Skip to main content

2024 | OriginalPaper | Buchkapitel

7. Stress-Based Fatigue Analysis—High Cycle Fatigue

verfasst von : Pietro Paolo Milella

Erschienen in: Fatigue and Corrosion in Metals

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In Sect. 1.​2 we have introduced the Wöhler curve and the S–N curve. Generally, they are considered to be the same thing, but they are not. The difference is in the life domain they cover. The Wöhler curve describes the fatigue behavior of a generic material from ¼ of a cycle to the fatigue limit, σf, or, in case of no precise fatigue limit as for non-iron alloys (see Fig. 1.​11), up to 108–109 or more cycles. The Wöhler curve, therefore, spans the entire fatigue life from low-cycle fatigue to high-cycle fatigue and beyond (see Fig. 1.​10) covering all the three regions of fatigue. The S–N curve, instead, describes the fatigue behavior of materials in the elastic domain or Region II, where the plastic contribution to stresses and strains is negligible. We may say, then, that the Wöhler curve is typically an ε-N curve obtained under strain controlled conditions while the S–N curve relates the stress amplitude σa given by Eq. (1.​1), also indicated as S, to the number N of cycles to failure. When the stress amplitude is close to the fatigue limit, σf, or knee of the S–N curve the plastic component of deformation, εp, becomes negligible or even vanishes. Fatigue is driven by the elastic component of the strain amplitude that is proportional to the stress amplitude through the Young’s modulus of the material. Therefore, as we approach the fatigue limit of the material, σf, we can abandon strains as the controlling parameter and relate the fatigue life directly to the stress amplitude. The hysteresis loop disappears, as shown schematically in Fig. 1.​10, because the material behaves almost completely elastically. In this area of elastic or quasi-elastic behavior any analytical approach to fatigue is generally indicated as stress-life method. Historically, it has been the first approach to fatigue and has been the standard design method for almost 100 years. Stress-life methods are generally used when the designer pursues a target of infinite-life or safe-stress design. When the stress amplitude reaches the elastic limit and strains have a significant plastic component the S–N approach is no longer appropriate and a strain-based approach ε-N becomes necessary, as it will be described in the next section.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Basquin, O.H.: Proc. ASTM 10(Part II), 625 (1910) Basquin, O.H.: Proc. ASTM 10(Part II), 625 (1910)
2.
Zurück zum Zitat DuQuesnay, D.L., Topper, T.H., Yu, M.T., Pompetzki, M.A.: The effective stress range as a mean stress parameter. Int. J. Fatigue 14, 45–50 (1992)CrossRef DuQuesnay, D.L., Topper, T.H., Yu, M.T., Pompetzki, M.A.: The effective stress range as a mean stress parameter. Int. J. Fatigue 14, 45–50 (1992)CrossRef
3.
Zurück zum Zitat Wehner, T., Fatemi, A.: Effect of mean stress on fatigue behaviour of a hardened steel. Int. J. Fatigue 241–248 (1991) Wehner, T., Fatemi, A.: Effect of mean stress on fatigue behaviour of a hardened steel. Int. J. Fatigue 241–248 (1991)
4.
Zurück zum Zitat Gerber, W.Z., Bayer. Archit. Ing., Vre. 6, 101 (1874) Gerber, W.Z., Bayer. Archit. Ing., Vre. 6, 101 (1874)
5.
Zurück zum Zitat Goodman, J.: Mechanics Applied to Engineering. Longman, Green and Co., London (1899) Goodman, J.: Mechanics Applied to Engineering. Longman, Green and Co., London (1899)
6.
Zurück zum Zitat Haigh, B.P.: Experiments on the fatigue of brasses. J. Inst. Met. 18, 55–86 (1917) Haigh, B.P.: Experiments on the fatigue of brasses. J. Inst. Met. 18, 55–86 (1917)
7.
Zurück zum Zitat Soderberg, C.R.: Fatigue of the safety and working stress. Trans. Am. Soc. Mech. Eng. 52(Part APM-52-2), 13–28 (1939) Soderberg, C.R.: Fatigue of the safety and working stress. Trans. Am. Soc. Mech. Eng. 52(Part APM-52-2), 13–28 (1939)
8.
Zurück zum Zitat Sines, G., Weisman, J.L. (eds.): Metal Fatigue. McGraw-Hill, New York (1959) Sines, G., Weisman, J.L. (eds.): Metal Fatigue. McGraw-Hill, New York (1959)
9.
Zurück zum Zitat Forrest, P.G.: Fatigue of Metals. Pergamon Press, Oxford (1962) Forrest, P.G.: Fatigue of Metals. Pergamon Press, Oxford (1962)
10.
Zurück zum Zitat Dolan, T.J.: Stress range in Horger. In: Oscar J (ed.) ASME Handbook: Metals Engineering-Design, 2nd ed., part 2, sec 7.2. McGraw-Hill Book Company, New York (1965) Dolan, T.J.: Stress range in Horger. In: Oscar J (ed.) ASME Handbook: Metals Engineering-Design, 2nd ed., part 2, sec 7.2. McGraw-Hill Book Company, New York (1965)
11.
Zurück zum Zitat Wilson, J.S., Haigh, B.P.: Stresses in Bridges, Engineering. London, 446–448 (1923) Wilson, J.S., Haigh, B.P.: Stresses in Bridges, Engineering. London, 446–448 (1923)
12.
Zurück zum Zitat Howell, F.M., Miller, J.L.: Proc. Am. Soc. Test. Mater. 55, 955 (1955) Howell, F.M., Miller, J.L.: Proc. Am. Soc. Test. Mater. 55, 955 (1955)
13.
Zurück zum Zitat Forrest, P.G.: International Conference on Fatigue, Institution of Mechanical Engineers, 171 (1956) Forrest, P.G.: International Conference on Fatigue, Institution of Mechanical Engineers, 171 (1956)
14.
Zurück zum Zitat Lazan, B.J., Blatherwick, A.A.: Wright Air Development Center Technical Report No. 52-307 (1952); Rep. No. 53-181 (1953) Lazan, B.J., Blatherwick, A.A.: Wright Air Development Center Technical Report No. 52-307 (1952); Rep. No. 53-181 (1953)
15.
Zurück zum Zitat Schijve, J.: Fatigue of Structure and Materials, p. 120. Kluwer Academic Publishers (2004) Schijve, J.: Fatigue of Structure and Materials, p. 120. Kluwer Academic Publishers (2004)
16.
Zurück zum Zitat Juvinall, R.C.: Engineering Considerations of Stress, Strain and Strength, p. 275. Mc Graw-Hill, Inc. (1967) Juvinall, R.C.: Engineering Considerations of Stress, Strain and Strength, p. 275. Mc Graw-Hill, Inc. (1967)
17.
Zurück zum Zitat Morrow, J.: Fatigue Design Handbook. Advances in Engineering, vol. 4, pp. 21–29. SAE, Warrendale, PA (1968) Morrow, J.: Fatigue Design Handbook. Advances in Engineering, vol. 4, pp. 21–29. SAE, Warrendale, PA (1968)
18.
Zurück zum Zitat Dowling, N.E.: Mean stress effect in stress-life and strain-life fatigue, Rep. F2004/51, Society of Automotive Engineers, Inc. (2004) Dowling, N.E.: Mean stress effect in stress-life and strain-life fatigue, Rep. F2004/51, Society of Automotive Engineers, Inc. (2004)
19.
Zurück zum Zitat Schütz, W.: View Point of Material Selection for Fatigue Loaded Structures (in German), Laboratoriun für Betriebsfestingkeit LBF, Darmstadt, Bericht Nr. TB-80 (1968) Schütz, W.: View Point of Material Selection for Fatigue Loaded Structures (in German), Laboratoriun für Betriebsfestingkeit LBF, Darmstadt, Bericht Nr. TB-80 (1968)
20.
Zurück zum Zitat Lee, Y.L., Pan, J., Hathaway, R., Barkey, M.: Fatigue testing and analysis: theory and practice, Elsevier Butterworth-Heinemann (2005) Lee, Y.L., Pan, J., Hathaway, R., Barkey, M.: Fatigue testing and analysis: theory and practice, Elsevier Butterworth-Heinemann (2005)
21.
Zurück zum Zitat Lee, Y.L., Barkey, M, Kang, H.T.: Metal Fatigue Analysis Handbook: Practical Problem-Solving Techniques for Computer Aided Engineering, Elsevier (2012) Lee, Y.L., Barkey, M, Kang, H.T.: Metal Fatigue Analysis Handbook: Practical Problem-Solving Techniques for Computer Aided Engineering, Elsevier (2012)
22.
Zurück zum Zitat Haibach, E.: FKM-Guideline: Analytical Stress Assessment of Components in Mechanical Engineering, 5th Rev. Ed. VDMA (2003) Haibach, E.: FKM-Guideline: Analytical Stress Assessment of Components in Mechanical Engineering, 5th Rev. Ed. VDMA (2003)
23.
Zurück zum Zitat Sines, G.: Failure of Materials Under Combined Repeated Stress with Superposed Static Stresses. NACA TN 3945 (1955) Sines, G.: Failure of Materials Under Combined Repeated Stress with Superposed Static Stresses. NACA TN 3945 (1955)
24.
Zurück zum Zitat Murakami, Y.: Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions. Elsevier (2012) Murakami, Y.: Metal Fatigue: Effects of Small Defects and Nonmetallic Inclusions. Elsevier (2012)
25.
Zurück zum Zitat Smith, K.N., Watson, P., Topper, T.H.: A stress-strain function for the fatigue of metals. J. Mater. 5(4), 767–778 (1970) Smith, K.N., Watson, P., Topper, T.H.: A stress-strain function for the fatigue of metals. J. Mater. 5(4), 767–778 (1970)
Metadaten
Titel
Stress-Based Fatigue Analysis—High Cycle Fatigue
verfasst von
Pietro Paolo Milella
Copyright-Jahr
2024
DOI
https://doi.org/10.1007/978-3-031-51350-3_7

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.