Skip to main content
Erschienen in: Glass and Ceramics 1-2/2021

31.05.2021

Strengthening of Glass Composite by Multilayer Carbon Nanotubes Aligned by a Constant Electric Field

verfasst von: A. N. Krasnovskii, I. A. Kazakov, P. S. Kishchuk

Erschienen in: Glass and Ceramics | Ausgabe 1-2/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The effect of the intensity of an electric field and the percentage of multilayer carbon nanotubes (MCNT) on the strength of a composite consisting of unidirectional glass fibers was studied. The test results for annular samples made by the winding method with different MCNT content in the composite and at different values of the electric field intensity are presented. Based on the test results, strength curves were constructed and a formula for the dependence of the strength of the composite on the electric field intensity and the MCNT percentage was obtained.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rana Sohel, Ramasamy Alagirusamy, and Joshi Mangala, “A Review on Carbon Epoxy Nanocomposites,” J. Reinforced Plastics and Composites, 28, 461 – 487 (2008). Rana Sohel, Ramasamy Alagirusamy, and Joshi Mangala, “A Review on Carbon Epoxy Nanocomposites,” J. Reinforced Plastics and Composites, 28, 461 – 487 (2008).
2.
Zurück zum Zitat A. N. Krasnovskii and P. S. Kishchuk, “Effect of catalyst mass on CVD synthesis of carbon nanotubes,” Russ. J. Appl. Chem., 90(5), 721 – 725 (2017).CrossRef A. N. Krasnovskii and P. S. Kishchuk, “Effect of catalyst mass on CVD synthesis of carbon nanotubes,” Russ. J. Appl. Chem., 90(5), 721 – 725 (2017).CrossRef
3.
Zurück zum Zitat I. A. Kazakov and A. N. Krasnovskii, “Effect of functionalized multiwalled carbon nanotubes on the feasibility of fabrication of composite glass fiber reinforced plastic rebars,” Russ. J. Appl. Chem., 89(8), 1309 – 1316 (2016).CrossRef I. A. Kazakov and A. N. Krasnovskii, “Effect of functionalized multiwalled carbon nanotubes on the feasibility of fabrication of composite glass fiber reinforced plastic rebars,” Russ. J. Appl. Chem., 89(8), 1309 – 1316 (2016).CrossRef
4.
Zurück zum Zitat P. M. Ajayan, L. S. Schadler, C. Giannaris, and A. Rubio, “Single walled carbon nanotube – polymer composites: strength and weakness,” Adv. Mater., 12(10), 750 – 753 (2000).CrossRef P. M. Ajayan, L. S. Schadler, C. Giannaris, and A. Rubio, “Single walled carbon nanotube – polymer composites: strength and weakness,” Adv. Mater., 12(10), 750 – 753 (2000).CrossRef
5.
Zurück zum Zitat Y. Hao, Z. Qunfeng,W. Fei, et al., “Agglomerated CNTs synthesized in a fluidized bed reactor: Agglomerate structure and formation mechanism,” Carbon, 41, 2855 – 2863 (2003).CrossRef Y. Hao, Z. Qunfeng,W. Fei, et al., “Agglomerated CNTs synthesized in a fluidized bed reactor: Agglomerate structure and formation mechanism,” Carbon, 41, 2855 – 2863 (2003).CrossRef
6.
Zurück zum Zitat A. T. Mou’ad, and Hj. A. Sahrim, “Characterization and morphology of modified multi-walled carbon nanotubes filled thermoplastic natural rubber (TPNR) composite,” Syntheses and Applications of Carbon Nanotubes and Their Composites, No. 6, 117 – 143 (2013). A. T. Mou’ad, and Hj. A. Sahrim, “Characterization and morphology of modified multi-walled carbon nanotubes filled thermoplastic natural rubber (TPNR) composite,” Syntheses and Applications of Carbon Nanotubes and Their Composites, No. 6, 117 – 143 (2013).
7.
Zurück zum Zitat S. Kumar, M. A. Alam, and J. Y. Murthy, “Effect of percolation on thermal transport in nanotube composites,” Appl. Phys. Lett., 90(10), 104105 – 104105-3 (2007).CrossRef S. Kumar, M. A. Alam, and J. Y. Murthy, “Effect of percolation on thermal transport in nanotube composites,” Appl. Phys. Lett., 90(10), 104105 – 104105-3 (2007).CrossRef
8.
Zurück zum Zitat I. A. Kazakov, A. N. Krasnovskii, and A. G. Kuznetsov, “The use of optimization algorithm for assessing effects of Carboxyl Functionalized MWCNTs on the productivity of nidltrusion process,” J. Nanostruct., 7(2), 89 – 96 (2017). I. A. Kazakov, A. N. Krasnovskii, and A. G. Kuznetsov, “The use of optimization algorithm for assessing effects of Carboxyl Functionalized MWCNTs on the productivity of nidltrusion process,” J. Nanostruct., 7(2), 89 – 96 (2017).
9.
Zurück zum Zitat A. N. Krasnovskii, P. S. Kishchuk, and T. M. Mukhin, “Study of the quality of carbon nanotubes produced by chemical vapor deposition,” Russ. J. Appl. Chem., 90(9), 1484 – 1487 (2017).CrossRef A. N. Krasnovskii, P. S. Kishchuk, and T. M. Mukhin, “Study of the quality of carbon nanotubes produced by chemical vapor deposition,” Russ. J. Appl. Chem., 90(9), 1484 – 1487 (2017).CrossRef
10.
Zurück zum Zitat Q. Chen, L. Dai, M. Gao, et al., “Plasma activation of carbon nanotubes for chemical modification,” J. Phys. Chem. B, 105(3), 618 – 622 (2000).CrossRef Q. Chen, L. Dai, M. Gao, et al., “Plasma activation of carbon nanotubes for chemical modification,” J. Phys. Chem. B, 105(3), 618 – 622 (2000).CrossRef
11.
Zurück zum Zitat E. C. Qian, A. R. Dickey, and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Appl. Phys. Lett., 76, 2868 – 2870 (2000).CrossRef E. C. Qian, A. R. Dickey, and T. Rantell, “Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites,” Appl. Phys. Lett., 76, 2868 – 2870 (2000).CrossRef
12.
Zurück zum Zitat Y. Li, Wei Bingqing, J. Liang, et al., “Transformation of carbon nanotubes to nanoparticles by ball milling process,” Carbon, 37, 493 – 497 (1999).CrossRef Y. Li, Wei Bingqing, J. Liang, et al., “Transformation of carbon nanotubes to nanoparticles by ball milling process,” Carbon, 37, 493 – 497 (1999).CrossRef
13.
Zurück zum Zitat S. Jamali, M. Paiva, and J. Covas, “Dispersion and re-agglomeration phenomena during melt mixing of polypropylene with multi-wall carbon nanotubes,” Polymer Testing, 32, 701 – 707 (2013).CrossRef S. Jamali, M. Paiva, and J. Covas, “Dispersion and re-agglomeration phenomena during melt mixing of polypropylene with multi-wall carbon nanotubes,” Polymer Testing, 32, 701 – 707 (2013).CrossRef
14.
Zurück zum Zitat I. A. Kazakov, A. N. Krasnovskii, and P. S. Kishchuk, “The influence of randomly oriented CNTs on the elastic properties of unidirectionally aligned composites,” Mechanics of Materials, 134, 54 – 60 (2019).CrossRef I. A. Kazakov, A. N. Krasnovskii, and P. S. Kishchuk, “The influence of randomly oriented CNTs on the elastic properties of unidirectionally aligned composites,” Mechanics of Materials, 134, 54 – 60 (2019).CrossRef
15.
Zurück zum Zitat C. O. Blattmann and E. P. Sotiris, “Single-step fabrication of polymer nanocomposite films,” Materials, 11(7), 1177, 1 – 9 (2018). C. O. Blattmann and E. P. Sotiris, “Single-step fabrication of polymer nanocomposite films,” Materials, 11(7), 1177, 1 – 9 (2018).
16.
Zurück zum Zitat X.-L. Xie, Y.-W. Mai, and X.-P. Zhou, “Dispersion and alignment of carbon nanotubes in a polymer matrix: a review,” Mater. Sci. Eng. R: Reports, 49(4), 89 – 112 (2005).CrossRef X.-L. Xie, Y.-W. Mai, and X.-P. Zhou, “Dispersion and alignment of carbon nanotubes in a polymer matrix: a review,” Mater. Sci. Eng. R: Reports, 49(4), 89 – 112 (2005).CrossRef
17.
Zurück zum Zitat M.-W. Wang, T.-C. Hsu, and C.-H. Weng, “Alignment of MWCNTs in polymer composites by dielectrophoresis,” Europ. Phys. J. Appl. Phys., 42(3), 241 – 246 (2008).CrossRef M.-W. Wang, T.-C. Hsu, and C.-H. Weng, “Alignment of MWCNTs in polymer composites by dielectrophoresis,” Europ. Phys. J. Appl. Phys., 42(3), 241 – 246 (2008).CrossRef
18.
Zurück zum Zitat C. Bellan and G. Bossis, “Field dependence of viscoelastic properties of MR elastomers,” Int. J. Modern Phys. B, 16(17–18), 2447 – 2453 (2002).CrossRef C. Bellan and G. Bossis, “Field dependence of viscoelastic properties of MR elastomers,” Int. J. Modern Phys. B, 16(17–18), 2447 – 2453 (2002).CrossRef
19.
Zurück zum Zitat E. Coquelle and G. Bossis, “Mullins effect in elastomers filled with particles aligned by a magnetic field,” Int. J. Solid Struct., 43(25–26), 7659 – 7672 (2006).CrossRef E. Coquelle and G. Bossis, “Mullins effect in elastomers filled with particles aligned by a magnetic field,” Int. J. Solid Struct., 43(25–26), 7659 – 7672 (2006).CrossRef
20.
Zurück zum Zitat S. Courty, J. Mine, A. R. Tajbakhsh, and E. M. Terentjev, “Nematic elastomers with aligned carbon nanotubes: New electromechanical actuators,” Europhys. Lett., 64(5), 654 – 660 (2003).CrossRef S. Courty, J. Mine, A. R. Tajbakhsh, and E. M. Terentjev, “Nematic elastomers with aligned carbon nanotubes: New electromechanical actuators,” Europhys. Lett., 64(5), 654 – 660 (2003).CrossRef
21.
Zurück zum Zitat Z. Z. Latypov, “Anisotropic reinforcement of polymeric nanocompozit properties by electromagnetic orientations of carbon nanotubes,” Sci. Device Eng., 21(1), 50 – 52 (2011). Z. Z. Latypov, “Anisotropic reinforcement of polymeric nanocompozit properties by electromagnetic orientations of carbon nanotubes,” Sci. Device Eng., 21(1), 5052 (2011).
22.
Zurück zum Zitat K. Yamamoto, S. Akita, and Y. Nakayama, “Orientation of carbon nanotubes using electrophoresis,” Jpn. J. Appl. Phys., 35(2), 917 – 919 (1996).CrossRef K. Yamamoto, S. Akita, and Y. Nakayama, “Orientation of carbon nanotubes using electrophoresis,” Jpn. J. Appl. Phys., 35(2), 917 – 919 (1996).CrossRef
23.
Zurück zum Zitat K. Yamamoto, S. Akita, and Y. Nakayama, “Orientation and purification of carbon nanotubes using ac electrophoresis,” J. Phys. D-Appl. Phys., 31(8), 34 – 36 (1998).CrossRef K. Yamamoto, S. Akita, and Y. Nakayama, “Orientation and purification of carbon nanotubes using ac electrophoresis,” J. Phys. D-Appl. Phys., 31(8), 34 – 36 (1998).CrossRef
24.
Zurück zum Zitat M. Ichida, S. Mizuno, H. Kataura, et al., “Anisotropic optical properties of mechanically aligned single-walled carbon nanotubes in polymer,” Appl. Phys. A Mater. Sci. Proc., 78, 1117 – 1120 (2004).CrossRef M. Ichida, S. Mizuno, H. Kataura, et al., “Anisotropic optical properties of mechanically aligned single-walled carbon nanotubes in polymer,” Appl. Phys. A Mater. Sci. Proc., 78, 1117 – 1120 (2004).CrossRef
25.
Zurück zum Zitat L. Jin, C. Bower, and O. Zhou, “Alignment of carbon nanotubes in a polymer matrix by mechanical stretching,” Appl. Phys. Lett., 73, 1197 – 1199 (1998).CrossRef L. Jin, C. Bower, and O. Zhou, “Alignment of carbon nanotubes in a polymer matrix by mechanical stretching,” Appl. Phys. Lett., 73, 1197 – 1199 (1998).CrossRef
26.
Zurück zum Zitat A. G. Rozhin, Y. Sakakibara, H. Kataura, et al., “Anisotropic saturable absorption of single-wall carbon nanotubes aligned in polyvinyl alcohol,” Chem. Phys. Lett., 405, 288 – 293 (2005).CrossRef A. G. Rozhin, Y. Sakakibara, H. Kataura, et al., “Anisotropic saturable absorption of single-wall carbon nanotubes aligned in polyvinyl alcohol,” Chem. Phys. Lett., 405, 288 – 293 (2005).CrossRef
27.
Zurück zum Zitat J. A. Fagan, J. R. Simpson, B. J. Landi, et al., “Dielectric response of aligned semiconducting single-wall nanotubes,” Phys. Rev. Lett., 98(14), 147402, 1 – 4 (2007). J. A. Fagan, J. R. Simpson, B. J. Landi, et al., “Dielectric response of aligned semiconducting single-wall nanotubes,” Phys. Rev. Lett., 98(14), 147402, 1 – 4 (2007).
28.
Zurück zum Zitat R. Haggenmueller, H. H. Gommans, A. G. Rinzler, and J. E. Fischer, “Aligned single-wall carbon nanotubes in composites by melt processing methods,” Chem. Phys. Lett., 330, 219 – 225 (2000).CrossRef R. Haggenmueller, H. H. Gommans, A. G. Rinzler, and J. E. Fischer, “Aligned single-wall carbon nanotubes in composites by melt processing methods,” Chem. Phys. Lett., 330, 219 – 225 (2000).CrossRef
29.
Zurück zum Zitat D. Fischer, P. Pötschke, H. Brünig, and A. Janke, “Investigation of the orientation in composite fibers of polycarbonate with multiwalled carbon nanotubes by Raman microscopy,” Macromol. Symp., 230, 167 – 172 (2005).CrossRef D. Fischer, P. Pötschke, H. Brünig, and A. Janke, “Investigation of the orientation in composite fibers of polycarbonate with multiwalled carbon nanotubes by Raman microscopy,” Macromol. Symp., 230, 167 – 172 (2005).CrossRef
30.
Zurück zum Zitat P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, “Aligned carbon nanotube arrays formed by cutting a polymer resinnanotube composite,” Science, 265, 1212 – 1214 (1994).CrossRef P. M. Ajayan, O. Stephan, C. Colliex, and D. Trauth, “Aligned carbon nanotube arrays formed by cutting a polymer resinnanotube composite,” Science, 265, 1212 – 1214 (1994).CrossRef
31.
Zurück zum Zitat J. R. Wood, Q. Zhao, and H. D. Wagner, “Orientation of carbon nanotubes in polymers and its detection by Raman spectroscopy,” Compos. Part A, Appl. Sci. Manuf., 32, 391 – 399 (2001).CrossRef J. R. Wood, Q. Zhao, and H. D. Wagner, “Orientation of carbon nanotubes in polymers and its detection by Raman spectroscopy,” Compos. Part A, Appl. Sci. Manuf., 32, 391 – 399 (2001).CrossRef
32.
Zurück zum Zitat S. Shoji, H. Suzuki, R. Zaccaria, et al., “Optical polarizer made of uniaxially aligned short single-wall carbon nanotubes embedded in a polymer film,” Phys. Rev. B, 77, 153407, 1 – 4 (2008). S. Shoji, H. Suzuki, R. Zaccaria, et al., “Optical polarizer made of uniaxially aligned short single-wall carbon nanotubes embedded in a polymer film,” Phys. Rev. B, 77, 153407, 1 – 4 (2008).
33.
Zurück zum Zitat D. A. Walters, M. J. Casavant, X. C. Qin, et al., “In-plane aligned membranes of carbon nanotubes,” Chem. Phys. Lett., 338, 14 – 20 (2001).CrossRef D. A. Walters, M. J. Casavant, X. C. Qin, et al., “In-plane aligned membranes of carbon nanotubes,” Chem. Phys. Lett., 338, 14 – 20 (2001).CrossRef
34.
Zurück zum Zitat J. E. Fischer, W. Zhou, J. Vavro, et al., “Magnetically aligned single wall carbon nanotube films: Preferred orientation and anisotropic transport properties,” J. Appl. Phys., 93, 2157 – 2163 (2003).CrossRef J. E. Fischer, W. Zhou, J. Vavro, et al., “Magnetically aligned single wall carbon nanotube films: Preferred orientation and anisotropic transport properties,” J. Appl. Phys., 93, 2157 – 2163 (2003).CrossRef
35.
Zurück zum Zitat Y. Tian, J. G. Park, Q. Cheng, et al., “The fabrication of singlewalled carbon nanotube/polyelectrolyte multilayer composites by layer-by-layer assembly and magnetic field assisted alignment,” Nanotechnology, 20(33), 335601, 1 – 7 (2009). Y. Tian, J. G. Park, Q. Cheng, et al., “The fabrication of singlewalled carbon nanotube/polyelectrolyte multilayer composites by layer-by-layer assembly and magnetic field assisted alignment,” Nanotechnology, 20(33), 335601, 1 – 7 (2009).
36.
Zurück zum Zitat S. Kumar, H. Kaur, I. Kaur, et al., “Magnetic fieldguided orientation of carbon nanotubes through their conjugation with magnetic nanoparticles,” J. Mater. Sci., 4, 1489 – 1496 (2011). S. Kumar, H. Kaur, I. Kaur, et al., “Magnetic fieldguided orientation of carbon nanotubes through their conjugation with magnetic nanoparticles,” J. Mater. Sci., 4, 1489 – 1496 (2011).
37.
Zurück zum Zitat M. A. Correa-Duarte, M. Grzelczak, V. SalgueiriñoMaceira, et al., “Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles,” J. Phys. Chem. B, 109, 19060 – 19063 (2005).CrossRef M. A. Correa-Duarte, M. Grzelczak, V. SalgueiriñoMaceira, et al., “Alignment of carbon nanotubes under low magnetic fields through attachment of magnetic nanoparticles,” J. Phys. Chem. B, 109, 19060 – 19063 (2005).CrossRef
38.
Zurück zum Zitat K. Kordás, T. Mustonen, G. Tóth, et al., “Magnetic-field induced efficient alignment of carbon nanotubes in aqueous solutions,” Chem. Mater., 19, 787 – 791 (2007).CrossRef K. Kordás, T. Mustonen, G. Tóth, et al., “Magnetic-field induced efficient alignment of carbon nanotubes in aqueous solutions,” Chem. Mater., 19, 787 – 791 (2007).CrossRef
39.
Zurück zum Zitat G. Korneva, H. Ye, Y. Gogotsi, et al., “Carbon nanotubes loaded with magnetic particles,” Nano Lett., No. 5, 879 – 884 (2005).CrossRef G. Korneva, H. Ye, Y. Gogotsi, et al., “Carbon nanotubes loaded with magnetic particles,” Nano Lett., No. 5, 879 – 884 (2005).CrossRef
40.
Zurück zum Zitat A. I. Oliva-Avilés, F. Aviles, V. Sosa, and G. Seidel, “Dielectrophoretic modeling of the dynamic carbon nanotube network formation in viscous media under alternating current electric fields,” Carbon, 69, 342 – 354 (2014).CrossRef A. I. Oliva-Avilés, F. Aviles, V. Sosa, and G. Seidel, “Dielectrophoretic modeling of the dynamic carbon nanotube network formation in viscous media under alternating current electric fields,” Carbon, 69, 342 – 354 (2014).CrossRef
41.
Zurück zum Zitat Y. Chen, D. T. Shaw, and L. Guo, “Field emission of different oriented carbon nanotubes,” Appl. Phys. Lett., 76(17), 2469 – 2471 (2000).CrossRef Y. Chen, D. T. Shaw, and L. Guo, “Field emission of different oriented carbon nanotubes,” Appl. Phys. Lett., 76(17), 2469 – 2471 (2000).CrossRef
42.
Zurück zum Zitat M. Monti, M. Natali, L. Torre, and J. Kenny, “The alignment of single walled carbon nanotubes in an epoxy resin by applying a DC electric field,” Carbon, 50, 2453 – 2464 (2012).CrossRef M. Monti, M. Natali, L. Torre, and J. Kenny, “The alignment of single walled carbon nanotubes in an epoxy resin by applying a DC electric field,” Carbon, 50, 2453 – 2464 (2012).CrossRef
Metadaten
Titel
Strengthening of Glass Composite by Multilayer Carbon Nanotubes Aligned by a Constant Electric Field
verfasst von
A. N. Krasnovskii
I. A. Kazakov
P. S. Kishchuk
Publikationsdatum
31.05.2021
Verlag
Springer US
Erschienen in
Glass and Ceramics / Ausgabe 1-2/2021
Print ISSN: 0361-7610
Elektronische ISSN: 1573-8515
DOI
https://doi.org/10.1007/s10717-021-00346-4

Weitere Artikel der Ausgabe 1-2/2021

Glass and Ceramics 1-2/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.