Skip to main content
Erschienen in: Calcolo 4/2015

01.12.2015

Strong convergence and stability of backward Euler–Maruyama scheme for highly nonlinear hybrid stochastic differential delay equation

verfasst von: Shaobo Zhou

Erschienen in: Calcolo | Ausgabe 4/2015

Einloggen, um Zugang zu erhalten

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the paper, our main aim is to investigate the strong convergence and almost surely exponential stability of an implicit numerical approximation under one-sided Lipschitz condition and polynomial growth condition on the drift coefficient, and polynomial growth condition on the diffusion coefficient. After providing almost surely exponential stability and moment boundedness for the exact solution, we show that an appropriate implicit numerical method preserves boundedness of moments, and the numerical approximation converges strongly to the true solution. Moreover, we prove that the backward Euler–Maruyama approximation can share almost surely exponential stability of the exact solution for sufficiently small step size.
Literatur
2.
Zurück zum Zitat Wang, Z., Yang, F., Ho, D.W.C., Liu, X.: Robust H-infinity filtering for stochastic time-delay systems with missing measurements. IEEE Trans. Signal Process. 54, 2579–2587 (2006)CrossRef Wang, Z., Yang, F., Ho, D.W.C., Liu, X.: Robust H-infinity filtering for stochastic time-delay systems with missing measurements. IEEE Trans. Signal Process. 54, 2579–2587 (2006)CrossRef
3.
Zurück zum Zitat Huang, L., Mao, X.: SMC design for robust \(H_{\infty }\) control of uncertain stochastic delay systems. Automatica 46, 405–412 (2010)MATHMathSciNetCrossRef Huang, L., Mao, X.: SMC design for robust \(H_{\infty }\) control of uncertain stochastic delay systems. Automatica 46, 405–412 (2010)MATHMathSciNetCrossRef
4.
Zurück zum Zitat Appleby, J.A.D., Berkolaiko, G., Rodkina, A.: Non-exponential stability and decay rates in non-linear stochastic difference equation with unbounded noises. Stochastics 81, 99–127 (2009)MATHMathSciNet Appleby, J.A.D., Berkolaiko, G., Rodkina, A.: Non-exponential stability and decay rates in non-linear stochastic difference equation with unbounded noises. Stochastics 81, 99–127 (2009)MATHMathSciNet
5.
Zurück zum Zitat Baker, C.T.H., Buckwar, E.: Exponential stability in p-th mean of solutions and of convergent Euler-type solutions of stochastic delay differential equations. J. Comput. Appl. Math. 184, 404–427 (2005)MATHMathSciNetCrossRef Baker, C.T.H., Buckwar, E.: Exponential stability in p-th mean of solutions and of convergent Euler-type solutions of stochastic delay differential equations. J. Comput. Appl. Math. 184, 404–427 (2005)MATHMathSciNetCrossRef
6.
Zurück zum Zitat Greame, D.C., Higham, D.J.: Asymptotic stability of a jump-differential equation and its numerical application. SIAM J. SCI Comput. 31(2), 1141–1155 (2008)MathSciNet Greame, D.C., Higham, D.J.: Asymptotic stability of a jump-differential equation and its numerical application. SIAM J. SCI Comput. 31(2), 1141–1155 (2008)MathSciNet
7.
Zurück zum Zitat Hu, L., Gan, S., Wang, X.: Asymptotical stability of the balanced methods for stochastic jump-diffusion differential equations. J. Comput. Appl. Math. 238, 126–143 (2013)MATHMathSciNetCrossRef Hu, L., Gan, S., Wang, X.: Asymptotical stability of the balanced methods for stochastic jump-diffusion differential equations. J. Comput. Appl. Math. 238, 126–143 (2013)MATHMathSciNetCrossRef
8.
Zurück zum Zitat Hu, Y., Wu, F.: Stochastic Kolmogorov-type population dynamics with infinite distributed delays. Acta Appl. Math. 110, 1407–1428 (2010)MATHMathSciNetCrossRef Hu, Y., Wu, F.: Stochastic Kolmogorov-type population dynamics with infinite distributed delays. Acta Appl. Math. 110, 1407–1428 (2010)MATHMathSciNetCrossRef
9.
Zurück zum Zitat Liu, M., Cao, W., Fan, Z.: Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation. J. Comput. Appl. Math. 170, 255–268 (2004)MATHMathSciNetCrossRef Liu, M., Cao, W., Fan, Z.: Convergence and stability of the semi-implicit Euler method for a linear stochastic differential delay equation. J. Comput. Appl. Math. 170, 255–268 (2004)MATHMathSciNetCrossRef
10.
Zurück zum Zitat Li, R., Hou, Y.: Convergence and stability of numerical solutions to SDDEs with Markovian switching. Appl. Math. Comput. 175, 1080–1091 (2006)MATHMathSciNetCrossRef Li, R., Hou, Y.: Convergence and stability of numerical solutions to SDDEs with Markovian switching. Appl. Math. Comput. 175, 1080–1091 (2006)MATHMathSciNetCrossRef
11.
Zurück zum Zitat Milstein, G.N., Schurz, P.E.: Balanced implicit methods for stiff stochastic systems. SIAM J. Numer. Anal. 35, 1010–1019 (1998)MATHMathSciNetCrossRef Milstein, G.N., Schurz, P.E.: Balanced implicit methods for stiff stochastic systems. SIAM J. Numer. Anal. 35, 1010–1019 (1998)MATHMathSciNetCrossRef
12.
Zurück zum Zitat Mao, X., Szpruch, L.: Strong convergence rates for backward Euler–Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients. Stoch. Int. J. Probab. Stoch. Proc. 85(1), 144–171 (2013) Mao, X., Szpruch, L.: Strong convergence rates for backward Euler–Maruyama method for non-linear dissipative-type stochastic differential equations with super-linear diffusion coefficients. Stoch. Int. J. Probab. Stoch. Proc. 85(1), 144–171 (2013)
13.
Zurück zum Zitat Zhou, S., Wu, F.: Convergence of numerical solutions to neutral stochastic delay differential equation with Markovian switching. J. Comput. Appl. Math. 229, 85–96 (2009)MATHMathSciNetCrossRef Zhou, S., Wu, F.: Convergence of numerical solutions to neutral stochastic delay differential equation with Markovian switching. J. Comput. Appl. Math. 229, 85–96 (2009)MATHMathSciNetCrossRef
14.
Zurück zum Zitat Mao, X.: Exponential stability of equidistant Euler–Maruyama approximations of stochastic differential delay equations. J. Comput. Appl. Math. 200, 297–316 (2007)MATHMathSciNetCrossRef Mao, X.: Exponential stability of equidistant Euler–Maruyama approximations of stochastic differential delay equations. J. Comput. Appl. Math. 200, 297–316 (2007)MATHMathSciNetCrossRef
15.
Zurück zum Zitat Mao, X.: Numerical solutions of stochastic differential delay equations under the generalized Khasminskii-type conditions. Appl. Math. Comput. 217, 5512–5524 (2011)MATHMathSciNetCrossRef Mao, X.: Numerical solutions of stochastic differential delay equations under the generalized Khasminskii-type conditions. Appl. Math. Comput. 217, 5512–5524 (2011)MATHMathSciNetCrossRef
16.
Zurück zum Zitat Milosevic, M.: Highly nonlinear neutral stochastic differential equations with time-dependent delay and the Euler-Maruyama method. Math. Comput. Model. 54, 2235–2251 (2011)MATHMathSciNetCrossRef Milosevic, M.: Highly nonlinear neutral stochastic differential equations with time-dependent delay and the Euler-Maruyama method. Math. Comput. Model. 54, 2235–2251 (2011)MATHMathSciNetCrossRef
17.
Zurück zum Zitat Zhou, S., Fang, Z.: Numerical approximation of nonlinear neutral stochastic functional differential equation. J. Appl. Math. Comput. 41(1), 427–44 (2013)MATHMathSciNetCrossRef Zhou, S., Fang, Z.: Numerical approximation of nonlinear neutral stochastic functional differential equation. J. Appl. Math. Comput. 41(1), 427–44 (2013)MATHMathSciNetCrossRef
18.
Zurück zum Zitat Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with nonglobally Lipschitz continuous coefficients. Proc. R. Soc. A Math. Phys. Eng. Sci. 467(2130), 1563 (2011)MATHMathSciNetCrossRef Hutzenthaler, M., Jentzen, A., Kloeden, P.E.: Strong and weak divergence in finite time of Euler’s method for stochastic differential equations with nonglobally Lipschitz continuous coefficients. Proc. R. Soc. A Math. Phys. Eng. Sci. 467(2130), 1563 (2011)MATHMathSciNetCrossRef
19.
Zurück zum Zitat Szpruch, L., Mao, X., Higham, D.J., Pan, J.: Numerical simulation of a strongly nonlinear Ait-Sahalia-type interest rate model. BIT Numer. Math. 51, 405–425 (2011)MATHMathSciNetCrossRef Szpruch, L., Mao, X., Higham, D.J., Pan, J.: Numerical simulation of a strongly nonlinear Ait-Sahalia-type interest rate model. BIT Numer. Math. 51, 405–425 (2011)MATHMathSciNetCrossRef
20.
Zurück zum Zitat Mao, X., Szpruch, L.: Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Comput. Appl. Math. 238, 14–28 (2012)MathSciNetCrossRef Mao, X., Szpruch, L.: Strong convergence and stability of implicit numerical methods for stochastic differential equations with non-globally Lipschitz continuous coefficients. J. Comput. Appl. Math. 238, 14–28 (2012)MathSciNetCrossRef
21.
Zurück zum Zitat Higham, D.J., Mao, X., Stuart, A.M.: Exponential mean-square stability of numerical solutions to stochastic differential equations. LMS J. Comput. Math. 6, 297–313 (2003)MATHMathSciNetCrossRef Higham, D.J., Mao, X., Stuart, A.M.: Exponential mean-square stability of numerical solutions to stochastic differential equations. LMS J. Comput. Math. 6, 297–313 (2003)MATHMathSciNetCrossRef
22.
23.
Zurück zum Zitat Higham, D.J., Mao, X., Yuan, C.: Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations. SIAM J. Numer. Anal. 45, 592–609 (2007)MATHMathSciNetCrossRef Higham, D.J., Mao, X., Yuan, C.: Almost sure and moment exponential stability in the numerical simulation of stochastic differential equations. SIAM J. Numer. Anal. 45, 592–609 (2007)MATHMathSciNetCrossRef
24.
Zurück zum Zitat Higham, D.J., Mao, X., Yuan, C.: Preserving exponential mean-square stability in the simulation of hybrid stochastic differential equation. Numer. Math. 108, 295–325 (2007)MATHMathSciNetCrossRef Higham, D.J., Mao, X., Yuan, C.: Preserving exponential mean-square stability in the simulation of hybrid stochastic differential equation. Numer. Math. 108, 295–325 (2007)MATHMathSciNetCrossRef
25.
Zurück zum Zitat Pang, S., Deng, F., Mao, X.: Almost sure and moment exponential stability of Euler–Maruyama discretization for hybrid stochastic differential equation. J. Comput. Appl. Math. 213, 127–141 (2008)MATHMathSciNetCrossRef Pang, S., Deng, F., Mao, X.: Almost sure and moment exponential stability of Euler–Maruyama discretization for hybrid stochastic differential equation. J. Comput. Appl. Math. 213, 127–141 (2008)MATHMathSciNetCrossRef
26.
Zurück zum Zitat Mao, X., Shen, Y., Gray, A.: Almost sure exponential stability of backward Euler–Maruyama discretization for hybrid stochastic differential equation. J. Comput. Appl. Math. 235, 1213–1226 (2011)MATHMathSciNetCrossRef Mao, X., Shen, Y., Gray, A.: Almost sure exponential stability of backward Euler–Maruyama discretization for hybrid stochastic differential equation. J. Comput. Appl. Math. 235, 1213–1226 (2011)MATHMathSciNetCrossRef
27.
Zurück zum Zitat Wu, M., He, Y., She, J.: New delay-dependent stability criteria and stabilizing method for neutral systems. IEEE Trans. Autom. Control 49, 2266–2271 (2004)MathSciNetCrossRef Wu, M., He, Y., She, J.: New delay-dependent stability criteria and stabilizing method for neutral systems. IEEE Trans. Autom. Control 49, 2266–2271 (2004)MathSciNetCrossRef
28.
Zurück zum Zitat Liu, B., David, J.: Hill, Input-to-state stability for discrete time-delay systems via the Razumikhin technique. Syst. Control Lett. 58, 567–575 (2009)MATHCrossRef Liu, B., David, J.: Hill, Input-to-state stability for discrete time-delay systems via the Razumikhin technique. Syst. Control Lett. 58, 567–575 (2009)MATHCrossRef
29.
Zurück zum Zitat Wei, G., Wang, Z., Shu, H., Fang, J.: Delay-dependent stabilization of stochastic interval delay systems with nonlinear disturbances. Syst. Control Lett. 56, 623–633 (2007)MATHMathSciNetCrossRef Wei, G., Wang, Z., Shu, H., Fang, J.: Delay-dependent stabilization of stochastic interval delay systems with nonlinear disturbances. Syst. Control Lett. 56, 623–633 (2007)MATHMathSciNetCrossRef
30.
Zurück zum Zitat Wu, F., Mao, X., Szpruch, L.: Almost sure exponential stability of numerical solutions for stochastic delay differential equations. Numerische Mathematik 115, 681–697 (2010)MATHMathSciNetCrossRef Wu, F., Mao, X., Szpruch, L.: Almost sure exponential stability of numerical solutions for stochastic delay differential equations. Numerische Mathematik 115, 681–697 (2010)MATHMathSciNetCrossRef
31.
Zurück zum Zitat Li, X., Mao, X.: The improved LaSalle-type theorems for stochastic differential delay equations. Stoch. Anal. Appl. 30, 568–589 (2012)MATHMathSciNetCrossRef Li, X., Mao, X.: The improved LaSalle-type theorems for stochastic differential delay equations. Stoch. Anal. Appl. 30, 568–589 (2012)MATHMathSciNetCrossRef
32.
Zurück zum Zitat Luo, Q., Mao, X., Shen, Y.: New criteria on exponential stability of neutral stochastic differential delay equations. Syst. Control Lett. 55, 826–834 (2006)MATHMathSciNetCrossRef Luo, Q., Mao, X., Shen, Y.: New criteria on exponential stability of neutral stochastic differential delay equations. Syst. Control Lett. 55, 826–834 (2006)MATHMathSciNetCrossRef
33.
Zurück zum Zitat Mao, X.: Stability and stabilisation of stochastic differential delay equations. IET Control Theor. Appl. 1(6), 1551–566 (2007)CrossRef Mao, X.: Stability and stabilisation of stochastic differential delay equations. IET Control Theor. Appl. 1(6), 1551–566 (2007)CrossRef
34.
Zurück zum Zitat Mao, X., Rassias, M.J.: Almost sure asymptotic estimations for solutions of stochastic differential delay equations. Int. J. Appl. Math. Stat. 9(J07), 95–109 (2007)MATHMathSciNet Mao, X., Rassias, M.J.: Almost sure asymptotic estimations for solutions of stochastic differential delay equations. Int. J. Appl. Math. Stat. 9(J07), 95–109 (2007)MATHMathSciNet
35.
Zurück zum Zitat Liptser, R.Sh., Shiryayev, A.N.: Theory of Martingales. Kluwer Academic Publishers, Dordrecht (1989) Liptser, R.Sh., Shiryayev, A.N.: Theory of Martingales. Kluwer Academic Publishers, Dordrecht (1989)
36.
Zurück zum Zitat Haykin, S.: Neural Networks. Prentice-Hall, New Jersey (1994)MATH Haykin, S.: Neural Networks. Prentice-Hall, New Jersey (1994)MATH
37.
Zurück zum Zitat Zhu, J., Zhang, Q., Yang, C.: Delay-dependent robust stability for Hopfield neural networks of neutral-type. Neurocomputing 72, 2609–2617 (2009)CrossRef Zhu, J., Zhang, Q., Yang, C.: Delay-dependent robust stability for Hopfield neural networks of neutral-type. Neurocomputing 72, 2609–2617 (2009)CrossRef
Metadaten
Titel
Strong convergence and stability of backward Euler–Maruyama scheme for highly nonlinear hybrid stochastic differential delay equation
verfasst von
Shaobo Zhou
Publikationsdatum
01.12.2015
Verlag
Springer Milan
Erschienen in
Calcolo / Ausgabe 4/2015
Print ISSN: 0008-0624
Elektronische ISSN: 1126-5434
DOI
https://doi.org/10.1007/s10092-014-0124-x

Premium Partner