Skip to main content
Erschienen in: Journal of Materials Engineering and Performance 6/2019

18.06.2019

Strength Variation in Processing Multiport Extrusion Tubes of A1100 and A3102 Alloys

verfasst von: Kai Li, Dayong Li, Tianxia Zou, Da Shu, Ding Tang, Yinghong Peng

Erschienen in: Journal of Materials Engineering and Performance | Ausgabe 6/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The manufacturing process of multiport extrusion tubes generally includes homogenization, extrusion, roll leveling and heat treatment. In order to investigate the influence of the manufacturing procedures on strength variation of multiport extrusion tubes made of A1100 and A3102 alloys, the tube fabrication experiments and following materials characterization are carried out. The alloys’ stress–strain curves after every processing procedure are measured, and pressure-bearing capacity of the tubes is tested. The tubes’ strength and pressure-bearing capacity reach the peak values after straightening process and drop to the minimum after annealing. The contributions of solid solution hardening, grain boundary hardening and constituent particle strengthening to yield strength are evaluated. It is deduced that cluster hardening is the dominant strengthening mechanism for the as-homogenized and as-extruded samples; the contribution of clusters is second to work hardening after straightening process; slight cold work in conjunction with high-temperature annealing accelerates abnormal grain growth. The loss of strength increment from clusters can be interpreted by the remarkable reduction of high-angle grain boundaries after abnormal grain growth.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat K.R. Mamaghani and M. Kazeminezhad, The Effect of Direct- and Cross-Rolling on Mechanical Properties and Microstructure of Severely Deformed Aluminum, J. Mater. Eng. Perform., 2014, 23, p 115–124CrossRef K.R. Mamaghani and M. Kazeminezhad, The Effect of Direct- and Cross-Rolling on Mechanical Properties and Microstructure of Severely Deformed Aluminum, J. Mater. Eng. Perform., 2014, 23, p 115–124CrossRef
2.
Zurück zum Zitat C. Liu, X. Xue, X. Chen, C. Long Li, Z. Xia, Z. Zhong, D. Zhong, Effect of Microstructural Evolution on Sagging Behavior of Cold-Rolled Aluminum Foil during the Brazing Thermal Cycle, J. Mater. Eng. Perform., 2017, 26, p 5563–5570CrossRef C. Liu, X. Xue, X. Chen, C. Long Li, Z. Xia, Z. Zhong, D. Zhong, Effect of Microstructural Evolution on Sagging Behavior of Cold-Rolled Aluminum Foil during the Brazing Thermal Cycle, J. Mater. Eng. Perform., 2017, 26, p 5563–5570CrossRef
3.
Zurück zum Zitat A. Laferrere, N. Parson, X. Zhou, and G. Thompson, Effect of Microstructure on the Corrosion Behavior of Extruded Heat Exchanger Aluminum Alloys, Surf. Interface Anal., 2013, 45, p 1597–1603CrossRef A. Laferrere, N. Parson, X. Zhou, and G. Thompson, Effect of Microstructure on the Corrosion Behavior of Extruded Heat Exchanger Aluminum Alloys, Surf. Interface Anal., 2013, 45, p 1597–1603CrossRef
4.
Zurück zum Zitat F.F. Kraft, Method for Predicting and Optimizing the Strength of Extruded Multi-void Aluminum Heat Exchanger tube, in SAE Proceedings of the 2001 Vehicle Thermal Management Systems Conference (2001), pp. 363–370 F.F. Kraft, Method for Predicting and Optimizing the Strength of Extruded Multi-void Aluminum Heat Exchanger tube, in SAE Proceedings of the 2001 Vehicle Thermal Management Systems Conference (2001), pp. 363–370
5.
Zurück zum Zitat M.M. Guzowski, F.F. Kraft, H.R. McCarhery and J.C. Noveskey, Alloy and Process Effects on Brazed Automotive Condenser Tubing, in Proceedings of the Vehicle Thermal Management Systems (VTMS 4) Conference (1999), pp. 24–27 M.M. Guzowski, F.F. Kraft, H.R. McCarhery and J.C. Noveskey, Alloy and Process Effects on Brazed Automotive Condenser Tubing, in Proceedings of the Vehicle Thermal Management Systems (VTMS 4) Conference (1999), pp. 24–27
6.
Zurück zum Zitat X.H. Fan, D. Tang, W.L. Fang, D.Y. Li and Y.H. Peng, Effects of Pre-strain on Grain Growth of Extruded Aluminum Micro-channel Tubes during Heat Treatment (Shanghai Jiao Tong University, 2019) (to be published) X.H. Fan, D. Tang, W.L. Fang, D.Y. Li and Y.H. Peng, Effects of Pre-strain on Grain Growth of Extruded Aluminum Micro-channel Tubes during Heat Treatment (Shanghai Jiao Tong University, 2019) (to be published)
7.
Zurück zum Zitat A. Joshi, N. Kumar, K.K. Yogesha, R. Jayaganthan, and S.K. Nath, Mechanical Properties and Microstructural Evolution in Al 2014 Alloy Processed through Multidirectional Cryoforging, J. Mater. Eng. Perform., 2016, 25, p 3031–3045CrossRef A. Joshi, N. Kumar, K.K. Yogesha, R. Jayaganthan, and S.K. Nath, Mechanical Properties and Microstructural Evolution in Al 2014 Alloy Processed through Multidirectional Cryoforging, J. Mater. Eng. Perform., 2016, 25, p 3031–3045CrossRef
8.
Zurück zum Zitat N. Kumar and R.S. Mishra, Additivity of Strengthening Mechanisms in Ultrafine Grained Al-Mg-Sc Alloy, Mater. Sci. Eng., A, 2013, 580, p 175–183CrossRef N. Kumar and R.S. Mishra, Additivity of Strengthening Mechanisms in Ultrafine Grained Al-Mg-Sc Alloy, Mater. Sci. Eng., A, 2013, 580, p 175–183CrossRef
9.
Zurück zum Zitat K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Schoenung, Mechanical Behavior and Strengthening Mechanisms in Ultrafine Grain Precipitation-Strengthened Aluminum Alloy, Acta Mater., 2014, 62, p 141–155CrossRef K. Ma, H. Wen, T. Hu, T.D. Topping, D. Isheim, D.N. Seidman, E.J. Lavernia, and J.M. Schoenung, Mechanical Behavior and Strengthening Mechanisms in Ultrafine Grain Precipitation-Strengthened Aluminum Alloy, Acta Mater., 2014, 62, p 141–155CrossRef
10.
Zurück zum Zitat T. Sheppard, Temperature and Speed Effect in Hot Extrusion of Aluminum Alloys, Metall. Technol., 1981, 8, p 130–141CrossRef T. Sheppard, Temperature and Speed Effect in Hot Extrusion of Aluminum Alloys, Metall. Technol., 1981, 8, p 130–141CrossRef
11.
Zurück zum Zitat H.W. Huang, B.L. Ou, and C.T. Tsai, Effect of Homogenization on Recrystallization and Precipitation Behavior of 3003 Aluminum Alloy, Mater. Trans., 2008, 49, p 250–259CrossRef H.W. Huang, B.L. Ou, and C.T. Tsai, Effect of Homogenization on Recrystallization and Precipitation Behavior of 3003 Aluminum Alloy, Mater. Trans., 2008, 49, p 250–259CrossRef
12.
Zurück zum Zitat Q. Du and Y.J. Li, Effect Modeling of Cr and Zn on Microstructure Evolution during Homogenization Heat Treatment of A3xxx Alloys, Trans. Nonferrous Met. Soc. China, 2014, 24, p 2145–2149CrossRef Q. Du and Y.J. Li, Effect Modeling of Cr and Zn on Microstructure Evolution during Homogenization Heat Treatment of A3xxx Alloys, Trans. Nonferrous Met. Soc. China, 2014, 24, p 2145–2149CrossRef
13.
Zurück zum Zitat Q. Du, W.J. Poole, M.A. Wells, and N.C. Parson, Microstructure Evolution during Homogenization of Al-Mn-Fe-Si Alloys: Modeling and Experimental Results, Acta Mater., 2013, 61, p 4961–4973CrossRef Q. Du, W.J. Poole, M.A. Wells, and N.C. Parson, Microstructure Evolution during Homogenization of Al-Mn-Fe-Si Alloys: Modeling and Experimental Results, Acta Mater., 2013, 61, p 4961–4973CrossRef
14.
Zurück zum Zitat S.P. Ringer, I.J. Polmear, K. Hono, and S. Toshio, Cluster Hardening in an Aged Al-Cu-Mg Alloy, Scr. Mater., 1997, 36, p 517–521CrossRef S.P. Ringer, I.J. Polmear, K. Hono, and S. Toshio, Cluster Hardening in an Aged Al-Cu-Mg Alloy, Scr. Mater., 1997, 36, p 517–521CrossRef
15.
Zurück zum Zitat Y. Baba and A. Takashima, Influence of Composition on the Two-stage Aging of Al-Mg-Si Alloys, Trans. Jpn. Inst. Met., 1969, 10, p 196–204CrossRef Y. Baba and A. Takashima, Influence of Composition on the Two-stage Aging of Al-Mg-Si Alloys, Trans. Jpn. Inst. Met., 1969, 10, p 196–204CrossRef
16.
Zurück zum Zitat R.K.W. Marceau, G. Sha, R. Ferragut, A. Dupasquier, and S.P. Ringer, Solute Clustering in Al-Cu-Mg Alloys during the Early Stages of Elevated Temperature Ageing, Acta Mater., 2010, 58, p 4923–4939CrossRef R.K.W. Marceau, G. Sha, R. Ferragut, A. Dupasquier, and S.P. Ringer, Solute Clustering in Al-Cu-Mg Alloys during the Early Stages of Elevated Temperature Ageing, Acta Mater., 2010, 58, p 4923–4939CrossRef
17.
Zurück zum Zitat R.K.W. Marceau, A. De Vaucorbeil, G. Sha, S.P. Ringer, and W.J. Poole, Analysis of Strengthening in AA6111 during the Early Stages of Aging: Atom Probe Tomography and Yield Stress Modelling, Acta Mater., 2013, 61, p 7285–7303CrossRef R.K.W. Marceau, A. De Vaucorbeil, G. Sha, S.P. Ringer, and W.J. Poole, Analysis of Strengthening in AA6111 during the Early Stages of Aging: Atom Probe Tomography and Yield Stress Modelling, Acta Mater., 2013, 61, p 7285–7303CrossRef
18.
Zurück zum Zitat B.J. Diak and S. Saimoto, The Determination of Solute Clusters in Dilute Aluminum Alloys Using Strain Rate Sensitivity, Mater. Sci. Eng., A, 1997, 234, p 1019–1022CrossRef B.J. Diak and S. Saimoto, The Determination of Solute Clusters in Dilute Aluminum Alloys Using Strain Rate Sensitivity, Mater. Sci. Eng., A, 1997, 234, p 1019–1022CrossRef
19.
Zurück zum Zitat M.J. Starink and S.C. Wang, The Thermodynamics of and Strengthening due to Co-clusters: General Theory and Application to the Case of Al-Cu-Mg Alloys, Acta Mater., 2009, 57, p 2376–2389CrossRef M.J. Starink and S.C. Wang, The Thermodynamics of and Strengthening due to Co-clusters: General Theory and Application to the Case of Al-Cu-Mg Alloys, Acta Mater., 2009, 57, p 2376–2389CrossRef
20.
Zurück zum Zitat M.J. Starink, L.F. Cao, and P.A. Rometsch, A Model for the Thermodynamics of and Strengthening Due to Co-clusters in Al-Mg-Si-Based Alloys, Acta Mater., 2012, 60, p 4194–4207CrossRef M.J. Starink, L.F. Cao, and P.A. Rometsch, A Model for the Thermodynamics of and Strengthening Due to Co-clusters in Al-Mg-Si-Based Alloys, Acta Mater., 2012, 60, p 4194–4207CrossRef
21.
Zurück zum Zitat Q.L. Zhao, M. Slagsvold, and B. Holmedal, Comparison of the Influence of Si and Fe in 99.999% Purity Aluminum and in Commercial-Purity Aluminum, Scr. Mater., 2012, 67, p 217–220CrossRef Q.L. Zhao, M. Slagsvold, and B. Holmedal, Comparison of the Influence of Si and Fe in 99.999% Purity Aluminum and in Commercial-Purity Aluminum, Scr. Mater., 2012, 67, p 217–220CrossRef
22.
Zurück zum Zitat Q.L. Zhao, B. Holmedal, Y.J. Li, E. Sagvolden, and O.M. Løvvik, Multi-component Solid Solution and Cluster Hardening of Al-Mn-Si Alloys, Mater. Sci. Eng., A, 2015, 625, p 153–157CrossRef Q.L. Zhao, B. Holmedal, Y.J. Li, E. Sagvolden, and O.M. Løvvik, Multi-component Solid Solution and Cluster Hardening of Al-Mn-Si Alloys, Mater. Sci. Eng., A, 2015, 625, p 153–157CrossRef
23.
Zurück zum Zitat Q.L. Zhao, Cluster Strengthening in Aluminum Alloys, Scr. Mater., 2014, 84, p 43–46CrossRef Q.L. Zhao, Cluster Strengthening in Aluminum Alloys, Scr. Mater., 2014, 84, p 43–46CrossRef
24.
Zurück zum Zitat A.L. Dons, The Alstruc Homogenization Model for Industrial Aluminum Alloys, Light Met., 2001, 1, p 133–149CrossRef A.L. Dons, The Alstruc Homogenization Model for Industrial Aluminum Alloys, Light Met., 2001, 1, p 133–149CrossRef
25.
Zurück zum Zitat R.K. Gupta, N. Nayan, and B.R. Ghosh, Design of Homogenization Cycle for Various Grain Sizes of Aluminum Alloy AA2219 Using Diffusion Principles, Can. Metall. Q., 2006, 45, p 347–352CrossRef R.K. Gupta, N. Nayan, and B.R. Ghosh, Design of Homogenization Cycle for Various Grain Sizes of Aluminum Alloy AA2219 Using Diffusion Principles, Can. Metall. Q., 2006, 45, p 347–352CrossRef
26.
Zurück zum Zitat D. Tang, X. Fan, W. Fang, D. Li, and Y. Peng, Microstructure and Mechanical Properties Development of Micro Channel Tubes in Extrusion. Rolling and Brazing, Mater. Charact., 2018, 142, p 449–457CrossRef D. Tang, X. Fan, W. Fang, D. Li, and Y. Peng, Microstructure and Mechanical Properties Development of Micro Channel Tubes in Extrusion. Rolling and Brazing, Mater. Charact., 2018, 142, p 449–457CrossRef
27.
Zurück zum Zitat A.M.F. Muggerud, E.A. Mørtsell, Y.J. Li, and R. Holmestad, Dispersoid Strengthening in AA3xxx Alloys with Varying Mn and Si Content during Annealing at Low Temperatures, Mater. Sci. Eng., A, 2013, 567, p 21–28CrossRef A.M.F. Muggerud, E.A. Mørtsell, Y.J. Li, and R. Holmestad, Dispersoid Strengthening in AA3xxx Alloys with Varying Mn and Si Content during Annealing at Low Temperatures, Mater. Sci. Eng., A, 2013, 567, p 21–28CrossRef
28.
Zurück zum Zitat Y.J. Li and L. Arnberg, Quantitative Study on the Precipitation Behavior of Dispersoids in DC-Cast A3003 Alloy during Heating and Homogenization, Acta Mater., 2003, 51, p 3415–3428CrossRef Y.J. Li and L. Arnberg, Quantitative Study on the Precipitation Behavior of Dispersoids in DC-Cast A3003 Alloy during Heating and Homogenization, Acta Mater., 2003, 51, p 3415–3428CrossRef
29.
Zurück zum Zitat G.E. Totten and D.S. MacKenzie, Handbook of Aluminum: Alloy Production and Material Manufacturing, CRC Press, Boca Raton, 2003, p 716–717CrossRef G.E. Totten and D.S. MacKenzie, Handbook of Aluminum: Alloy Production and Material Manufacturing, CRC Press, Boca Raton, 2003, p 716–717CrossRef
30.
Zurück zum Zitat K. Huang, N. Wang, Y. Li, and K. Marthinsen, The Influence of Microchemistry on the Softening Behavior of Cold-Rolled Al-Mn-Fe-Si Alloys, Mater. Sci. Eng., A, 2014, 601, p 86–96CrossRef K. Huang, N. Wang, Y. Li, and K. Marthinsen, The Influence of Microchemistry on the Softening Behavior of Cold-Rolled Al-Mn-Fe-Si Alloys, Mater. Sci. Eng., A, 2014, 601, p 86–96CrossRef
31.
Zurück zum Zitat X. Fan, D. Tang, W. Fang, D. Li, and Y. Peng, Microstructure Development and Texture Evolution of Aluminum Multi-port Extrusion Tube during the Porthole Die Extrusion, Mater. Charact., 2016, 118, p 468–480CrossRef X. Fan, D. Tang, W. Fang, D. Li, and Y. Peng, Microstructure Development and Texture Evolution of Aluminum Multi-port Extrusion Tube during the Porthole Die Extrusion, Mater. Charact., 2016, 118, p 468–480CrossRef
32.
Zurück zum Zitat J.J. Salinas and A. Salinas, Grain Size and Texture Evolution during Annealing of Non-oriented Electrical Steel Deformed in Tension, J. Mater. Eng. Perform., 2015, 24, p 2117–2125CrossRef J.J. Salinas and A. Salinas, Grain Size and Texture Evolution during Annealing of Non-oriented Electrical Steel Deformed in Tension, J. Mater. Eng. Perform., 2015, 24, p 2117–2125CrossRef
33.
Zurück zum Zitat M. Shakiba, N. Parson, and X.G. Chen, Effect of Homogenization Treatment and Silicon Content on the Microstructure and Hot Workability of Al-Fe-Si Alloys, Mater. Sci. Eng., A, 2014, 619, p 180–189CrossRef M. Shakiba, N. Parson, and X.G. Chen, Effect of Homogenization Treatment and Silicon Content on the Microstructure and Hot Workability of Al-Fe-Si Alloys, Mater. Sci. Eng., A, 2014, 619, p 180–189CrossRef
34.
Zurück zum Zitat M. Shakiba, N. Parson, and X.G. Chen, Hot Deformation Behavior and Rate-Controlling Mechanism in Dilute Al-Fe-Si Alloys with Minor Additions of Mn and Cu, Mater. Sci. Eng., A, 2015, 2015(636), p 572–581CrossRef M. Shakiba, N. Parson, and X.G. Chen, Hot Deformation Behavior and Rate-Controlling Mechanism in Dilute Al-Fe-Si Alloys with Minor Additions of Mn and Cu, Mater. Sci. Eng., A, 2015, 2015(636), p 572–581CrossRef
35.
Zurück zum Zitat P. Babaghorbani, Annealing Behavior of Cold Deformed AA3003 Aluminum Alloys, Ph.D. Thesis, University of British Columbia (2015), pp. 55–67 P. Babaghorbani, Annealing Behavior of Cold Deformed AA3003 Aluminum Alloys, Ph.D. Thesis, University of British Columbia (2015), pp. 55–67
36.
Zurück zum Zitat J. Gjønnes, V. Hansen, B.S. Berg, P. Runde, Y.F. Cheng, K. Gjønnes, D.L. Dorset, and C.J. Gilmore, Structure Model for the Phase AlmFe Derived from Three-Dimensional Electron Diffraction Intensity Data Collected by a Precession Technique. Comparison with Convergent-Beam Diffraction, Acta Crystallogr., 1998, 54, p 306–319CrossRef J. Gjønnes, V. Hansen, B.S. Berg, P. Runde, Y.F. Cheng, K. Gjønnes, D.L. Dorset, and C.J. Gilmore, Structure Model for the Phase AlmFe Derived from Three-Dimensional Electron Diffraction Intensity Data Collected by a Precession Technique. Comparison with Convergent-Beam Diffraction, Acta Crystallogr., 1998, 54, p 306–319CrossRef
37.
Zurück zum Zitat A.M.F. Muggerud, Y.J. Li, and R. Holmestad, Composition and Orientation Relationships of Constituent Particles in 3xxx Aluminum Alloys, Philos. Mag., 2014, 94, p 556–568CrossRef A.M.F. Muggerud, Y.J. Li, and R. Holmestad, Composition and Orientation Relationships of Constituent Particles in 3xxx Aluminum Alloys, Philos. Mag., 2014, 94, p 556–568CrossRef
38.
Zurück zum Zitat M. Slámová, V. Očenášek, and V.G. Vander, Polarized Light Microscopy: Utilization in the Investigation of the Recrystallization of Aluminum Alloys, Mater. Charact., 2004, 52, p 165–177CrossRef M. Slámová, V. Očenášek, and V.G. Vander, Polarized Light Microscopy: Utilization in the Investigation of the Recrystallization of Aluminum Alloys, Mater. Charact., 2004, 52, p 165–177CrossRef
39.
Zurück zum Zitat H.J. McQueen, S. Spigarelli, M.E. Kassner, and E. Evangelista, Hot Deformation and Processing of Aluminum Alloys, CRC Press, Boca Raton, 2016, p 514–517CrossRef H.J. McQueen, S. Spigarelli, M.E. Kassner, and E. Evangelista, Hot Deformation and Processing of Aluminum Alloys, CRC Press, Boca Raton, 2016, p 514–517CrossRef
40.
Zurück zum Zitat J. Yu and G. Zhao, Interfacial Structure and Bonding Mechanism of Weld Seams during Porthole Die Extrusion of Aluminum Alloy Profiles, Mater. Charact., 2018, 138, p 56–66CrossRef J. Yu and G. Zhao, Interfacial Structure and Bonding Mechanism of Weld Seams during Porthole Die Extrusion of Aluminum Alloy Profiles, Mater. Charact., 2018, 138, p 56–66CrossRef
41.
Zurück zum Zitat E. Hornbogen and E.A. Starke, Theory Assisted Design of High Strength Low Alloy Aluminum (Overview), Acta Metall. Mater., 1991, 4, p 1–16 E. Hornbogen and E.A. Starke, Theory Assisted Design of High Strength Low Alloy Aluminum (Overview), Acta Metall. Mater., 1991, 4, p 1–16
42.
Zurück zum Zitat G.J. Mahon and G.J. Marshall, Microstructure-property Relationships in O-Temper Foil Alloys, Miner. Metall. Mater. Soc., 1996, 48, p 39–42CrossRef G.J. Mahon and G.J. Marshall, Microstructure-property Relationships in O-Temper Foil Alloys, Miner. Metall. Mater. Soc., 1996, 48, p 39–42CrossRef
43.
Zurück zum Zitat L.A. Gypen and A. Deruyttere, Multi-component Solid Solution Hardening, J. Mater. Sci., 1977, 12, p 1028–1033CrossRef L.A. Gypen and A. Deruyttere, Multi-component Solid Solution Hardening, J. Mater. Sci., 1977, 12, p 1028–1033CrossRef
44.
Zurück zum Zitat J.D. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proc. R. Soc. Lond. Ser. A, 1957, 241, p 376–396CrossRef J.D. Eshelby, The Determination of the Elastic Field of an Ellipsoidal Inclusion, and Related Problems, Proc. R. Soc. Lond. Ser. A, 1957, 241, p 376–396CrossRef
45.
Zurück zum Zitat Y. Estrin and H. Mecking, A Unified Phenomenological Description of Work Hardening and Creep Based on One-parameter Models, Acta Metall., 1984, 32, p 57–70CrossRef Y. Estrin and H. Mecking, A Unified Phenomenological Description of Work Hardening and Creep Based on One-parameter Models, Acta Metall., 1984, 32, p 57–70CrossRef
46.
Zurück zum Zitat N. Hansen, Hall-Petch Relation and Boundary Strengthening, Scr. Mater., 2004, 51, p 801–806CrossRef N. Hansen, Hall-Petch Relation and Boundary Strengthening, Scr. Mater., 2004, 51, p 801–806CrossRef
47.
Zurück zum Zitat W. Sun, Y. Zhu, R. Marceau, L. Wang, Q. Zhang, X. Gao, and C. Hutchinson, Precipitation Strengthening of Aluminum Alloys by Room-Temperature Cyclic Plasticity, Science, 2019, 363, p 972–975CrossRef W. Sun, Y. Zhu, R. Marceau, L. Wang, Q. Zhang, X. Gao, and C. Hutchinson, Precipitation Strengthening of Aluminum Alloys by Room-Temperature Cyclic Plasticity, Science, 2019, 363, p 972–975CrossRef
48.
Zurück zum Zitat A. Zhu, B.M. Gable, G.J. Shiflet, and A.S. Jr, Edgar, Trace Element Effects on Precipitation in Al-Cu-Mg-(Ag, Si) Alloys: A Computational Analysis, Acta Mater., 2004, 52, p 3671–3679CrossRef A. Zhu, B.M. Gable, G.J. Shiflet, and A.S. Jr, Edgar, Trace Element Effects on Precipitation in Al-Cu-Mg-(Ag, Si) Alloys: A Computational Analysis, Acta Mater., 2004, 52, p 3671–3679CrossRef
49.
Zurück zum Zitat N. Ünlü, B.M. Gable, G.J. Shiflet, and E.A. Starke, Jr., The Effect of Cold Work on the Precipitation of Ω and θ′ in a Ternary Al-Cu-Mg Alloy, Metall. Mater. Trans. A, 2003, 34, p 2757–2769CrossRef N. Ünlü, B.M. Gable, G.J. Shiflet, and E.A. Starke, Jr., The Effect of Cold Work on the Precipitation of Ω and θ′ in a Ternary Al-Cu-Mg Alloy, Metall. Mater. Trans. A, 2003, 34, p 2757–2769CrossRef
50.
Zurück zum Zitat H. Jian, S.L. Thomas, and D.J. Srolovitz, Grain-Boundary Kinetics: A Unified Approach, Prog. Mater Sci., 2018, 98, p 386–476CrossRef H. Jian, S.L. Thomas, and D.J. Srolovitz, Grain-Boundary Kinetics: A Unified Approach, Prog. Mater Sci., 2018, 98, p 386–476CrossRef
51.
Zurück zum Zitat R.S. Barnes, G.B. Redding, and A.H. Cottrbll, The Observation of Vacancy Sources in Metals, Philos. Mag., 1958, 3, p 97–99CrossRef R.S. Barnes, G.B. Redding, and A.H. Cottrbll, The Observation of Vacancy Sources in Metals, Philos. Mag., 1958, 3, p 97–99CrossRef
52.
Zurück zum Zitat K. Mizuno, S. Yamamoto, K. Morikawa, M. Kuga, H. Okamoto, and E. Hashimoto, Vacancy Generation Mechanism at High Temperatures in Ultrahigh-purity Aluminum Single Crystals with a Low Dislocation Density, J. Cryst. Growth, 2005, 275, p 1697–1702CrossRef K. Mizuno, S. Yamamoto, K. Morikawa, M. Kuga, H. Okamoto, and E. Hashimoto, Vacancy Generation Mechanism at High Temperatures in Ultrahigh-purity Aluminum Single Crystals with a Low Dislocation Density, J. Cryst. Growth, 2005, 275, p 1697–1702CrossRef
53.
Zurück zum Zitat S. Bai, Z. Liu, P. Ying, J. Wang, and A. Wang, Quantitative Study of the Solute Clustering and Precipitation in a Pre-stretched Al-Cu-Mg-Ag Alloy, J. Alloys Compd., 2017, 725, p 1288–1296CrossRef S. Bai, Z. Liu, P. Ying, J. Wang, and A. Wang, Quantitative Study of the Solute Clustering and Precipitation in a Pre-stretched Al-Cu-Mg-Ag Alloy, J. Alloys Compd., 2017, 725, p 1288–1296CrossRef
Metadaten
Titel
Strength Variation in Processing Multiport Extrusion Tubes of A1100 and A3102 Alloys
verfasst von
Kai Li
Dayong Li
Tianxia Zou
Da Shu
Ding Tang
Yinghong Peng
Publikationsdatum
18.06.2019
Verlag
Springer US
Erschienen in
Journal of Materials Engineering and Performance / Ausgabe 6/2019
Print ISSN: 1059-9495
Elektronische ISSN: 1544-1024
DOI
https://doi.org/10.1007/s11665-019-04132-w

Weitere Artikel der Ausgabe 6/2019

Journal of Materials Engineering and Performance 6/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.