Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 3/2019

02.01.2019

Structural and dielectric relaxor properties of (1−x)BaTiO3xBi(Zn1/2Zr1/2)O3 ceramics for energy storage applications

verfasst von: Feng Si, Bin Tang, Zixuan Fang, Shuren Zhang

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 3/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In this paper, the (1−x)BaTiO3xBi(Zn1/2Zr1/2)O3 (x = 0.04–0.20) solid solutions were prepared using conventional solid-state reaction method. The X-ray diffraction results showed that all samples were crystalized as the perovskite structure, and there was no secondary phase in whole compositional range. For x = 0.04, the ceramics were in tetragonal phase, and transformed to a pesudocubic phase for x ≥ 0.08 at ambient temperature. Temperature-dependent dielectric measurements indicated a crossover from ferroelectric behavior to relaxor-like characteristics. As the BZZ content increased, the polarization–electric field (P–E) hysteresis loops became slimmer, and the discharge energy density increased firstly, but dropped. For x = 0.12, the maximum discharge energy density was 0.758 J/cm3 at 100 kV/cm, and the corresponding energy efficiency was 98%, indicating that (1−x)BaTiO3xBi(Zn1/2Zr1/2)O3 ceramics were promising candidates for energy storage applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, C.S. Hwang, Thin HfxZr1–xO2 films: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability. Adv. Energy Mater. 4, 14006101–14006107 (2014) M.H. Park, H.J. Kim, Y.J. Kim, T. Moon, K.D. Kim, C.S. Hwang, Thin HfxZr1–xO2 films: a new lead-free system for electrostatic supercapacitors with large energy storage density and robust thermal stability. Adv. Energy Mater. 4, 14006101–14006107 (2014)
2.
Zurück zum Zitat M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012)CrossRef M.F. El-Kady, V. Strong, S. Dubin, R.B. Kaner, Laser scribing of high-performance and flexible graphene-based electrochemical capacitors. Science 335, 1326–1330 (2012)CrossRef
3.
Zurück zum Zitat J.H. Pikul, H. Gang Zhang, J. Cho, P.V. Braun, W.P. King, High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732–1736 (2013)CrossRef J.H. Pikul, H. Gang Zhang, J. Cho, P.V. Braun, W.P. King, High-power lithium ion microbatteries from interdigitated three-dimensional bicontinuous nanoporous electrodes. Nat. Commun. 4, 1732–1736 (2013)CrossRef
4.
Zurück zum Zitat Z.S. Wu, K. Parvez, X. Feng, K. Mullen, Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 4, 2487–2487 (2013)CrossRef Z.S. Wu, K. Parvez, X. Feng, K. Mullen, Graphene-based in-plane micro-supercapacitors with high power and energy densities. Nat. Commun. 4, 2487–2487 (2013)CrossRef
5.
Zurück zum Zitat Q. Yuan, F. Yao, Y. Wang, R. Ma, H. Wang, Relaxor ferroelectric 0.9BaTiO3–0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties. J. Mater. Chem. C 5, 9552–9558 (2017)CrossRef Q. Yuan, F. Yao, Y. Wang, R. Ma, H. Wang, Relaxor ferroelectric 0.9BaTiO3–0.1Bi(Zn0.5Zr0.5)O3 ceramic capacitors with high energy density and temperature stable energy storage properties. J. Mater. Chem. C 5, 9552–9558 (2017)CrossRef
6.
Zurück zum Zitat N.H. Fletcher, A.D. Hilton, B.W. Ricketts, Optimization of energy storage density in ceramic capacitors. J. Phys. D 29, 253–258 (1996)CrossRef N.H. Fletcher, A.D. Hilton, B.W. Ricketts, Optimization of energy storage density in ceramic capacitors. J. Phys. D 29, 253–258 (1996)CrossRef
7.
Zurück zum Zitat D.P. Shay, N.J. Podraza, N.J. Donnelly, C.A. Randall, D.W. Johnson, High energy density, high temperature capacitors utilizing Mn-Doped 0.8CaTiO3–0.2CaHfO3 ceramics. J. Am. Ceram. Soc. 95, 1348–1355 (2012)CrossRef D.P. Shay, N.J. Podraza, N.J. Donnelly, C.A. Randall, D.W. Johnson, High energy density, high temperature capacitors utilizing Mn-Doped 0.8CaTiO3–0.2CaHfO3 ceramics. J. Am. Ceram. Soc. 95, 1348–1355 (2012)CrossRef
8.
Zurück zum Zitat T.F. Zhang, X.G. Tang, X.X. Huang, Q.X. Liu, Y.P. Jiang, Q.F. Zhou, High-temperature dielectric relaxation behaviors of relaxer-like PbZrO3–SrTiO3 ceramics for energy-storage applications. Energy Technol.-Ger 4, 633–640 (2016)CrossRef T.F. Zhang, X.G. Tang, X.X. Huang, Q.X. Liu, Y.P. Jiang, Q.F. Zhou, High-temperature dielectric relaxation behaviors of relaxer-like PbZrO3–SrTiO3 ceramics for energy-storage applications. Energy Technol.-Ger 4, 633–640 (2016)CrossRef
9.
Zurück zum Zitat J.F. Wang, T.Q. Yang, S.C. Chen, G. Li, High energy storage density performance of Ba, Sr-modified lead lanthanum zirconate titanate stannate antiferroelectric ceramics. Mater. Res. Bull. 48, 3847–3849 (2013)CrossRef J.F. Wang, T.Q. Yang, S.C. Chen, G. Li, High energy storage density performance of Ba, Sr-modified lead lanthanum zirconate titanate stannate antiferroelectric ceramics. Mater. Res. Bull. 48, 3847–3849 (2013)CrossRef
10.
Zurück zum Zitat L. Jin, F. Li, S.J. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97, 1–27 (2014)CrossRef L. Jin, F. Li, S.J. Zhang, Decoding the fingerprint of ferroelectric loops: comprehension of the material properties and structures. J. Am. Ceram. Soc. 97, 1–27 (2014)CrossRef
11.
Zurück zum Zitat Q. Hu, L. Jin, P.S. Zelenovskiy, V.Y. Shur, Y. Zhuang, Z. Xu, X. Wei, Relaxation behavior and electrical inhomogeneity in 0.9BaTiO3–0.1Bi(Mg1/2Ti1/2)O3 ceramic. Ceram. Int. 43, 12828–12834 (2017)CrossRef Q. Hu, L. Jin, P.S. Zelenovskiy, V.Y. Shur, Y. Zhuang, Z. Xu, X. Wei, Relaxation behavior and electrical inhomogeneity in 0.9BaTiO3–0.1Bi(Mg1/2Ti1/2)O3 ceramic. Ceram. Int. 43, 12828–12834 (2017)CrossRef
12.
Zurück zum Zitat L. Wu, X. Wang, L. Li, Lead-free BaTiO3–Bi(Zn2/3Nb1/3)O3 weakly coupled relaxor ferroelectric materials for energy storage. RSC Adv. 6, 14273–14282 (2016)CrossRef L. Wu, X. Wang, L. Li, Lead-free BaTiO3–Bi(Zn2/3Nb1/3)O3 weakly coupled relaxor ferroelectric materials for energy storage. RSC Adv. 6, 14273–14282 (2016)CrossRef
13.
Zurück zum Zitat R. Muhammad, Y. Iqbal, I.M. Reaney, C. Randall, BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for high-temperature capacitor applications. J. Am. Ceram. Soc. 99, 2089–2095 (2016)CrossRef R. Muhammad, Y. Iqbal, I.M. Reaney, C. Randall, BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for high-temperature capacitor applications. J. Am. Ceram. Soc. 99, 2089–2095 (2016)CrossRef
14.
Zurück zum Zitat H. Ogihara, C.A. Randall, S. Trolier-McKinstry, High-energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics. J. Am. Ceram. Soc. 92, 1719–1724 (2009)CrossRef H. Ogihara, C.A. Randall, S. Trolier-McKinstry, High-energy density capacitors utilizing 0.7BaTiO3–0.3BiScO3 ceramics. J. Am. Ceram. Soc. 92, 1719–1724 (2009)CrossRef
15.
Zurück zum Zitat P.R. Ren, X. Wang, H.Q. Fan, Y. Ren, G.Y. Zhao, Structure, relaxation behaviors and nonlinear dielectric properties of BaTiO3–Bi(Ti0.5Mg0.5)O3 ceramics. Ceram. Int. 41, 7693–7697 (2015)CrossRef P.R. Ren, X. Wang, H.Q. Fan, Y. Ren, G.Y. Zhao, Structure, relaxation behaviors and nonlinear dielectric properties of BaTiO3–Bi(Ti0.5Mg0.5)O3 ceramics. Ceram. Int. 41, 7693–7697 (2015)CrossRef
16.
Zurück zum Zitat A. Manjon-Sanz, C. Berger, M.R. Dolgos, Understanding the structure-property relationships of the ferroelectric to relaxor transition of the (1−x)BaTiO3–(x)BiInO3 lead-free piezoelectric system. J. Mater. Sci. 52, 5309–5323 (2017)CrossRef A. Manjon-Sanz, C. Berger, M.R. Dolgos, Understanding the structure-property relationships of the ferroelectric to relaxor transition of the (1−x)BaTiO3–(x)BiInO3 lead-free piezoelectric system. J. Mater. Sci. 52, 5309–5323 (2017)CrossRef
17.
Zurück zum Zitat T. Wang, L. Jin, C. Li, Q. Hu, X. Wei, D. Lupascu, Relaxor ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc. 98, 559–566 (2015)CrossRef T. Wang, L. Jin, C. Li, Q. Hu, X. Wei, D. Lupascu, Relaxor ferroelectric BaTiO3–Bi(Mg2/3Nb1/3)O3 ceramics for energy storage application. J. Am. Ceram. Soc. 98, 559–566 (2015)CrossRef
18.
Zurück zum Zitat X.B. Zhao, Z.Y. Zhou, R.H. Liang, F.H. Liu, X.L. Dong, High-energy storage performance in lead-free (1−x)BaTiO3–xBi(Zn0.5Ti0.5)O3 relaxor ceramics for temperature stability applications. Ceram. Int. 43, 9060–9066 (2017)CrossRef X.B. Zhao, Z.Y. Zhou, R.H. Liang, F.H. Liu, X.L. Dong, High-energy storage performance in lead-free (1−x)BaTiO3–xBi(Zn0.5Ti0.5)O3 relaxor ceramics for temperature stability applications. Ceram. Int. 43, 9060–9066 (2017)CrossRef
19.
Zurück zum Zitat B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001)CrossRef B.H. Toby, EXPGUI, a graphical user interface for GSAS. J. Appl. Crystallogr. 34, 210–213 (2001)CrossRef
20.
Zurück zum Zitat Q. Zhang, Z.R. Li, F. Li, Z. Xu, Structural and dielectric properties of Bi (Mg1/2Ti1/2)O3–BaTiO3 lead-free ceramics. J. Am. Ceram. Soc. 94, 4335–4339 (2011)CrossRef Q. Zhang, Z.R. Li, F. Li, Z. Xu, Structural and dielectric properties of Bi (Mg1/2Ti1/2)O3–BaTiO3 lead-free ceramics. J. Am. Ceram. Soc. 94, 4335–4339 (2011)CrossRef
21.
Zurück zum Zitat X.C. Huang, H. Hao, S.J. Zhang, H.X. Liu, W.Q. Zhang, Q. Xu, M.H. Cao, Structure and dielectric properties of BaTiO3–BiYO3 perovskite solid solutions. J. Am. Ceram. Soc. 97, 1797–1801 (2014)CrossRef X.C. Huang, H. Hao, S.J. Zhang, H.X. Liu, W.Q. Zhang, Q. Xu, M.H. Cao, Structure and dielectric properties of BaTiO3–BiYO3 perovskite solid solutions. J. Am. Ceram. Soc. 97, 1797–1801 (2014)CrossRef
22.
Zurück zum Zitat M. Ferrari, L. Lutterotti, Method for the simultaneous determination of anisotropic residual-stresses and texture by X-ray-diffraction. J. Appl. Phys. 76, 7246–7255 (1994)CrossRef M. Ferrari, L. Lutterotti, Method for the simultaneous determination of anisotropic residual-stresses and texture by X-ray-diffraction. J. Appl. Phys. 76, 7246–7255 (1994)CrossRef
23.
Zurück zum Zitat Z.B. Shen, X.H. Wang, B.C. Luo, L.T. Li, BaTiO3–BiYbO3 perovskite materials for energy storage applications. J. Mater. Chem. A 3, 18146–18153 (2015)CrossRef Z.B. Shen, X.H. Wang, B.C. Luo, L.T. Li, BaTiO3–BiYbO3 perovskite materials for energy storage applications. J. Mater. Chem. A 3, 18146–18153 (2015)CrossRef
24.
Zurück zum Zitat N. Kumar, E.A. Patterson, T. Fromling, E.P. Gorzkowski, P. Eschbach, I. Love, M.P. Muller, R.A. De Souza, J. Tucker, S.R. Reese, D.P. Cann, Defect mechanisms in BaTiO3–BiMO3 ceramics. J. Am. Ceram. Soc. 101, 2376–2390 (2018)CrossRef N. Kumar, E.A. Patterson, T. Fromling, E.P. Gorzkowski, P. Eschbach, I. Love, M.P. Muller, R.A. De Souza, J. Tucker, S.R. Reese, D.P. Cann, Defect mechanisms in BaTiO3–BiMO3 ceramics. J. Am. Ceram. Soc. 101, 2376–2390 (2018)CrossRef
25.
Zurück zum Zitat H.B. Yang, F. Yan, Y. Lin, T. Wang, Novel strontium titanate-based lead-free ceramics for high-energy storage applications. ACS Sustain. Chem. Eng. 5, 10215–10222 (2017)CrossRef H.B. Yang, F. Yan, Y. Lin, T. Wang, Novel strontium titanate-based lead-free ceramics for high-energy storage applications. ACS Sustain. Chem. Eng. 5, 10215–10222 (2017)CrossRef
26.
Zurück zum Zitat F. Rubio-Marcos, P. Marchet, X. Vendrell, J.J. Romero, F. Rémondière, L. Mestres, J.F. Fernández, Effect of MnO doping on the structure, microstructure and electrical properties of the (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics. J. Alloys Compd. 509, 8804–8811 (2011)CrossRef F. Rubio-Marcos, P. Marchet, X. Vendrell, J.J. Romero, F. Rémondière, L. Mestres, J.F. Fernández, Effect of MnO doping on the structure, microstructure and electrical properties of the (K,Na,Li)(Nb,Ta,Sb)O3 lead-free piezoceramics. J. Alloys Compd. 509, 8804–8811 (2011)CrossRef
27.
Zurück zum Zitat M. Zhu, L. Liu, Y. Hou, H. Wang, H. Yan, Microstructure and electrical properties of MnO-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 lead-free piezoceramics. J. Am. Ceram. Soc. 90, 120–124 (2007)CrossRef M. Zhu, L. Liu, Y. Hou, H. Wang, H. Yan, Microstructure and electrical properties of MnO-doped (Na0.5Bi0.5)0.92Ba0.08TiO3 lead-free piezoceramics. J. Am. Ceram. Soc. 90, 120–124 (2007)CrossRef
28.
Zurück zum Zitat S. Shukla, S. Seal, R. Vij, S. Bandyopadhyay, Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia. Nano Lett. 3, 397–401 (2003)CrossRef S. Shukla, S. Seal, R. Vij, S. Bandyopadhyay, Reduced activation energy for grain growth in nanocrystalline yttria-stabilized zirconia. Nano Lett. 3, 397–401 (2003)CrossRef
29.
Zurück zum Zitat M.K. Zhu, L.Y. Liu, Y.D. Hou, H. Wang, H. Yan, Microstructure and electrical properties of MnO-doped (Na0.5Bi0.5)(0.92)Ba0.08TiO3 lead-free piezoceramics. J. Am. Ceram. Soc. 90, 120–124 (2007)CrossRef M.K. Zhu, L.Y. Liu, Y.D. Hou, H. Wang, H. Yan, Microstructure and electrical properties of MnO-doped (Na0.5Bi0.5)(0.92)Ba0.08TiO3 lead-free piezoceramics. J. Am. Ceram. Soc. 90, 120–124 (2007)CrossRef
30.
Zurück zum Zitat G. Schileo, A. Feteira, K. Reichmann, M. Li, D.C. Sinclair, Structure–property relationships in (1−x)BaTiO3–xBiGdO3 ceramics. J. Eur. Ceram. Soc. 35, 2479–2488 (2015)CrossRef G. Schileo, A. Feteira, K. Reichmann, M. Li, D.C. Sinclair, Structure–property relationships in (1−x)BaTiO3–xBiGdO3 ceramics. J. Eur. Ceram. Soc. 35, 2479–2488 (2015)CrossRef
31.
Zurück zum Zitat Z. Xiong, B. Tang, C. Yang, S. Zhang, Correlation between structures and microwave dielectric properties of Ba3.75Nd9.5–xSmxTi17.5(Cr1/2Nb1/2)0.5O54 ceramics. J. Alloys Compd. 740, 492–499 (2018)CrossRef Z. Xiong, B. Tang, C. Yang, S. Zhang, Correlation between structures and microwave dielectric properties of Ba3.75Nd9.5–xSmxTi17.5(Cr1/2Nb1/2)0.5O54 ceramics. J. Alloys Compd. 740, 492–499 (2018)CrossRef
32.
Zurück zum Zitat Z. Xiong, B. Tang, Z. Fang, C. Yang, S. Zhang, Effects of (Cr0.5Ta0.5)4+ on structure and microwave dielectric properties of Ca0.61Nd0.26TiO3 ceramics. Ceram. Int. 44, 7771–7779 (2018)CrossRef Z. Xiong, B. Tang, Z. Fang, C. Yang, S. Zhang, Effects of (Cr0.5Ta0.5)4+ on structure and microwave dielectric properties of Ca0.61Nd0.26TiO3 ceramics. Ceram. Int. 44, 7771–7779 (2018)CrossRef
33.
Zurück zum Zitat J. Pokorny, U.M. Pasha, L. Ben, O.P. Thakur, D.C. Sinclair, I.M. Reaney, Use of Raman spectroscopy to determine the site occupancy of dopants in BaTiO3. J. Appl. Phys. 109, 1141101–1141105 (2011)CrossRef J. Pokorny, U.M. Pasha, L. Ben, O.P. Thakur, D.C. Sinclair, I.M. Reaney, Use of Raman spectroscopy to determine the site occupancy of dopants in BaTiO3. J. Appl. Phys. 109, 1141101–1141105 (2011)CrossRef
34.
Zurück zum Zitat U.D. Venkateswaran, V.M. Naik, R. Naik, High-pressure Raman studies of polycrystalline BaTiO3. Phys. Rev. B 58, 14256–14260 (1998)CrossRef U.D. Venkateswaran, V.M. Naik, R. Naik, High-pressure Raman studies of polycrystalline BaTiO3. Phys. Rev. B 58, 14256–14260 (1998)CrossRef
35.
Zurück zum Zitat P.R. Ren, H.Q. Fan, X. Wang, G.Z. Dong, Phase transition, high figure of merit and polar nano-regions in dielectric tunable lanthanum substituted barium titanate. J. Alloys Compd. 617, 337–344 (2014)CrossRef P.R. Ren, H.Q. Fan, X. Wang, G.Z. Dong, Phase transition, high figure of merit and polar nano-regions in dielectric tunable lanthanum substituted barium titanate. J. Alloys Compd. 617, 337–344 (2014)CrossRef
36.
Zurück zum Zitat N. Baskaran, A. Ghule, C. Bhongale, R. Murugan, H. Chang, Phase transformation studies of ceramic BaTiO3 using thermo-Raman and dielectric constant measurements. J. Appl. Phys. 91, 10038–10043 (2002)CrossRef N. Baskaran, A. Ghule, C. Bhongale, R. Murugan, H. Chang, Phase transformation studies of ceramic BaTiO3 using thermo-Raman and dielectric constant measurements. J. Appl. Phys. 91, 10038–10043 (2002)CrossRef
37.
Zurück zum Zitat N.K. Karan, R.S. Katiyar, T. Maiti, R. Guo, A.S. Bhalla, Raman spectral studies of Zr4+-rich BaZrxTi1–xO3(0.5⩽x⩽1.00) phase diagram. J. Raman Spectrosc. 40, 370–375 (2009)CrossRef N.K. Karan, R.S. Katiyar, T. Maiti, R. Guo, A.S. Bhalla, Raman spectral studies of Zr4+-rich BaZrxTi1–xO3(0.5⩽x⩽1.00) phase diagram. J. Raman Spectrosc. 40, 370–375 (2009)CrossRef
38.
Zurück zum Zitat U.M. Pasha, H. Zheng, O.P. Thakur, A. Feteira, K.R. Whittle, D.C. Sinclair, I.M. Reaney, In situ Raman spectroscopy of A-site doped barium titanate. Appl. Phys. Lett. 91, 0629081–0629083 (2007)CrossRef U.M. Pasha, H. Zheng, O.P. Thakur, A. Feteira, K.R. Whittle, D.C. Sinclair, I.M. Reaney, In situ Raman spectroscopy of A-site doped barium titanate. Appl. Phys. Lett. 91, 0629081–0629083 (2007)CrossRef
39.
Zurück zum Zitat S.Y. Zheng, E. Odendo, L.J. Liu, D.P. Shi, Y.M. Huang, L.L. Fan, J. Chen, L. Fang, B. Elouadi, Electrostrictive and relaxor ferroelectric behavior in BiAlO3-modified BaTiO3 lead-free ceramics. J. Appl. Phys. 113, 0941021–0941025 (2013) S.Y. Zheng, E. Odendo, L.J. Liu, D.P. Shi, Y.M. Huang, L.L. Fan, J. Chen, L. Fang, B. Elouadi, Electrostrictive and relaxor ferroelectric behavior in BiAlO3-modified BaTiO3 lead-free ceramics. J. Appl. Phys. 113, 0941021–0941025 (2013)
40.
Zurück zum Zitat Z.H. Yao, H.X. Liu, Y. Liu, Z.H. Wu, Z.Y. Shen, Y. Liu, M.H. Cao, Structure and dielectric behavior of Nd-doped BaTiO3 perovskites. Mater. Chem. Phys. 109, 475–481 (2008)CrossRef Z.H. Yao, H.X. Liu, Y. Liu, Z.H. Wu, Z.Y. Shen, Y. Liu, M.H. Cao, Structure and dielectric behavior of Nd-doped BaTiO3 perovskites. Mater. Chem. Phys. 109, 475–481 (2008)CrossRef
41.
Zurück zum Zitat P.S. Dobal, A. Dixit, R.S. Katiyar, Z. Yu, R. Guo, A.S. Bhalla, Micro-Raman scattering and dielectric investigations of phase transition behavior in the BaTiO3–BaZrO3 system. J. Appl. Phys. 89, 8085–8091 (2001)CrossRef P.S. Dobal, A. Dixit, R.S. Katiyar, Z. Yu, R. Guo, A.S. Bhalla, Micro-Raman scattering and dielectric investigations of phase transition behavior in the BaTiO3–BaZrO3 system. J. Appl. Phys. 89, 8085–8091 (2001)CrossRef
42.
Zurück zum Zitat P.S. Dobal, A. Dixit, R.S. Katiyar, Effect of lanthanum substitution on the Raman spectra of barium titanate thin films. J. Raman Spectrosc. 38, 142–146 (2007)CrossRef P.S. Dobal, A. Dixit, R.S. Katiyar, Effect of lanthanum substitution on the Raman spectra of barium titanate thin films. J. Raman Spectrosc. 38, 142–146 (2007)CrossRef
43.
Zurück zum Zitat H. Hayashi, T. Nakamura, T. Ebina, In-situ Raman spectroscopy of BaTiO3 particles for tetragonal-cubic transformation. J. Phys. Chem. Solids 74, 957–962 (2013)CrossRef H. Hayashi, T. Nakamura, T. Ebina, In-situ Raman spectroscopy of BaTiO3 particles for tetragonal-cubic transformation. J. Phys. Chem. Solids 74, 957–962 (2013)CrossRef
44.
Zurück zum Zitat J. Kreisel, P. Bouvier, M. Maglione, B. Dkhil, A. Simon, High-pressure Raman investigation of the Pb-free relaxor BaTi0.65Zr0.35O3. Phys. Rev. B 69, 0921041–0921044 (2004)CrossRef J. Kreisel, P. Bouvier, M. Maglione, B. Dkhil, A. Simon, High-pressure Raman investigation of the Pb-free relaxor BaTi0.65Zr0.35O3. Phys. Rev. B 69, 0921041–0921044 (2004)CrossRef
45.
Zurück zum Zitat X. Chen, J. Chen, D. Ma, L. Fang, H. Zhou, High relative permittivity, low dielectric loss and good thermal stability of BaTiO3-Bi(Mg0.5Zr0.5)O3 solid solution. Ceram. Int. 41, 2081–2088 (2015)CrossRef X. Chen, J. Chen, D. Ma, L. Fang, H. Zhou, High relative permittivity, low dielectric loss and good thermal stability of BaTiO3-Bi(Mg0.5Zr0.5)O3 solid solution. Ceram. Int. 41, 2081–2088 (2015)CrossRef
46.
Zurück zum Zitat T. Strathdee, L. Luisman, A. Feteira, K. Reichmann, F. Morrison, Ferroelectric-to-Relaxor Crossover in (1-x)BaTiO3-xBiYbO3 (0 ≤ x ≤ 0.08) Ceramics. J. Am. Ceram. Soc. 94, 2292–2295 (2011)CrossRef T. Strathdee, L. Luisman, A. Feteira, K. Reichmann, F. Morrison, Ferroelectric-to-Relaxor Crossover in (1-x)BaTiO3-xBiYbO3 (0 ≤ x ≤ 0.08) Ceramics. J. Am. Ceram. Soc. 94, 2292–2295 (2011)CrossRef
47.
Zurück zum Zitat X. Chen, J. Chen, G. Huang, D. Ma, L. Fang, H. Zhou, Relaxor Behavior and Dielectric Properties of Bi(Zn2/3Nb1/3)O3-Modified BaTiO3 Ceramics. J. Electron. Mater. 44, 4804–4810 (2015)CrossRef X. Chen, J. Chen, G. Huang, D. Ma, L. Fang, H. Zhou, Relaxor Behavior and Dielectric Properties of Bi(Zn2/3Nb1/3)O3-Modified BaTiO3 Ceramics. J. Electron. Mater. 44, 4804–4810 (2015)CrossRef
48.
Zurück zum Zitat R. Farhi, M. El Marssi, A. Simon, J. Ravez, A Raman and dielectric study of ferroelectric ceramics. Eur. Phys. J. B 9, 599–604 (1999)CrossRef R. Farhi, M. El Marssi, A. Simon, J. Ravez, A Raman and dielectric study of ferroelectric ceramics. Eur. Phys. J. B 9, 599–604 (1999)CrossRef
49.
Zurück zum Zitat L.E. Cross, Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987)CrossRef L.E. Cross, Relaxor ferroelectrics. Ferroelectrics 76, 241–267 (1987)CrossRef
50.
Zurück zum Zitat N. Triamnak, R. Yimnirun, J. Pokorny, D.P. Cann, D.C. Lupascu, Relaxor Characteristics of the Phase Transformation in (1 – x)BaTiO3–xBi(Zn1/2Ti1/2)O3 Perovskite Ceramics. J. Am. Ceram. Soc. 96, 3176–3182 (2013) N. Triamnak, R. Yimnirun, J. Pokorny, D.P. Cann, D.C. Lupascu, Relaxor Characteristics of the Phase Transformation in (1 – x)BaTiO3–xBi(Zn1/2Ti1/2)O3 Perovskite Ceramics. J. Am. Ceram. Soc. 96, 3176–3182 (2013)
51.
Zurück zum Zitat G.A. Samara, The relaxational properties of compositionally disordered ABO3 perovskites. J. Phys.-Condens. Matter 15, R367–R411 (2003)CrossRef G.A. Samara, The relaxational properties of compositionally disordered ABO3 perovskites. J. Phys.-Condens. Matter 15, R367–R411 (2003)CrossRef
52.
Zurück zum Zitat N. Kumar, A. Ionin, T. Ansell, S. Kwon, W. Hackenberger, D. Cann, Multilayer ceramic capacitors based on relaxor BaTiO3–Bi(Zn1/2Ti1/2)O3 for temperature stable and high energy density capacitor applications. Appl. Phys. Lett. 106, 2529011–2529014 (2015) N. Kumar, A. Ionin, T. Ansell, S. Kwon, W. Hackenberger, D. Cann, Multilayer ceramic capacitors based on relaxor BaTiO3–Bi(Zn1/2Ti1/2)O3 for temperature stable and high energy density capacitor applications. Appl. Phys. Lett. 106, 2529011–2529014 (2015)
53.
Zurück zum Zitat H. Ogihara, C.A. Randall, S. Trolier-McKinstry, Weakly coupled relaxor behavior of BaTiO3–BiScO3 ceramics. J. Am. Ceram. Soc. 92, 110–118 (2009)CrossRef H. Ogihara, C.A. Randall, S. Trolier-McKinstry, Weakly coupled relaxor behavior of BaTiO3–BiScO3 ceramics. J. Am. Ceram. Soc. 92, 110–118 (2009)CrossRef
54.
Zurück zum Zitat D.H. Choi, A. Baker, M. Lanagan, S. Trolier-McKinstry, C. Randall, D. Johnson, Structural and dielectric properties in (1−x)BaTiO3–xBi(Mg1/2Ti1/2)O3Ceramics (0.1 ≤ x ≤ 0.5) and potential for high-voltage multilayer capacitors. J. Am. Ceram. Soc. 96, 2197–2202 (2013)CrossRef D.H. Choi, A. Baker, M. Lanagan, S. Trolier-McKinstry, C. Randall, D. Johnson, Structural and dielectric properties in (1−x)BaTiO3–xBi(Mg1/2Ti1/2)O3Ceramics (0.1 ≤ x ≤ 0.5) and potential for high-voltage multilayer capacitors. J. Am. Ceram. Soc. 96, 2197–2202 (2013)CrossRef
55.
Zurück zum Zitat N. Raengthon, C. McCue, D.P. Cann, Relationship between tolerance factor and temperature coefficient of permittivity of temperature-stable high permittivity BaTiO3–Bi(Me)O3 compounds, J. Adv. Dielectr. 6, 1650002 (2016)CrossRef N. Raengthon, C. McCue, D.P. Cann, Relationship between tolerance factor and temperature coefficient of permittivity of temperature-stable high permittivity BaTiO3–Bi(Me)O3 compounds, J. Adv. Dielectr. 6, 1650002 (2016)CrossRef
56.
Zurück zum Zitat I.A. Santos, J.A. Eiras, Phenomenological description of the diffuse phase transition in ferroelectrics. J Phys-Condens Mat 13, 11733–11740 (2001)CrossRef I.A. Santos, J.A. Eiras, Phenomenological description of the diffuse phase transition in ferroelectrics. J Phys-Condens Mat 13, 11733–11740 (2001)CrossRef
Metadaten
Titel
Structural and dielectric relaxor properties of (1−x)BaTiO3–xBi(Zn1/2Zr1/2)O3 ceramics for energy storage applications
verfasst von
Feng Si
Bin Tang
Zixuan Fang
Shuren Zhang
Publikationsdatum
02.01.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 3/2019
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-018-0553-4

Weitere Artikel der Ausgabe 3/2019

Journal of Materials Science: Materials in Electronics 3/2019 Zur Ausgabe

Neuer Inhalt