatterned adhesive interfaces. Chemphyschem 5(3):383–388CrossRef
57.
Zurück zum Zitat McNamara LE (2010) Nanotopographical control of stem cell differentiation. J Tissue Eng 13 McNamara LE (2010) Nanotopographical control of stem cell differentiation. J Tissue Eng 13
58.
Zurück zum Zitat Dalby MJ et al (2004) Investigating the limits of filopodial sensing: a brief report using SEM to image the interaction between 10 nm high nano-topography and fibroblast filopodia. Cell Biol Int 28(3):229–236CrossRef Dalby MJ et al (2004) Investigating the limits of filopodial sensing: a brief report using SEM to image the interaction between 10 nm high nano-topography and fibroblast filopodia. Cell Biol Int 28(3):229–236CrossRef
59.
Zurück zum Zitat Li JJ et al (2009) Surface characterization and biocompatibility of micro- and nano-hydroxyapatite/chitosan-gelatin network films. Mater Sci Eng C Biomim Supramol Syst 29(4):1207–1215CrossRef Li JJ et al (2009) Surface characterization and biocompatibility of micro- and nano-hydroxyapatite/chitosan-gelatin network films. Mater Sci Eng C Biomim Supramol Syst 29(4):1207–1215CrossRef
60.
Zurück zum Zitat Dalby MJ et al (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6(12):997–1003CrossRef Dalby MJ et al (2007) The control of human mesenchymal cell differentiation using nanoscale symmetry and disorder. Nat Mater 6(12):997–1003CrossRef
61.
Zurück zum Zitat Oh S et al (2009) Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci USA 106(7):2130–2135CrossRef Oh S et al (2009) Stem cell fate dictated solely by altered nanotube dimension. Proc Natl Acad Sci USA 106(7):2130–2135CrossRef
62.
Zurück zum Zitat Oh S et al (2006) Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res Part A 78A(1):97–103CrossRef Oh S et al (2006) Significantly accelerated osteoblast cell growth on aligned TiO2 nanotubes. J Biomed Mater Res Part A 78A(1):97–103CrossRef
63.
Zurück zum Zitat Peng L et al (2009) The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. Biomaterials 30(7):1268–1272CrossRef Peng L et al (2009) The effect of TiO2 nanotubes on endothelial function and smooth muscle proliferation. Biomaterials 30(7):1268–1272CrossRef
64.
Zurück zum Zitat Yim EK, Pang SW, Leong KW (2007) Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 313(9):1820–1829CrossRef Yim EK, Pang SW, Leong KW (2007) Synthetic nanostructures inducing differentiation of human mesenchymal stem cells into neuronal lineage. Exp Cell Res 313(9):1820–1829CrossRef
65.
Zurück zum Zitat Chaubey A et al (2008) Surface patterning: tool to modulate stem cell differentiation in an adipose system. J Biomed Mater Res Part B Appl Biomater 84B(1):70–78CrossRef Chaubey A et al (2008) Surface patterning: tool to modulate stem cell differentiation in an adipose system. J Biomed Mater Res Part B Appl Biomater 84B(1):70–78CrossRef
66.
Zurück zum Zitat Jiang X et al (2005) Directing cell migration with asymmetric micropatterns. Proc Natl Acad Sci USA 102(4):975–978CrossRef Jiang X et al (2005) Directing cell migration with asymmetric micropatterns. Proc Natl Acad Sci USA 102(4):975–978CrossRef
67.
Zurück zum Zitat Thery M et al (2006) Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc Natl Acad Sci USA 103(52):19771–19776CrossRef Thery M et al (2006) Anisotropy of cell adhesive microenvironment governs cell internal organization and orientation of polarity. Proc Natl Acad Sci USA 103(52):19771–19776CrossRef
68.
Zurück zum Zitat Wan LQ et al (2010) Geometric control of human stem cell morphology and differentiation. Integr Biol 2(7–8):346–353CrossRef Wan LQ et al (2010) Geometric control of human stem cell morphology and differentiation. Integr Biol 2(7–8):346–353CrossRef
69.
Zurück zum Zitat Gerber I, Gwynn I (2001) Infuence of cell isolation, cell culture density, and cell nutrition on differentiation of rat calvarial osteoblast-like cells in vitro. Eur Cells Mater 2:10–20 Gerber I, Gwynn I (2001) Infuence of cell isolation, cell culture density, and cell nutrition on differentiation of rat calvarial osteoblast-like cells in vitro. Eur Cells Mater 2:10–20
70.
Zurück zum Zitat Cohen S et al (1991) Controlled delivery systems for proteins based on poly(lactic glycolic acid) microspheres. Pharm Res 8(6):713–720CrossRef Cohen S et al (1991) Controlled delivery systems for proteins based on poly(lactic glycolic acid) microspheres. Pharm Res 8(6):713–720CrossRef
71.
Zurück zum Zitat Benoit JP et al (2000) Development of microspheres for neurological disorders: from basics to clinical applications. J Control Release 65(1–2):285–296CrossRef Benoit JP et al (2000) Development of microspheres for neurological disorders: from basics to clinical applications. J Control Release 65(1–2):285–296CrossRef
72.
Zurück zum Zitat Young S et al (2005) Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 109(1–3):256–274CrossRef Young S et al (2005) Gelatin as a delivery vehicle for the controlled release of bioactive molecules. J Control Release 109(1–3):256–274CrossRef
73.
Zurück zum Zitat Gombotz WR, Pettit DK (1995) Biodegradable polymers for protein and peptide drug-delivery. Bioconjug Chem 6(4):332–351CrossRef Gombotz WR, Pettit DK (1995) Biodegradable polymers for protein and peptide drug-delivery. Bioconjug Chem 6(4):332–351CrossRef
74.
Zurück zum Zitat Schense JC et al (2000) Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nat Biotechnol 18(4):415–419CrossRef Schense JC et al (2000) Enzymatic incorporation of bioactive peptides into fibrin matrices enhances neurite extension. Nat Biotechnol 18(4):415–419CrossRef
75.
Zurück zum Zitat Kim HW, Knowles JC, Kim HE (2004) Development of hydroxyapatite bone scaffold for controlled drug release via poly(epsilon-caprolactone) and hydroxyapatite hybrid coatings. J Biomed Mater Res B Appl Biomater 70(2):240–249CrossRef Kim HW, Knowles JC, Kim HE (2004) Development of hydroxyapatite bone scaffold for controlled drug release via poly(epsilon-caprolactone) and hydroxyapatite hybrid coatings. J Biomed Mater Res B Appl Biomater 70(2):240–249CrossRef
76.
Zurück zum Zitat Arcos D et al (1997) Ibuprofen release from hydrophilic ceramic-polymer composites. Biomaterials 18(18):1235–1242CrossRef Arcos D et al (1997) Ibuprofen release from hydrophilic ceramic-polymer composites. Biomaterials 18(18):1235–1242CrossRef
77.
Zurück zum Zitat Chan LW, Lee HY, Heng PWS (2002) Production of alginate microspheres by internal gelation using an emulsification method. Int J Pharm 242(1–2):259–262CrossRef Chan LW, Lee HY, Heng PWS (2002) Production of alginate microspheres by internal gelation using an emulsification method. Int J Pharm 242(1–2):259–262CrossRef
78.
Zurück zum Zitat Zhang Y, Zhang MQ (2002) Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants. J Biomed Mater Res 61(1):1–8CrossRef Zhang Y, Zhang MQ (2002) Three-dimensional macroporous calcium phosphate bioceramics with nested chitosan sponges for load-bearing bone implants. J Biomed Mater Res 61(1):1–8CrossRef
79.
Zurück zum Zitat Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24(24):4353–4364CrossRef Shin H, Jo S, Mikos AG (2003) Biomimetic materials for tissue engineering. Biomaterials 24(24):4353–4364CrossRef
80.
Zurück zum Zitat Craig WS et al (1995) Concept and progress in the development of RGD-containing peptide pharmaceuticals. Biopolymers 37(2):157–175CrossRef Craig WS et al (1995) Concept and progress in the development of RGD-containing peptide pharmaceuticals. Biopolymers 37(2):157–175CrossRef
81.
Zurück zum Zitat Massia SP, Hubbell JA (1990) Covalent surface immobilization of Arg-Gly-Asp- and Tyr-Ile-Gly-Ser-Arg-containing peptides to obtain well-defined cell-adhesive substrates. Anal Biochem 187(2):292–301CrossRef Massia SP, Hubbell JA (1990) Covalent surface immobilization of Arg-Gly-Asp- and Tyr-Ile-Gly-Ser-Arg-containing peptides to obtain well-defined cell-adhesive substrates. Anal Biochem 187(2):292–301CrossRef
82.
Zurück zum Zitat Yu JS et al (2010) The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials 31(27):7012–7020CrossRef Yu JS et al (2010) The use of human mesenchymal stem cells encapsulated in RGD modified alginate microspheres in the repair of myocardial infarction in the rat. Biomaterials 31(27):7012–7020CrossRef
83.
Zurück zum Zitat Ranieri JP et al (1995) Neuronal cell attachment to fluorinated ethylene–propylene films with covalently immobilized laminin oligopeptides Yigsr and Ikvav.2. J Biomed Mater Res 29(6):779–785CrossRef Ranieri JP et al (1995) Neuronal cell attachment to fluorinated ethylene–propylene films with covalently immobilized laminin oligopeptides Yigsr and Ikvav.2. J Biomed Mater Res 29(6):779–785CrossRef
84.
Zurück zum Zitat Massia SP, Hubbell JA (1992) Vascular endothelial-cell adhesion and spreading promoted by the peptide REDV of the IIICS region of plasma fibronectin is mediated by integrin alpha-4-beta-1. J Biol Chem 267(20):14019–14026 Massia SP, Hubbell JA (1992) Vascular endothelial-cell adhesion and spreading promoted by the peptide REDV of the IIICS region of plasma fibronectin is mediated by integrin alpha-4-beta-1. J Biol Chem 267(20):14019–14026
85.
Zurück zum Zitat Biggs MJP, Dalby MJ (2010) Focal adhesions in osteoneogenesis. Proc Inst Mech Eng Part H J Eng Med 224(H12):1441–1453 Biggs MJP, Dalby MJ (2010) Focal adhesions in osteoneogenesis. Proc Inst Mech Eng Part H J Eng Med 224(H12):1441–1453
86.
Zurück zum Zitat Klees RF et al (2005) Laminin-5 induces osteogenic gene expression in human mesenchymal stem cells through an ERK-dependent pathway. Mol Biol Cell 16(2):881–890CrossRef Klees RF et al (2005) Laminin-5 induces osteogenic gene expression in human mesenchymal stem cells through an ERK-dependent pathway. Mol Biol Cell 16(2):881–890CrossRef
87.
Zurück zum Zitat Kon E et al (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res 28(1):116–124 Kon E et al (2010) Orderly osteochondral regeneration in a sheep model using a novel nano-composite multilayered biomaterial. J Orthop Res 28(1):116–124
88.
Zurück zum Zitat Samuel RE et al (2002) Delivery of plasmid DNA to articular chondrocytes via novel collagen-glycosaminoglycan matrices. Hum Gene Ther 13(7):791–802CrossRef Samuel RE et al (2002) Delivery of plasmid DNA to articular chondrocytes via novel collagen-glycosaminoglycan matrices. Hum Gene Ther 13(7):791–802CrossRef
89.
Zurück zum Zitat Lovell CS et al (2010) Analysis and modeling of the mechanical properties of novel thermotropic polymer biomaterials. Polymer 51(9):2013–2020CrossRef Lovell CS et al (2010) Analysis and modeling of the mechanical properties of novel thermotropic polymer biomaterials. Polymer 51(9):2013–2020CrossRef
90.
Zurück zum Zitat Sung HJ et al (2010) Poly(ethylene glycol) as a sensitive regulator of cell survival fate on polymeric biomaterials: the interplay of cell adhesion and pro-oxidant signaling mechanisms. Soft Matter 6(20):5196–5205CrossRef Sung HJ et al (2010) Poly(ethylene glycol) as a sensitive regulator of cell survival fate on polymeric biomaterials: the interplay of cell adhesion and pro-oxidant signaling mechanisms. Soft Matter 6(20):5196–5205CrossRef
91.
Zurück zum Zitat Shalumon KT et al (2011) Preparation, characterization and cell attachment studies of electrospun multi-scale poly(caprolactone) fibrous scaffolds for tissue engineering. J Macromol Sci Part A Pure Appl Chem 48(1):21–30CrossRef Shalumon KT et al (2011) Preparation, characterization and cell attachment studies of electrospun multi-scale poly(caprolactone) fibrous scaffolds for tissue engineering. J Macromol Sci Part A Pure Appl Chem 48(1):21–30CrossRef
92.
Zurück zum Zitat da Silva MLA et al (2010) Cartilage tissue engineering using electrospun PCL nanofiber meshes and MSCs. Biomacromolecules 11(12):3228–3236CrossRef da Silva MLA et al (2010) Cartilage tissue engineering using electrospun PCL nanofiber meshes and MSCs. Biomacromolecules 11(12):3228–3236CrossRef
93.
Zurück zum Zitat Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer-polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256CrossRef Woodruff MA, Hutmacher DW (2010) The return of a forgotten polymer-polycaprolactone in the 21st century. Prog Polym Sci 35(10):1217–1256CrossRef
94.
Zurück zum Zitat Koch MA et al (2010) Perfusion cell seeding on large porous PLA/calcium phosphate composite scaffolds in a perfusion bioreactor system under varying perfusion parameters. J Biomed Mater Res A 95(4):1011–1018 Koch MA et al (2010) Perfusion cell seeding on large porous PLA/calcium phosphate composite scaffolds in a perfusion bioreactor system under varying perfusion parameters. J Biomed Mater Res A 95(4):1011–1018
95.
Zurück zum Zitat Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32(4):455–482CrossRef Gupta B, Revagade N, Hilborn J (2007) Poly(lactic acid) fiber: an overview. Prog Polym Sci 32(4):455–482CrossRef
96.
Zurück zum Zitat Stevanovic M, Uskokovic D (2009) Poly(lactide-co-glycolide)-based micro and nanoparticles for the controlled drug delivery of vitamins. Curr Nanosci 5(1):1–14CrossRef Stevanovic M, Uskokovic D (2009) Poly(lactide-co-glycolide)-based micro and nanoparticles for the controlled drug delivery of vitamins. Curr Nanosci 5(1):1–14CrossRef
97.
Zurück zum Zitat Lu JM et al (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9(4):325–341CrossRef Lu JM et al (2009) Current advances in research and clinical applications of PLGA-based nanotechnology. Expert Rev Mol Diagn 9(4):325–341CrossRef
98.
Zurück zum Zitat Barrere F, van Blitterswijk CA, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomed 1(3):317–332 Barrere F, van Blitterswijk CA, de Groot K (2006) Bone regeneration: molecular and cellular interactions with calcium phosphate ceramics. Int J Nanomed 1(3):317–332
99.
Zurück zum Zitat Emadi R et al (2010) Nanostructured forsterite coating strengthens porous hydroxyapatite for bone tissue engineering. J Am Ceram Soc 93(9):2679–2683CrossRef Emadi R et al (2010) Nanostructured forsterite coating strengthens porous hydroxyapatite for bone tissue engineering. J Am Ceram Soc 93(9):2679–2683CrossRef
100.
Zurück zum Zitat Chen JG et al (2010) In situ grown fibrous composites of poly(DL-lactide) and hydroxyapatite as potential tissue engineering scaffolds. Polymer 51(26):6268–6277CrossRef Chen JG et al (2010) In situ grown fibrous composites of poly(DL-lactide) and hydroxyapatite as potential tissue engineering scaffolds. Polymer 51(26):6268–6277CrossRef
101.
Zurück zum Zitat Uskokovic V, Uskokovic DP (2011) Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res Part B Appl Biomater 96B(1):152–191CrossRef Uskokovic V, Uskokovic DP (2011) Nanosized hydroxyapatite and other calcium phosphates: chemistry of formation and application as drug and gene delivery agents. J Biomed Mater Res Part B Appl Biomater 96B(1):152–191CrossRef
102.
Zurück zum Zitat Swetha M et al (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47(1):1–4 Swetha M et al (2010) Biocomposites containing natural polymers and hydroxyapatite for bone tissue engineering. Int J Biol Macromol 47(1):1–4
103.
Zurück zum Zitat Bellucci D et al (2010) Potassium based bioactive glass for bone tissue engineering. Ceram Int 36(8):2449–2453CrossRef Bellucci D et al (2010) Potassium based bioactive glass for bone tissue engineering. Ceram Int 36(8):2449–2453CrossRef
104.
Zurück zum Zitat Mourino V, Newby P, Boccaccini AR (2010) Preparation and characterization of gallium releasing 3D alginate coated 45S5 bioglass (R) based scaffolds for bone tissue engineering. Adv Eng Mater 12(7):B283–B291CrossRef Mourino V, Newby P, Boccaccini AR (2010) Preparation and characterization of gallium releasing 3D alginate coated 45S5 bioglass (R) based scaffolds for bone tissue engineering. Adv Eng Mater 12(7):B283–B291CrossRef
105.
Zurück zum Zitat Mullen LM et al (2010) Binding and release characteristics of insulin-like growth factor-1 from a collagen-glycosaminoglycan scaffold. Tissue Eng Part C Methods 16(6):1439–1448CrossRef Mullen LM et al (2010) Binding and release characteristics of insulin-like growth factor-1 from a collagen-glycosaminoglycan scaffold. Tissue Eng Part C Methods 16(6):1439–1448CrossRef
106.
Zurück zum Zitat Yuan T et al (2010) Chondrogenic differentiation and immunological properties of mesenchymal stem cells in collagen type I hydrogel. Biotechnol Prog 26(6):1749–1758CrossRef Yuan T et al (2010) Chondrogenic differentiation and immunological properties of mesenchymal stem cells in collagen type I hydrogel. Biotechnol Prog 26(6):1749–1758CrossRef
107.
Zurück zum Zitat Zorlutuna P, Vadgama P, Hasirci V (2010) Both sides nanopatterned tubular collagen scaffolds as tissue-engineered vascular grafts. J Tissue Eng Regen Med 4(8):628–637CrossRef Zorlutuna P, Vadgama P, Hasirci V (2010) Both sides nanopatterned tubular collagen scaffolds as tissue-engineered vascular grafts. J Tissue Eng Regen Med 4(8):628–637CrossRef
108.
Zurück zum Zitat Zheng WF, Zhang W, Jiang XY (2010) Biomimetic collagen nanofibrous materials for bone tissue engineering. Adv Eng Mater 12(9):B451–B466CrossRef Zheng WF, Zhang W, Jiang XY (2010) Biomimetic collagen nanofibrous materials for bone tissue engineering. Adv Eng Mater 12(9):B451–B466CrossRef
109.
Zurück zum Zitat Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221(1–2):1–22CrossRef Lee CH, Singla A, Lee Y (2001) Biomedical applications of collagen. Int J Pharm 221(1–2):1–22CrossRef
110.
Zurück zum Zitat Kosmala JD, Henthorn DB, Brannon-Peppas L (2000) Preparation of interpenetrating networks of gelatin and dextran as degradable biomaterials. Biomaterials 21(20):2019–2023CrossRef Kosmala JD, Henthorn DB, Brannon-Peppas L (2000) Preparation of interpenetrating networks of gelatin and dextran as degradable biomaterials. Biomaterials 21(20):2019–2023CrossRef
111.
Zurück zum Zitat Tripathi A, Kathuria N, Kumar A (2009) Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering. J Biomed Mater Res Part A 90A(3):680–694CrossRef Tripathi A, Kathuria N, Kumar A (2009) Elastic and macroporous agarose-gelatin cryogels with isotropic and anisotropic porosity for tissue engineering. J Biomed Mater Res Part A 90A(3):680–694CrossRef
112.
Zurück zum Zitat Leddy HA, Awad HA, Guilak F (2004) Molecular diffusion in tissue-engineered cartilage constructs: effects of scaffold material time, and culture conditions. J Biomed Mater Res Part B Appl Biomater 70B(2):397–406CrossRef Leddy HA, Awad HA, Guilak F (2004) Molecular diffusion in tissue-engineered cartilage constructs: effects of scaffold material time, and culture conditions. J Biomed Mater Res Part B Appl Biomater 70B(2):397–406CrossRef
113.
Zurück zum Zitat Bensaid W et al (2003) A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 24(14):2497–2502CrossRef Bensaid W et al (2003) A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 24(14):2497–2502CrossRef
114.
Zurück zum Zitat Kim SH et al (2009) Recent research trends of fibrin gels for the applications of regenerative medicine. Tissue Eng Regen Med 6(1–3):273–286 Kim SH et al (2009) Recent research trends of fibrin gels for the applications of regenerative medicine. Tissue Eng Regen Med 6(1–3):273–286
115.
Zurück zum Zitat Oliveira JT et al (2011) Novel melt-processable chitosan-polybutylene succinate fibre scaffolds for cartilage tissue engineering. J Biomater Sci Polym Ed 22(4–6):773–788CrossRef Oliveira JT et al (2011) Novel melt-processable chitosan-polybutylene succinate fibre scaffolds for cartilage tissue engineering. J Biomater Sci Polym Ed 22(4–6):773–788CrossRef
116.
Zurück zum Zitat Jayakumar R et al (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82(2):227–232CrossRef Jayakumar R et al (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohydr Polym 82(2):227–232CrossRef
117.
Zurück zum Zitat Venkatesan J, Kim SK (2010) Chitosan composites for bone tissue engineering—an overview. Mar Drugs 8(8):2252–2266 Venkatesan J, Kim SK (2010) Chitosan composites for bone tissue engineering—an overview. Mar Drugs 8(8):2252–2266
118.
Zurück zum Zitat VandeVord PJ et al (2002) Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res 59(3):585–590CrossRef VandeVord PJ et al (2002) Evaluation of the biocompatibility of a chitosan scaffold in mice. J Biomed Mater Res 59(3):585–590CrossRef
119.
Zurück zum Zitat Eiselt P et al (2000) Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials 21(19):1921–1927CrossRef Eiselt P et al (2000) Porous carriers for biomedical applications based on alginate hydrogels. Biomaterials 21(19):1921–1927CrossRef
120.
Zurück zum Zitat Choi MS et al (2008) Chondrogenic differentiation of human adipose-derived stem cells in alginate sponge scaffolds. Tissue Eng Regen Med 5(4–6):842–848 Choi MS et al (2008) Chondrogenic differentiation of human adipose-derived stem cells in alginate sponge scaffolds. Tissue Eng Regen Med 5(4–6):842–848
121.
Zurück zum Zitat Ebraheim NA, Mekhail AO, Darwich M (1997) Open reduction and internal fixation with bone grafting of clavicular nonunion. J Trauma Inj Infect Crit Care 42(4):701–704CrossRef Ebraheim NA, Mekhail AO, Darwich M (1997) Open reduction and internal fixation with bone grafting of clavicular nonunion. J Trauma Inj Infect Crit Care 42(4):701–704CrossRef
122.
Zurück zum Zitat Kretlow JD et al (2010) Uncultured marrow mononuclear cells delivered within fibrin glue hydrogels to porous scaffolds enhance bone regeneration within critical-sized rat cranial defects. Tissue Eng Part A 16(12):3555–3568CrossRef Kretlow JD et al (2010) Uncultured marrow mononuclear cells delivered within fibrin glue hydrogels to porous scaffolds enhance bone regeneration within critical-sized rat cranial defects. Tissue Eng Part A 16(12):3555–3568CrossRef
123.
Zurück zum Zitat Staiger MP et al (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734CrossRef Staiger MP et al (2006) Magnesium and its alloys as orthopedic biomaterials: a review. Biomaterials 27(9):1728–1734CrossRef
124.
Zurück zum Zitat Brar HS et al (2009) Magnesium as a biodegradable and bioabsorbable material for medical implants. JOM 61(9):31–34CrossRef Brar HS et al (2009) Magnesium as a biodegradable and bioabsorbable material for medical implants. JOM 61(9):31–34CrossRef
125.
Zurück zum Zitat Zeng RC et al (2008) Progress and challenge for magnesium alloys as biomaterials. Adv Eng Mater 10(8):B3–B14CrossRef Zeng RC et al (2008) Progress and challenge for magnesium alloys as biomaterials. Adv Eng Mater 10(8):B3–B14CrossRef
126.
Zurück zum Zitat Chen FL et al (2002) Bone graft in the shape of human mandibular condyle reconstruction via seeding marrow-derived osteoblasts into porous coral in a nude mice model. J Oral Maxillofac Surg 60(10):1155–1159CrossRef Chen FL et al (2002) Bone graft in the shape of human mandibular condyle reconstruction via seeding marrow-derived osteoblasts into porous coral in a nude mice model. J Oral Maxillofac Surg 60(10):1155–1159CrossRef
127.
Zurück zum Zitat Mygind T et al (2007) Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials 28(6):1036–1047CrossRef Mygind T et al (2007) Mesenchymal stem cell ingrowth and differentiation on coralline hydroxyapatite scaffolds. Biomaterials 28(6):1036–1047CrossRef
128.
Zurück zum Zitat van den Dolder J et al (2003) Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells. Biomaterials 24(10):1745–1750CrossRef van den Dolder J et al (2003) Bone tissue reconstruction using titanium fiber mesh combined with rat bone marrow stromal cells. Biomaterials 24(10):1745–1750CrossRef
129.
Zurück zum Zitat Diederichs S et al (2009) Dynamic cultivation of human mesenchymal stem cells in a rotating bed bioreactor system based on the Z (R) RP platform. Biotechnol Prog 25(6):1762–1771 Diederichs S et al (2009) Dynamic cultivation of human mesenchymal stem cells in a rotating bed bioreactor system based on the Z (R) RP platform. Biotechnol Prog 25(6):1762–1771
130.
Zurück zum Zitat Roker S et al (2009) Novel 3D biomaterials for tissue engineering based on collagen and macroporous ceramics. Materialwiss Werkstofftech 40(3):54, 224–225 Roker S et al (2009) Novel 3D biomaterials for tissue engineering based on collagen and macroporous ceramics. Materialwiss Werkstofftech 40(3):54, 224–225
131.
Zurück zum Zitat Yuan J et al (2007) Repair of canine mandibular bone defects with bone marrow stromal cells and porous beta-tricalcium phosphate. Biomaterials 28(6):1005–1013CrossRef Yuan J et al (2007) Repair of canine mandibular bone defects with bone marrow stromal cells and porous beta-tricalcium phosphate. Biomaterials 28(6):1005–1013CrossRef
132.
Zurück zum Zitat Kim HJ, Lee JH, Im GI (2010) Chondrogenesis using mesenchymal stem cells and PCL scaffolds. J Biomed Mater Res Part A 92A(2):659–666 Kim HJ, Lee JH, Im GI (2010) Chondrogenesis using mesenchymal stem cells and PCL scaffolds. J Biomed Mater Res Part A 92A(2):659–666
133.
Zurück zum Zitat Yamane S et al (2007) Effect of pore size on in vitro cartilage formation using chitosan-based hyaluronic acid hybrid polymer fibers. J Biomed Mater Res Part A 81A(3):586–593CrossRef Yamane S et al (2007) Effect of pore size on in vitro cartilage formation using chitosan-based hyaluronic acid hybrid polymer fibers. J Biomed Mater Res Part A 81A(3):586–593CrossRef
134.
Zurück zum Zitat Lee SJ et al (2004) Response of human chondrocytes on polymer surfaces with different micropore sizes for tissue-engineered cartilage. J Appl Polym Sci 92(5):2784–2790CrossRef Lee SJ et al (2004) Response of human chondrocytes on polymer surfaces with different micropore sizes for tissue-engineered cartilage. J Appl Polym Sci 92(5):2784–2790CrossRef
135.
Zurück zum Zitat Chia SL et al (2006) Biodegradable elastomeric polyurethane membranes as chondrocyte carriers for cartilage repair. Tissue Eng 12(7):1945–1953CrossRef Chia SL et al (2006) Biodegradable elastomeric polyurethane membranes as chondrocyte carriers for cartilage repair. Tissue Eng 12(7):1945–1953CrossRef
136.
Zurück zum Zitat Cho SW et al (2004) Smooth muscle-like tissues engineered with bone marrow stromal cells. Biomaterials 25(15):2979–2986CrossRef Cho SW et al (2004) Smooth muscle-like tissues engineered with bone marrow stromal cells. Biomaterials 25(15):2979–2986CrossRef
137.
Zurück zum Zitat Wang M et al (2010) Hepatogenesis of adipose-derived stem cells on poly-lactide-co-glycolide scaffolds: in vitro and in vivo studies. Tissue Eng Part C Methods 16(5):1041–1050CrossRef Wang M et al (2010) Hepatogenesis of adipose-derived stem cells on poly-lactide-co-glycolide scaffolds: in vitro and in vivo studies. Tissue Eng Part C Methods 16(5):1041–1050CrossRef
138.
Zurück zum Zitat Discher DE et al (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143CrossRef Discher DE et al (2005) Tissue cells feel and respond to the stiffness of their substrate. Science 310:1139–1143CrossRef
139.
Zurück zum Zitat Graziano A et al (2007) Scaffold's surface geometry significantly affects human stem cell bone tissue engineering. J Cell Physiol 214:166–172CrossRef Graziano A et al (2007) Scaffold's surface geometry significantly affects human stem cell bone tissue engineering. J Cell Physiol 214:166–172CrossRef
Metadaten
Titel
Stem Cell Differentiation Depending on Different Surfaces
verfasst von
Sonja Kress
Anne Neumann
Birgit Weyand
Cornelia Kasper
Copyright-Jahr
2012
Verlag
Springer Berlin Heidelberg
DOI
https://doi.org/10.1007/10_2011_108

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.