Skip to main content
Erschienen in: Structural and Multidisciplinary Optimization 5/2019

28.11.2018 | Research Paper

Stress-constrained topology optimization of continuum structures subjected to harmonic force excitation using sequential quadratic programming

verfasst von: Kai Long, Xuan Wang, Hongliang Liu

Erschienen in: Structural and Multidisciplinary Optimization | Ausgabe 5/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, we propose a method for stress-constrained topology optimization of continuum structure sustaining harmonic load excitation using the reciprocal variables. In the optimization formulation, the total volume is minimized with a given stress amplitude constraint. The p-norm aggregation function is adopted to treat the vast number of local constraints imposed on all elements. In contrast to previous studies, the optimization problem is well posed as a quadratic program with second-order sensitivities, which can be solved efficiently by sequential quadratic programming. Several numerical examples demonstrate the validity of the presented method, in which the stress constrained designs are compared with traditional stiffness-based designs to illustrate the merit of considering stress constraints. It is observed that the proposed approach produces solutions that reduce stress concentration at the critical stress areas. The influences of varying excitation frequencies, damping coefficient and force amplitude on the optimized results are investigated, and also demonstrate that the consideration of stress-amplitude constraints in resonant structures is indispensable.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Amstutz S, Novotny AA (2010) Topological optimization of structures subject to von mises constraints. Struct Multidiscip Optim 41(3):407–420MathSciNetMATHCrossRef Amstutz S, Novotny AA (2010) Topological optimization of structures subject to von mises constraints. Struct Multidiscip Optim 41(3):407–420MathSciNetMATHCrossRef
Zurück zum Zitat Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43(1):1–16MATHCrossRef Andreassen E, Clausen A, Schevenels M, Lazarov BS, Sigmund O (2011) Efficient topology optimization in MATLAB using 88 lines of code. Struct Multidiscip Optim 43(1):1–16MATHCrossRef
Zurück zum Zitat Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetMATHCrossRef Bendsøe MP, Kikuchi N (1988) Generating optimal topologies in structural design using a homogenization method. Comput Methods Appl Mech Eng 71(2):197–224MathSciNetMATHCrossRef
Zurück zum Zitat Bendsøe MP, Sigmund O (2004) Topology optimization - theory, methods and applications. Springer, BerlinMATH Bendsøe MP, Sigmund O (2004) Topology optimization - theory, methods and applications. Springer, BerlinMATH
Zurück zum Zitat Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidiscip Optim 36(2):125–141MathSciNetMATHCrossRef Bruggi M (2008) On an alternative approach to stress constraints relaxation in topology optimization. Struct Multidiscip Optim 36(2):125–141MathSciNetMATHCrossRef
Zurück zum Zitat Bruggi M, Duysinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optim 46(3):369–384MathSciNetMATHCrossRef Bruggi M, Duysinx P (2012) Topology optimization for minimum weight with compliance and stress constraints. Struct Multidiscip Optim 46(3):369–384MathSciNetMATHCrossRef
Zurück zum Zitat Bruns TE, Tortorelli DA (2001) Topology optimization of nonlinear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459MATHCrossRef Bruns TE, Tortorelli DA (2001) Topology optimization of nonlinear elastic structures and compliant mechanisms. Comput Methods Appl Mech Eng 190(26–27):3443–3459MATHCrossRef
Zurück zum Zitat Cheng G, Guo X (1997) Epsilon-relaxed approach in structural topology optimization. Struct Optim 13(4):258–266CrossRef Cheng G, Guo X (1997) Epsilon-relaxed approach in structural topology optimization. Struct Optim 13(4):258–266CrossRef
Zurück zum Zitat Collet M, Bruggi M, Duysinx P (2017) Topology optimization for minimum weight with compliance and simplified nominal stress constraints for fatigue resistance. Struct Multidiscip Optim 55(3):839–855MathSciNetCrossRef Collet M, Bruggi M, Duysinx P (2017) Topology optimization for minimum weight with compliance and simplified nominal stress constraints for fatigue resistance. Struct Multidiscip Optim 55(3):839–855MathSciNetCrossRef
Zurück zum Zitat De Leon DM, Alexandersen J, Fonseca JSO, Sigmund O (2015) Stress-constrained topology optimization for compliant mechanism design. Struct Multidiscip Optim 52(5):929–943MathSciNetCrossRef De Leon DM, Alexandersen J, Fonseca JSO, Sigmund O (2015) Stress-constrained topology optimization for compliant mechanism design. Struct Multidiscip Optim 52(5):929–943MathSciNetCrossRef
Zurück zum Zitat Deaton J, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNetCrossRef Deaton J, Grandhi RV (2014) A survey of structural and multidisciplinary continuum topology optimization: post 2000. Struct Multidiscip Optim 49(1):1–38MathSciNetCrossRef
Zurück zum Zitat Du J, Olhoff N (2007) Minimization of sound radiation from vibrating bi-material structures using topology optimization. Struct Multidiscip Optim 33(4–5):305–321CrossRef Du J, Olhoff N (2007) Minimization of sound radiation from vibrating bi-material structures using topology optimization. Struct Multidiscip Optim 33(4–5):305–321CrossRef
Zurück zum Zitat Duysinx P, Bendsøe M (1998) Topology optimization of continuum structures with local stress constraints. Int J Number Methods Engrg 43(8):1453–1478MathSciNetMATHCrossRef Duysinx P, Bendsøe M (1998) Topology optimization of continuum structures with local stress constraints. Int J Number Methods Engrg 43(8):1453–1478MathSciNetMATHCrossRef
Zurück zum Zitat Duysinx P, Sigmund O (1998) New developments in handling stress constraints in handling stress constraints in optimal material distribution. In: Proceedings of 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary design optimization, AIAA, Saint Louis, Missouri, AIAA Paper 98–4906 Duysinx P, Sigmund O (1998) New developments in handling stress constraints in handling stress constraints in optimal material distribution. In: Proceedings of 7th AIAA/USAF/NASA/ISSMO symposium on multidisciplinary design optimization, AIAA, Saint Louis, Missouri, AIAA Paper 98–4906
Zurück zum Zitat Duysinx P, Van ML, Lemarie E, Bruls O, Bruyneel M (2008) Topology and generalized shape optimization: why stress constrains are so important? Int J Simul Multidisci Des Optim 2(4):253–258CrossRef Duysinx P, Van ML, Lemarie E, Bruls O, Bruyneel M (2008) Topology and generalized shape optimization: why stress constrains are so important? Int J Simul Multidisci Des Optim 2(4):253–258CrossRef
Zurück zum Zitat Francello EA (2006) Topology optimization for minimum mass design considering local failure constraints and contact boundary conditions. Struct Multidiscip Optim 32(3):229–240MathSciNetCrossRef Francello EA (2006) Topology optimization for minimum mass design considering local failure constraints and contact boundary conditions. Struct Multidiscip Optim 32(3):229–240MathSciNetCrossRef
Zurück zum Zitat Guo X, Zhang W, Wang M, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng 200(47):3439–3452MathSciNetMATHCrossRef Guo X, Zhang W, Wang M, Wei P (2011) Stress-related topology optimization via level set approach. Comput Methods Appl Mech Eng 200(47):3439–3452MathSciNetMATHCrossRef
Zurück zum Zitat Holmberg E, Torstenfelt B, Klarbring A (2013) Stress constrained topology optimization. Struct Multidiscip Optim 48(1):33–47MathSciNetMATHCrossRef Holmberg E, Torstenfelt B, Klarbring A (2013) Stress constrained topology optimization. Struct Multidiscip Optim 48(1):33–47MathSciNetMATHCrossRef
Zurück zum Zitat Holmberg E, Torstenfelt B, Klarbring A (2014) Fatigue constrained topology optimization. Struct Multidiscip Optim 50(2):207–219MathSciNetMATHCrossRef Holmberg E, Torstenfelt B, Klarbring A (2014) Fatigue constrained topology optimization. Struct Multidiscip Optim 50(2):207–219MathSciNetMATHCrossRef
Zurück zum Zitat Huang X, Zuo ZH, Xie YM (2010) Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput Struct 88(5–6):357–364CrossRef Huang X, Zuo ZH, Xie YM (2010) Evolutionary topological optimization of vibrating continuum structures for natural frequencies. Comput Struct 88(5–6):357–364CrossRef
Zurück zum Zitat Jeong SH, Choi DH, Yoon GH (2014) Separable stress interpolation scheme for stress-based topology optimization with multiple homogenous materials. Finite Elem Anal Des 82(4):16–31MathSciNetCrossRef Jeong SH, Choi DH, Yoon GH (2014) Separable stress interpolation scheme for stress-based topology optimization with multiple homogenous materials. Finite Elem Anal Des 82(4):16–31MathSciNetCrossRef
Zurück zum Zitat Kiyono CY, Vatanabe SL, Silva ECN, Reddy JN (2016) A new multi-p-norm formulation approach for stress-based topology optimization design. Compos Struct 156:10–19CrossRef Kiyono CY, Vatanabe SL, Silva ECN, Reddy JN (2016) A new multi-p-norm formulation approach for stress-based topology optimization design. Compos Struct 156:10–19CrossRef
Zurück zum Zitat Le C, Norato J, Bruns T (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605–620CrossRef Le C, Norato J, Bruns T (2010) Stress-based topology optimization for continua. Struct Multidiscip Optim 41(4):605–620CrossRef
Zurück zum Zitat Lee E, James KA, Martins JRA (2012) Stress-constrained topology optimization with design-dependent loading. Struct Multidiscip Optim 46(5):647–661MathSciNetMATHCrossRef Lee E, James KA, Martins JRA (2012) Stress-constrained topology optimization with design-dependent loading. Struct Multidiscip Optim 46(5):647–661MathSciNetMATHCrossRef
Zurück zum Zitat Liu H, Zhang W, Gao T (2015) A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations. Struct Multidiscip Optim 51(6):1321–1333MathSciNetCrossRef Liu H, Zhang W, Gao T (2015) A comparative study of dynamic analysis methods for structural topology optimization under harmonic force excitations. Struct Multidiscip Optim 51(6):1321–1333MathSciNetCrossRef
Zurück zum Zitat Long K, Wang X, Gu X (2018a) Local optimum in multi-material topology optimization and solution by reciprocal variables. Struct Multidiscip Optim 57(3):1–13MathSciNetCrossRef Long K, Wang X, Gu X (2018a) Local optimum in multi-material topology optimization and solution by reciprocal variables. Struct Multidiscip Optim 57(3):1–13MathSciNetCrossRef
Zurück zum Zitat Long K, Wang X, Gu X (2018b) Multi-material topology optimization for transient heat conduction problem using SQP algorithm. Eng Optim 50(12):2091–2107MathSciNetCrossRef Long K, Wang X, Gu X (2018b) Multi-material topology optimization for transient heat conduction problem using SQP algorithm. Eng Optim 50(12):2091–2107MathSciNetCrossRef
Zurück zum Zitat Long K, Wang X, Gu X (2018c) Concurrent topology optimization for minimization of total mass considering load carrying capabilities and thermal insulation simultaneously. Acta Mech Sinica 34(2):315–326MathSciNetMATHCrossRef Long K, Wang X, Gu X (2018c) Concurrent topology optimization for minimization of total mass considering load carrying capabilities and thermal insulation simultaneously. Acta Mech Sinica 34(2):315–326MathSciNetMATHCrossRef
Zurück zum Zitat Luo Y, Wang MY, Kang Z (2013) An enhanced aggregation method for topology optimization with local stress constraints. Comput Methods Appl Mech Eng 254:31–41MathSciNetMATHCrossRef Luo Y, Wang MY, Kang Z (2013) An enhanced aggregation method for topology optimization with local stress constraints. Comput Methods Appl Mech Eng 254:31–41MathSciNetMATHCrossRef
Zurück zum Zitat Niu B, He X, Shan Y, Yang R (2017) On objective functions of minimizing the vibration response of continuum structures subjected to external harmonic excitation. Struct Multidiscip Optim 57(28):1–17MathSciNet Niu B, He X, Shan Y, Yang R (2017) On objective functions of minimizing the vibration response of continuum structures subjected to external harmonic excitation. Struct Multidiscip Optim 57(28):1–17MathSciNet
Zurück zum Zitat Oest J, Lund E (2017) Topology optimization with finite-life fatigue constraints. Struct Multidiscip Optim 56(5):1045–1059MathSciNetCrossRef Oest J, Lund E (2017) Topology optimization with finite-life fatigue constraints. Struct Multidiscip Optim 56(5):1045–1059MathSciNetCrossRef
Zurück zum Zitat Olhoff N, Du J (2016) Generalized incremental frequency method for topological design of continuum structures for minimum dynamic compliance subjected to forced vibration at a prescribed low or high value of the excitation frequency. Struct Multidiscip Optim 54(5):1–29 Olhoff N, Du J (2016) Generalized incremental frequency method for topological design of continuum structures for minimum dynamic compliance subjected to forced vibration at a prescribed low or high value of the excitation frequency. Struct Multidiscip Optim 54(5):1–29
Zurück zum Zitat Paris J, Navarrina F, Colominas I, Casteleiro M (2009) Topology optimization of continuum structures with local and global stress constraints. Struct Multidiscip Optim 39(4):419–437MathSciNetMATHCrossRef Paris J, Navarrina F, Colominas I, Casteleiro M (2009) Topology optimization of continuum structures with local and global stress constraints. Struct Multidiscip Optim 39(4):419–437MathSciNetMATHCrossRef
Zurück zum Zitat Paris J, Navarrina F, Colominas I, Casteleiro M (2010) Block aggregation of stress constraints in topology optimization of structures. Adv Eng Softw 41(3):433–441MATHCrossRef Paris J, Navarrina F, Colominas I, Casteleiro M (2010) Block aggregation of stress constraints in topology optimization of structures. Adv Eng Softw 41(3):433–441MATHCrossRef
Zurück zum Zitat Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20(1):2–11CrossRef Pedersen NL (2000) Maximization of eigenvalues using topology optimization. Struct Multidiscip Optim 20(1):2–11CrossRef
Zurück zum Zitat Ramani A (2011) Multi-material topology optimization with strength constraints. Struct Multidiscip Optim 43(5):597–615CrossRef Ramani A (2011) Multi-material topology optimization with strength constraints. Struct Multidiscip Optim 43(5):597–615CrossRef
Zurück zum Zitat Rozvany G (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37(3):217–237MathSciNetMATHCrossRef Rozvany G (2009) A critical review of established methods of structural topology optimization. Struct Multidiscip Optim 37(3):217–237MathSciNetMATHCrossRef
Zurück zum Zitat Silva GA, Beck AT, Cardoso EL (2018) Topology optimization of continuum structure with stress constraints and uncertainties in loading. Int J Numer Methods Eng 113(1):1–34MathSciNetCrossRef Silva GA, Beck AT, Cardoso EL (2018) Topology optimization of continuum structure with stress constraints and uncertainties in loading. Int J Numer Methods Eng 113(1):1–34MathSciNetCrossRef
Zurück zum Zitat Svanberg K (1987) The method of moving asymptotes – a new method for structural optimization. Int J Number Methods Eng 24(2):359–373MathSciNetMATHCrossRef Svanberg K (1987) The method of moving asymptotes – a new method for structural optimization. Int J Number Methods Eng 24(2):359–373MathSciNetMATHCrossRef
Zurück zum Zitat Xia Q, Shi T, Liu S, Wang MY (2012) A level set solution to the stress-based structural shape and topology optimization. Comput Struct 90-91(1):55–64CrossRef Xia Q, Shi T, Liu S, Wang MY (2012) A level set solution to the stress-based structural shape and topology optimization. Comput Struct 90-91(1):55–64CrossRef
Zurück zum Zitat Xia Q, Shi T, Liu S, Wang MY (2013a) Shape and topology optimization for tailoring stress in a local region to enhance performance of piezoresistive sensors. Comput Struct 114-115:98–105CrossRef Xia Q, Shi T, Liu S, Wang MY (2013a) Shape and topology optimization for tailoring stress in a local region to enhance performance of piezoresistive sensors. Comput Struct 114-115:98–105CrossRef
Zurück zum Zitat Xia Q, Shi T, Liu S, Wang MY (2013b) Optimization of stresses in a local region for the maximization of sensitivity and minimization of cross-sensitivity of piezoresistive sensors. Struct Multidiscip Optim 48(5):927–938MathSciNetCrossRef Xia Q, Shi T, Liu S, Wang MY (2013b) Optimization of stresses in a local region for the maximization of sensitivity and minimization of cross-sensitivity of piezoresistive sensors. Struct Multidiscip Optim 48(5):927–938MathSciNetCrossRef
Zurück zum Zitat Yang RJ, Chen CJ (1996) Stress-based topology optimization. Struct Optim 12(2–3):98–105CrossRef Yang RJ, Chen CJ (1996) Stress-based topology optimization. Struct Optim 12(2–3):98–105CrossRef
Zurück zum Zitat Yang D, Liu H, Zhang W, Li S (2018) Stress-constrained topology optimization based on maximum stress measures. Comput Struct 198:23–39CrossRef Yang D, Liu H, Zhang W, Li S (2018) Stress-constrained topology optimization based on maximum stress measures. Comput Struct 198:23–39CrossRef
Zurück zum Zitat Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336CrossRef Zhou M, Rozvany GIN (1991) The COC algorithm, part II: topological, geometry and generalized shape optimization. Comput Methods Appl Mech Eng 89(1–3):309–336CrossRef
Metadaten
Titel
Stress-constrained topology optimization of continuum structures subjected to harmonic force excitation using sequential quadratic programming
verfasst von
Kai Long
Xuan Wang
Hongliang Liu
Publikationsdatum
28.11.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Structural and Multidisciplinary Optimization / Ausgabe 5/2019
Print ISSN: 1615-147X
Elektronische ISSN: 1615-1488
DOI
https://doi.org/10.1007/s00158-018-2159-0

Weitere Artikel der Ausgabe 5/2019

Structural and Multidisciplinary Optimization 5/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.