Skip to main content
Erschienen in: Journal of Materials Science 12/2015

01.06.2015 | Original Paper

Storage time-dependent alteration of molecular interaction–property relationships of whey protein isolate-based films and coatings

verfasst von: Markus Schmid, Katrein Reichert, Felicia Hammann, Andreas Stäbler

Erschienen in: Journal of Materials Science | Ausgabe 12/2015

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Whey protein is a particularly well-studied and promising raw material to enhance functionality of packaging materials. However, in recent studies it was observed that several properties of whey protein isolate-based film change within the first weeks after film production. This indicates that certain intrinsic material changes take place during storage time. The overall aim of this study was to explore a time-dependent structure–property relationship of WPI-based coatings. In order to answer this question, time-dependent oxygen permeability measurements, and in addition solubility studies with different defined buffer systems combined with a Bradford assay were performed to determine intermolecular interactions in the film. The measurements clearly showed that oxygen permeability decreased by up to 85 % within 2–3 weeks after film production. The solubility tests confirmed that this decrease in oxygen permeability was accompanied and thus caused by different changes in covalent and non-covalent bonds between the polypeptide chains during storage. Based on the results of the solubility measurements it can be assumed that the cross-linking by disulphide bonds as well as hydrogen bonds is the predominant interaction formed during the first days of storage leading to a fast decrease in oxygen permeability while the importance of hydrogen bonds in relation to disulphide bonds increases during storage time leading to a further—but slower—decrease in oxygen permeability.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Bergmair J (2004) Prüfpraxis für Kunststoffverpackungen: Lebensmittel-, Pharma-und Kosmetikverpackungen. Behr’s Verlag, Hamburg Bergmair J (2004) Prüfpraxis für Kunststoffverpackungen: Lebensmittel-, Pharma-und Kosmetikverpackungen. Behr’s Verlag, Hamburg
2.
Zurück zum Zitat Hong S-I, Krochta JM (2006) Oxygen barrier performance of whey-protein-coated plastic films as affected by temperature, relative humidity, base film and protein type. J Food Eng 77(3):739–745CrossRef Hong S-I, Krochta JM (2006) Oxygen barrier performance of whey-protein-coated plastic films as affected by temperature, relative humidity, base film and protein type. J Food Eng 77(3):739–745CrossRef
3.
Zurück zum Zitat Prendergast G, Pitt L, Berthon P (1997) Packaging, the environment, and European legislation: marketing’s response. J Euromark 6(2):75–98CrossRef Prendergast G, Pitt L, Berthon P (1997) Packaging, the environment, and European legislation: marketing’s response. J Euromark 6(2):75–98CrossRef
4.
Zurück zum Zitat Guilbert S, Gontard N, Gorris LG (1996) Prolongation of the shelf-life of perishable food products using biodegradable films and coatings. LWT-Food Sci Technol 29(1):10–17CrossRef Guilbert S, Gontard N, Gorris LG (1996) Prolongation of the shelf-life of perishable food products using biodegradable films and coatings. LWT-Food Sci Technol 29(1):10–17CrossRef
5.
Zurück zum Zitat Endres HJ, Siebert-Raths A (2010) Engineering biopolymers: markets, manufacturing, properties, and applications. Hanser Gardner Publications, Cincinnati Endres HJ, Siebert-Raths A (2010) Engineering biopolymers: markets, manufacturing, properties, and applications. Hanser Gardner Publications, Cincinnati
6.
Zurück zum Zitat Gofferje G, Schmid M, Stäbler A (2015) Characterization of Jatrophacurcas L. protein cast films with respect topackaging relevant properties. Int J Polym Sci. In Press Gofferje G, Schmid M, Stäbler A (2015) Characterization of Jatrophacurcas L. protein cast films with respect topackaging relevant properties. Int J Polym Sci. In Press
7.
Zurück zum Zitat Wihodo M, Moraru CI (2013) Physical and chemical methods used to enhance the structure and mechanical properties of protein films: a review. J Food Eng 114(3):292–302CrossRef Wihodo M, Moraru CI (2013) Physical and chemical methods used to enhance the structure and mechanical properties of protein films: a review. J Food Eng 114(3):292–302CrossRef
8.
Zurück zum Zitat Andersson C (2008) New ways to enhance the functionality of paperboard by surface treatment–a review. Packag Technol Sci 21(6):339–373CrossRef Andersson C (2008) New ways to enhance the functionality of paperboard by surface treatment–a review. Packag Technol Sci 21(6):339–373CrossRef
9.
Zurück zum Zitat Bourtoom T (2009) Edible protein films: properties enhancement. Int Food Res J 16(1):1–9 Bourtoom T (2009) Edible protein films: properties enhancement. Int Food Res J 16(1):1–9
10.
Zurück zum Zitat Bugnicourt E et al (2013) Processing and validation of whey-protein-coated films and laminates at semi-industrial scale as novel recyclable food packaging materials with excellent barrier properties. Adv Mater Sci Eng 2013:10 Bugnicourt E et al (2013) Processing and validation of whey-protein-coated films and laminates at semi-industrial scale as novel recyclable food packaging materials with excellent barrier properties. Adv Mater Sci Eng 2013:10
11.
Zurück zum Zitat Bugnicourt E, Schmid M, Nerney OM, Wild F (2010) Wheylayer: the barrier coating of the future. Coating International Bugnicourt E, Schmid M, Nerney OM, Wild F (2010) Wheylayer: the barrier coating of the future. Coating International
12.
Zurück zum Zitat Schmid M, et al. (2012) Properties of whey-protein-coated films and laminates as novel sustainable food packaging materials with excellent barrier properties. In 5th international Symposium on Food Packaging. Berlin, ILSI Europe Schmid M, et al. (2012) Properties of whey-protein-coated films and laminates as novel sustainable food packaging materials with excellent barrier properties. In 5th international Symposium on Food Packaging. Berlin, ILSI Europe
13.
Zurück zum Zitat Bleisch G, Langowski H-C, Majschak J-P (2014) Lexikon Verpackungstechnik, vol 2. Behr’s Verlag, Hamburg Bleisch G, Langowski H-C, Majschak J-P (2014) Lexikon Verpackungstechnik, vol 2. Behr’s Verlag, Hamburg
14.
Zurück zum Zitat Schmid M. (2012) Whey protein-based coatings as sustainable barrier material in food packaging applications. In Proceeding of IAPRI World Packaging Conference 2012 Schmid M. (2012) Whey protein-based coatings as sustainable barrier material in food packaging applications. In Proceeding of IAPRI World Packaging Conference 2012
15.
Zurück zum Zitat De Wit JN (2001) Lehrbuch der Molke und Molkenerzeugnisse. European whey products association, Belgium De Wit JN (2001) Lehrbuch der Molke und Molkenerzeugnisse. European whey products association, Belgium
16.
Zurück zum Zitat Smithers GW (2008) Whey and whey proteins—from ‘gutter-to-gold’. Int Dairy J 18(7):695–704CrossRef Smithers GW (2008) Whey and whey proteins—from ‘gutter-to-gold’. Int Dairy J 18(7):695–704CrossRef
17.
Zurück zum Zitat Sothornvit R, Krochta JM (2001) Plasticizer effect on mechanical properties of beta-lactoglobulin films. J Food Eng 50(3):149–155CrossRef Sothornvit R, Krochta JM (2001) Plasticizer effect on mechanical properties of beta-lactoglobulin films. J Food Eng 50(3):149–155CrossRef
18.
Zurück zum Zitat McKenzie H (2012) Milk proteins V2: chemistry and molecular biology, vol 2. Elsevier, Amsterdam McKenzie H (2012) Milk proteins V2: chemistry and molecular biology, vol 2. Elsevier, Amsterdam
19.
Zurück zum Zitat Töpel A (2007) Chemie und Physik der Milch: Naturstoff, Rohstoff, Lebensmittel. Behr’s Verlag, Hamburg Töpel A (2007) Chemie und Physik der Milch: Naturstoff, Rohstoff, Lebensmittel. Behr’s Verlag, Hamburg
20.
Zurück zum Zitat Calvo MM, Leaver J, Banks JM (1993) Influence of other whey proteins on the heat-induced aggregation of α-lactalbumin. Int Dairy J 3(8):719–727CrossRef Calvo MM, Leaver J, Banks JM (1993) Influence of other whey proteins on the heat-induced aggregation of α-lactalbumin. Int Dairy J 3(8):719–727CrossRef
21.
Zurück zum Zitat Sawyer L (2003) β-lactoglobulin. Advanced dairy chemistry—1 proteins. Springer, New York, pp 319–386CrossRef Sawyer L (2003) β-lactoglobulin. Advanced dairy chemistry—1 proteins. Springer, New York, pp 319–386CrossRef
22.
Zurück zum Zitat Lent LE, Vanasupa LS, Tong PS (1998) Whey protein edible film structures determined by atomic force microscope. J Food Sci 63(5):824–827CrossRef Lent LE, Vanasupa LS, Tong PS (1998) Whey protein edible film structures determined by atomic force microscope. J Food Sci 63(5):824–827CrossRef
23.
Zurück zum Zitat Belitz H-D, Grosch W, Schieberle P (2008) Lehrbuch der Lebensmittelchemie, 6th edn. Springer, Berlin Heidelberg Belitz H-D, Grosch W, Schieberle P (2008) Lehrbuch der Lebensmittelchemie, 6th edn. Springer, Berlin Heidelberg
24.
Zurück zum Zitat Sienkiewicz T (1981) Nomenklatur und einige Eigenschaften der Molkenproteine. 2. Mitt. α-Lactalbumin, immunoglobuline, proteose-peptone, minorproteine und enzyme. Food/Nahrung 25(4):335–343CrossRef Sienkiewicz T (1981) Nomenklatur und einige Eigenschaften der Molkenproteine. 2. Mitt. α-Lactalbumin, immunoglobuline, proteose-peptone, minorproteine und enzyme. Food/Nahrung 25(4):335–343CrossRef
25.
Zurück zum Zitat Schmid M et al (2014) Effects of thermally induced denaturation on technological-functional properties of whey protein isolate-based films. J Dairy Sci 97(9):5315–5327CrossRef Schmid M et al (2014) Effects of thermally induced denaturation on technological-functional properties of whey protein isolate-based films. J Dairy Sci 97(9):5315–5327CrossRef
26.
Zurück zum Zitat Sienkiewicz T (1981) Nomenklatur und einige Eigenschaften der Molkenproteine. 1. Mitt. β-lactoglobulin. Food/Nahrung 25(4):329–334CrossRef Sienkiewicz T (1981) Nomenklatur und einige Eigenschaften der Molkenproteine. 1. Mitt. β-lactoglobulin. Food/Nahrung 25(4):329–334CrossRef
27.
Zurück zum Zitat Dannenberg F, Kessler HG (1988) Reaction kinetics of the denaturation of whey proteins in milk. J Food Sci 53(1):258–263CrossRef Dannenberg F, Kessler HG (1988) Reaction kinetics of the denaturation of whey proteins in milk. J Food Sci 53(1):258–263CrossRef
28.
Zurück zum Zitat Belitz HD, Grosch W, Schieberle P (2001) Lehrbuch der Lebensmittelchemie, 6th edn. Springer, BerlinCrossRef Belitz HD, Grosch W, Schieberle P (2001) Lehrbuch der Lebensmittelchemie, 6th edn. Springer, BerlinCrossRef
29.
Zurück zum Zitat Damodaran S (1996) Amino acids, peptides, and proteins. Food science and technology. Marcel Dekker, New York, pp 321–430 Damodaran S (1996) Amino acids, peptides, and proteins. Food science and technology. Marcel Dekker, New York, pp 321–430
30.
Zurück zum Zitat Shimada K, Cheftel JC (1989) Sulfhydryl group/disulfide bond interchange reactions during heat-induced gelation of whey protein isolate. J Agric Food Chem 37(1):161–168CrossRef Shimada K, Cheftel JC (1989) Sulfhydryl group/disulfide bond interchange reactions during heat-induced gelation of whey protein isolate. J Agric Food Chem 37(1):161–168CrossRef
31.
Zurück zum Zitat Totosaus A et al (2002) A review of physical and chemical protein-gel induction. Int J Food Sci Technol 37(6):589–601CrossRef Totosaus A et al (2002) A review of physical and chemical protein-gel induction. Int J Food Sci Technol 37(6):589–601CrossRef
32.
Zurück zum Zitat Floris R et al (2008) Dynamic rearrangement of disulfide bridges influences solubility of whey protein coatings. Int Dairy J 18(5):566–573CrossRef Floris R et al (2008) Dynamic rearrangement of disulfide bridges influences solubility of whey protein coatings. Int Dairy J 18(5):566–573CrossRef
33.
Zurück zum Zitat Gennadios A, Weller C (1991) Edible films and coatings from soymilk and soy protein. Cereal Foods World 36(12):1004–1009 Gennadios A, Weller C (1991) Edible films and coatings from soymilk and soy protein. Cereal Foods World 36(12):1004–1009
34.
Zurück zum Zitat Shimada K, Cheftel JC (1989) Sulfhydryl group/disulfide bond interchange reactions during heat-induced gelation of whey protein isolate. J Agri Food Chem 37:161–168CrossRef Shimada K, Cheftel JC (1989) Sulfhydryl group/disulfide bond interchange reactions during heat-induced gelation of whey protein isolate. J Agri Food Chem 37:161–168CrossRef
35.
Zurück zum Zitat McHugh TH, Aujard JF, Krochta JM (1994) Plasticized whey protein edible films: water vapor permeability properties. J Food Sci 59(2):416–419CrossRef McHugh TH, Aujard JF, Krochta JM (1994) Plasticized whey protein edible films: water vapor permeability properties. J Food Sci 59(2):416–419CrossRef
36.
Zurück zum Zitat Pérez-Gago MB, Nadaud P, Krochta JM (1999) Water vapor permeability, solubility, and tensile properties of heat-denatured versus native whey protein films. J Food Sci 64(6):1034–1037CrossRef Pérez-Gago MB, Nadaud P, Krochta JM (1999) Water vapor permeability, solubility, and tensile properties of heat-denatured versus native whey protein films. J Food Sci 64(6):1034–1037CrossRef
37.
Zurück zum Zitat Perez-gago M, Krochta J (2001) Denaturation time and temperature effects on solubility, tensile properties, and oxygen permeability of whey protein edible films. J Food Sci 66(5):705–710CrossRef Perez-gago M, Krochta J (2001) Denaturation time and temperature effects on solubility, tensile properties, and oxygen permeability of whey protein edible films. J Food Sci 66(5):705–710CrossRef
38.
Zurück zum Zitat De Wit J (2009) Thermal behaviour of bovine β-lactoglobulin at temperatures up to 150 C. A review. Trends Food Sci Technol 20(1):27–34CrossRef De Wit J (2009) Thermal behaviour of bovine β-lactoglobulin at temperatures up to 150 C. A review. Trends Food Sci Technol 20(1):27–34CrossRef
39.
Zurück zum Zitat Pérez-Gago M, Nadaud P, Krochta J (1999) Water vapor permeability, solubility, and tensile properties of heat-denatured versus native whey protein films. J Food Sci 64(6):1034–1037CrossRef Pérez-Gago M, Nadaud P, Krochta J (1999) Water vapor permeability, solubility, and tensile properties of heat-denatured versus native whey protein films. J Food Sci 64(6):1034–1037CrossRef
40.
Zurück zum Zitat Schmid M (2013) Properties of cast films made from different ratios of whey protein isolate, hydrolysed whey protein isolate and glycerol. Materials 6(8):3254–3269CrossRef Schmid M (2013) Properties of cast films made from different ratios of whey protein isolate, hydrolysed whey protein isolate and glycerol. Materials 6(8):3254–3269CrossRef
41.
Zurück zum Zitat Kunz B (1993) Lexikon der Lebensmitteltechnologie. Springer, New YorkCrossRef Kunz B (1993) Lexikon der Lebensmitteltechnologie. Springer, New YorkCrossRef
42.
Zurück zum Zitat Anker M, Stading M, Hermansson A-M (2000) Relationship between the microstructure and the mechanical and barrier properties of whey protein films. J Agric Food Chem 48(9):3806–3816CrossRef Anker M, Stading M, Hermansson A-M (2000) Relationship between the microstructure and the mechanical and barrier properties of whey protein films. J Agric Food Chem 48(9):3806–3816CrossRef
43.
Zurück zum Zitat Hammann F, Schmid M (2014) Determination and quatification of moleculare interactions in protein films. Materials 7(12):7975–7996CrossRef Hammann F, Schmid M (2014) Determination and quatification of moleculare interactions in protein films. Materials 7(12):7975–7996CrossRef
44.
Zurück zum Zitat McHugh TH, Aujard JF, Krochta JM (1994) Plasticized whey-protein edible films—water-vapor permeability properties. J Food Sci 59(2):416–419CrossRef McHugh TH, Aujard JF, Krochta JM (1994) Plasticized whey-protein edible films—water-vapor permeability properties. J Food Sci 59(2):416–419CrossRef
45.
Zurück zum Zitat DIN (2006) Prüfung von Kunststoffen - Bestimmung der Gasdurchlässigkeit - Teil 2: Manometrisches Verfahren zur Messung an Kunststoff-Folien, in DIN 53380-2. Beuth Verlag GmbH: Berlin DIN (2006) Prüfung von Kunststoffen - Bestimmung der Gasdurchlässigkeit - Teil 2: Manometrisches Verfahren zur Messung an Kunststoff-Folien, in DIN 53380-2. Beuth Verlag GmbH: Berlin
46.
Zurück zum Zitat Becker DK (1982) Methode zur automatischen Bestimmung der Gasdurchlässigkeit von Kunststofffolien und beschichteten Papieren. Verpackungs-Rundschau 83:21–25 Becker DK (1982) Methode zur automatischen Bestimmung der Gasdurchlässigkeit von Kunststofffolien und beschichteten Papieren. Verpackungs-Rundschau 83:21–25
47.
Zurück zum Zitat Liu KS, Hsieh F-H (2007) Protein–protein interactions in high moisture-extruded meat analogs and heat-induced soy protein gels. J Am Oil Chem Soc 84(8):741–748CrossRef Liu KS, Hsieh F-H (2007) Protein–protein interactions in high moisture-extruded meat analogs and heat-induced soy protein gels. J Am Oil Chem Soc 84(8):741–748CrossRef
48.
Zurück zum Zitat Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254CrossRef Bradford MM (1976) A rapid and sensitive method for the quantitation of microgram quantities of protein utilizing the principle of protein-dye binding. Anal Biochem 72(1):248–254CrossRef
49.
Zurück zum Zitat Compton SJ, Jones CG (1985) Mechanism of dye response and interference in the Bradford protein assay. Anal Biochem 151(2):369–374CrossRef Compton SJ, Jones CG (1985) Mechanism of dye response and interference in the Bradford protein assay. Anal Biochem 151(2):369–374CrossRef
50.
Zurück zum Zitat Hernandez-Izquierdo VM, Krochta JM (2008) Thermoplastic processing of proteins for film formation—a review. J Food Sci 73(2):R30–R39CrossRef Hernandez-Izquierdo VM, Krochta JM (2008) Thermoplastic processing of proteins for film formation—a review. J Food Sci 73(2):R30–R39CrossRef
51.
Zurück zum Zitat McHugh TH, Krochta JM (1994) Sorbitol-vs glycerol-plasticized whey protein edible films: integrated oxygen permeability and tensile property evaluation. J Agri Food Chem 41(2):841–845CrossRef McHugh TH, Krochta JM (1994) Sorbitol-vs glycerol-plasticized whey protein edible films: integrated oxygen permeability and tensile property evaluation. J Agri Food Chem 41(2):841–845CrossRef
52.
Zurück zum Zitat Hong SI, Krochta J (2003) Oxygen barrier properties of whey protein isolate coatings on polypropylene films. J Food Sci 68(1):224–228CrossRef Hong SI, Krochta J (2003) Oxygen barrier properties of whey protein isolate coatings on polypropylene films. J Food Sci 68(1):224–228CrossRef
53.
Zurück zum Zitat Schmid M et al (2012) Properties of whey-protein-coated films and laminates as novel recyclable food packaging materials with excellent barrier properties. Int J Polym Sci 2012:7 Schmid M et al (2012) Properties of whey-protein-coated films and laminates as novel recyclable food packaging materials with excellent barrier properties. Int J Polym Sci 2012:7
54.
Zurück zum Zitat Barone JR, Dangaran K, Schmidt WF (2006) Blends of cysteine-containing proteins. J Agric Food Chem 54(15):5393–5399CrossRef Barone JR, Dangaran K, Schmidt WF (2006) Blends of cysteine-containing proteins. J Agric Food Chem 54(15):5393–5399CrossRef
55.
Zurück zum Zitat Le Tien C et al (2000) Development of biodegradable films from whey proteins by cross-linking and entrapment in cellulose. J Agric Food Chem 48(11):5566–5575CrossRef Le Tien C et al (2000) Development of biodegradable films from whey proteins by cross-linking and entrapment in cellulose. J Agric Food Chem 48(11):5566–5575CrossRef
56.
Zurück zum Zitat Perez-Gago MB, Nadaud P, Krochta JM (1999) Water vapor permeability, solubility, and tensile properties of heat-denatured versus native whey protein films. J Food Sci 64(6):1034–1037CrossRef Perez-Gago MB, Nadaud P, Krochta JM (1999) Water vapor permeability, solubility, and tensile properties of heat-denatured versus native whey protein films. J Food Sci 64(6):1034–1037CrossRef
57.
Zurück zum Zitat Hernandez-Izquierdo VM, Krochta JM (2008) Thermoplastic processing of proteins for film formation—a review. J Food Sci 73(2):R30–R39CrossRef Hernandez-Izquierdo VM, Krochta JM (2008) Thermoplastic processing of proteins for film formation—a review. J Food Sci 73(2):R30–R39CrossRef
58.
Zurück zum Zitat Koolman J, Röhm K-H (2009) Taschenatlas Biochemie des Menschen. Georg Thieme Verlag, New YorkCrossRef Koolman J, Röhm K-H (2009) Taschenatlas Biochemie des Menschen. Georg Thieme Verlag, New YorkCrossRef
59.
Zurück zum Zitat Schmid M et al (2014) Properties of transglutaminase crosslinked whey protein isolate coatings and cast films. Packag Technol Sci 27(10):799–817CrossRef Schmid M et al (2014) Properties of transglutaminase crosslinked whey protein isolate coatings and cast films. Packag Technol Sci 27(10):799–817CrossRef
60.
Zurück zum Zitat Khwaldia K et al (2004) Milk proteins for edible films and coatings. Crit Rev Food Sci Nutr 44(4):239–251CrossRef Khwaldia K et al (2004) Milk proteins for edible films and coatings. Crit Rev Food Sci Nutr 44(4):239–251CrossRef
61.
Zurück zum Zitat Bryant CM, McClements DJ (1998) Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey. Trends Food Sci Technol 9(4):143–151CrossRef Bryant CM, McClements DJ (1998) Molecular basis of protein functionality with special consideration of cold-set gels derived from heat-denatured whey. Trends Food Sci Technol 9(4):143–151CrossRef
62.
Zurück zum Zitat Foegeding EA et al (2002) Advances in modifying and understanding whey protein functionality. Trends Food Sci Technol 13(5):151–159CrossRef Foegeding EA et al (2002) Advances in modifying and understanding whey protein functionality. Trends Food Sci Technol 13(5):151–159CrossRef
63.
Zurück zum Zitat de la Fuente MA, Singh H, Hemar Y (2002) Recent advances in the characterisation of heat-induced aggregates and intermediates of whey proteins. Trends Food Sci Technol 13(8):262–274CrossRef de la Fuente MA, Singh H, Hemar Y (2002) Recent advances in the characterisation of heat-induced aggregates and intermediates of whey proteins. Trends Food Sci Technol 13(8):262–274CrossRef
Metadaten
Titel
Storage time-dependent alteration of molecular interaction–property relationships of whey protein isolate-based films and coatings
verfasst von
Markus Schmid
Katrein Reichert
Felicia Hammann
Andreas Stäbler
Publikationsdatum
01.06.2015
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 12/2015
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-015-8994-0

Weitere Artikel der Ausgabe 12/2015

Journal of Materials Science 12/2015 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.