Skip to main content
Erschienen in: Journal of Materials Science 10/2019

15.02.2019 | Electronic materials

Structural characterization and transistor properties of thickness-controllable MoS2 thin films

verfasst von: Yesul Jeong, Ji Yeong Sung, Yunju Choi, Jong Sung Jin, Jang-Hee Yoon, Sinae Heo, Ryoma Hayakawa, Yutaka Wakayama

Erschienen in: Journal of Materials Science | Ausgabe 10/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

We report an optimized multi-step chemical vapor deposition process for growing MoS2 thin films. This process enables large-area processing, film patterning simply by using shadow masks, and precise control of the final thickness by changing the initial thickness of the first step of MoO3 film deposition. The structural characterization of the MoS2 films is performed with transmission electron microscopy and X-ray diffraction as a function of film thickness. MoS2 film with a thickness of 3 nm possesses a highly crystalline structure with a spacing of 0.62 nm. The crystallinity and orientation of the films are degraded with increased film thickness. Careful analysis by time-of-flight secondary ion mass spectroscopy reveals that a film with a thickness of 9 nm is not completely sulfurized, and unreacted MoO3 is left at the bottom of the film. These fundamental analyses coincide with the thickness dependence of thin-film transistor (TFT) performance. A TFT with the optimal film thickness of 3 nm achieves high performance, namely a carrier mobility of 0.57 cm2 V−1 s−1 and an on/off ratio of ~ 102.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Meng X, Yang D, Fang Y, Ye H, Su W (2018) Observation of high-frequency raman modes in FeCl3- and Zn-intercalated MoS2 flakes. J Nanosci Nanotechnol 18:5049–5053CrossRef Meng X, Yang D, Fang Y, Ye H, Su W (2018) Observation of high-frequency raman modes in FeCl3- and Zn-intercalated MoS2 flakes. J Nanosci Nanotechnol 18:5049–5053CrossRef
2.
Zurück zum Zitat Qi R, Hu Y, Li W, Wang Y, Li J, Zhang G, Shang Y, Yang Z (2017) Effects of intercalating polysilanes into MoS2 interlaminar spaces on transport property. Nanosci Nanotechnol Lett 9:1287–1297CrossRef Qi R, Hu Y, Li W, Wang Y, Li J, Zhang G, Shang Y, Yang Z (2017) Effects of intercalating polysilanes into MoS2 interlaminar spaces on transport property. Nanosci Nanotechnol Lett 9:1287–1297CrossRef
3.
Zurück zum Zitat Kaur M, Umar A, Kumar MS, Singh S, Kansal SK (2017) Visible-light photocatalytic degradation of organic pollutants using molybdenum disulfide (MoS2) microtubes. Nanosci Nanotechnol Lett 9:1966–1974CrossRef Kaur M, Umar A, Kumar MS, Singh S, Kansal SK (2017) Visible-light photocatalytic degradation of organic pollutants using molybdenum disulfide (MoS2) microtubes. Nanosci Nanotechnol Lett 9:1966–1974CrossRef
4.
Zurück zum Zitat Feng Y, Ding L, Ji D, Wang L, Guo W (2018) Highly rectified ion transport through 2D WSe2/MoS2 bi-layered membranes. Chin Chem Lett 29(6):892–894CrossRef Feng Y, Ding L, Ji D, Wang L, Guo W (2018) Highly rectified ion transport through 2D WSe2/MoS2 bi-layered membranes. Chin Chem Lett 29(6):892–894CrossRef
5.
Zurück zum Zitat Guo ZY, Zhong Y, Liu Y, Mao CM, Li GC (2017) MoS2 nanosheet arrays supported on hierarchical porous carbon with enhanced lithium storage properties. Chin Chem Lett 28(4):743–747CrossRef Guo ZY, Zhong Y, Liu Y, Mao CM, Li GC (2017) MoS2 nanosheet arrays supported on hierarchical porous carbon with enhanced lithium storage properties. Chin Chem Lett 28(4):743–747CrossRef
6.
Zurück zum Zitat Han C, Tian Z, Dou H, Wang X, Yang X (2018) Vertical crosslinking MoS2/three-dimensional graphene composite towards high performance supercapacitor. Chin Chem Lett 29(4):606–611CrossRef Han C, Tian Z, Dou H, Wang X, Yang X (2018) Vertical crosslinking MoS2/three-dimensional graphene composite towards high performance supercapacitor. Chin Chem Lett 29(4):606–611CrossRef
7.
Zurück zum Zitat Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013) Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13:6222–6227CrossRef Voiry D, Salehi M, Silva R, Fujita T, Chen M, Asefa T, Shenoy VB, Eda G, Chhowalla M (2013) Conducting MoS2 nanosheets as catalysts for hydrogen evolution reaction. Nano Lett 13:6222–6227CrossRef
8.
Zurück zum Zitat Cho B, Hahm MG, Choi M, Yoon J, Kim AR, Lee Y-J, Park S-G, Kwon J-D, Kim CS, Song M, Jeong Y, Nam K-S, Lee S, Yoo TJ, Kang CG, Lee BH, Ko HC, Ajayan PM, Kim D-H (2015) Charge-transfer-based gas sensing using atomic-layer MoS2. Sci Rep 5:8052-1-6 Cho B, Hahm MG, Choi M, Yoon J, Kim AR, Lee Y-J, Park S-G, Kwon J-D, Kim CS, Song M, Jeong Y, Nam K-S, Lee S, Yoo TJ, Kang CG, Lee BH, Ko HC, Ajayan PM, Kim D-H (2015) Charge-transfer-based gas sensing using atomic-layer MoS2. Sci Rep 5:8052-1-6
9.
Zurück zum Zitat Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz TF, Hone J, Wang ZL (2014) Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514:470–474CrossRef Wu W, Wang L, Li Y, Zhang F, Lin L, Niu S, Chenet D, Zhang X, Hao Y, Heinz TF, Hone J, Wang ZL (2014) Piezoelectricity of single-atomic-layer MoS2 for energy conversion and piezotronics. Nature 514:470–474CrossRef
10.
Zurück zum Zitat Chang K, Chen W (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720–4728CrossRef Chang K, Chen W (2011) L-cysteine-assisted synthesis of layered MoS2/graphene composites with excellent electrochemical performances for lithium ion batteries. ACS Nano 5:4720–4728CrossRef
11.
Zurück zum Zitat Chen J, Kuriyama N, Yuan H, Tsutsui H, Takeshita TIA, Sakai T (2001) Electrochemical hydrogen storage in MoS2 nanotubes. J Am Chem Soc 123:11813–11814CrossRef Chen J, Kuriyama N, Yuan H, Tsutsui H, Takeshita TIA, Sakai T (2001) Electrochemical hydrogen storage in MoS2 nanotubes. J Am Chem Soc 123:11813–11814CrossRef
12.
Zurück zum Zitat Huo N, Kang J, Wei Z, Li SS, Li J, Wei SH (2014) Novel and enhanced optoelectronic performances of multilayer MoS2–WS2 heterostructure transistors. Adv Funct Mater 24:7025–7031CrossRef Huo N, Kang J, Wei Z, Li SS, Li J, Wei SH (2014) Novel and enhanced optoelectronic performances of multilayer MoS2–WS2 heterostructure transistors. Adv Funct Mater 24:7025–7031CrossRef
13.
Zurück zum Zitat Sanchez OL, Lembke D, Kayci M, Radenovic A, Kis A (2013) Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol 8:497–501CrossRef Sanchez OL, Lembke D, Kayci M, Radenovic A, Kis A (2013) Ultrasensitive photodetectors based on monolayer MoS2. Nat Nanotechnol 8:497–501CrossRef
14.
Zurück zum Zitat Li H, Wu J, Yin Z, Zhang H (2014) Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 Nanosheets. Acc Chem Res 47:1067–1075CrossRef Li H, Wu J, Yin Z, Zhang H (2014) Preparation and applications of mechanically exfoliated single-layer and multilayer MoS2 and WSe2 Nanosheets. Acc Chem Res 47:1067–1075CrossRef
15.
Zurück zum Zitat Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116CrossRef Eda G, Yamaguchi H, Voiry D, Fujita T, Chen M, Chhowalla M (2011) Photoluminescence from chemically exfoliated MoS2. Nano Lett 11:5111–5116CrossRef
16.
Zurück zum Zitat Samad L, Bladow SM, Ding Q, Zhuo J, Jacobberger RM, Arnold MS, Jin S (2016) Layer-controlled chemical vapor deposition growth of MoS2 vertical heterostructures via van der Waals epitaxy. ACS Nano 10:7039–7046CrossRef Samad L, Bladow SM, Ding Q, Zhuo J, Jacobberger RM, Arnold MS, Jin S (2016) Layer-controlled chemical vapor deposition growth of MoS2 vertical heterostructures via van der Waals epitaxy. ACS Nano 10:7039–7046CrossRef
17.
Zurück zum Zitat Zhang W, Huang JK, Chen CH, Chang YH, Cheng YJ, Li LJ (2013) High gain phototransistors based on a CVD MoS2 monolayer. Adv Mater 25:3456–3461CrossRef Zhang W, Huang JK, Chen CH, Chang YH, Cheng YJ, Li LJ (2013) High gain phototransistors based on a CVD MoS2 monolayer. Adv Mater 25:3456–3461CrossRef
18.
Zurück zum Zitat Liu K-K, Zhang W, Lee Y-H, Lin Y-C, Chang M-T, Su C-Y, Chang C-S, Li H, Shi Y, Zhang H, Lai C-S, Li L-J (2012) Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett 1:1538–1544CrossRef Liu K-K, Zhang W, Lee Y-H, Lin Y-C, Chang M-T, Su C-Y, Chang C-S, Li H, Shi Y, Zhang H, Lai C-S, Li L-J (2012) Growth of large-area and highly crystalline MoS2 thin layers on insulating substrates. Nano Lett 1:1538–1544CrossRef
19.
Zurück zum Zitat Zhan YJ, Liu Z, Najmaei S, Ajayan PM, Lou J (2012) Large area vapor phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8:966–971CrossRef Zhan YJ, Liu Z, Najmaei S, Ajayan PM, Lou J (2012) Large area vapor phase growth and characterization of MoS2 atomic layers on a SiO2 substrate. Small 8:966–971CrossRef
20.
Zurück zum Zitat Huang Z, Zhang L, Li M, Ran W, Lu Y, Yang B, Long Z (2017) Hollow tubular morphology of MoS2 via the solvothermal method with a single source precursor. Nanosci Nanotechnol Lett 9:56–60CrossRef Huang Z, Zhang L, Li M, Ran W, Lu Y, Yang B, Long Z (2017) Hollow tubular morphology of MoS2 via the solvothermal method with a single source precursor. Nanosci Nanotechnol Lett 9:56–60CrossRef
21.
Zurück zum Zitat Zhang C, Li X, Lian C, Hu C, Duo S, Hu Q (2018) Few-layered MoS2 synthesized by hydrothermal method with improved adsorption capacity for methylene blue than active carbon. J Nanosci Nanotechnol 18:7948–7951CrossRef Zhang C, Li X, Lian C, Hu C, Duo S, Hu Q (2018) Few-layered MoS2 synthesized by hydrothermal method with improved adsorption capacity for methylene blue than active carbon. J Nanosci Nanotechnol 18:7948–7951CrossRef
22.
Zurück zum Zitat Lee YH, Zhang XQ, Zhang WJ, Chang MT, Lin CT, Chang KD, Yu YC, Wang JTW, Chang CS, Li LJ, Lin TW (2012) Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24:2320–2325CrossRef Lee YH, Zhang XQ, Zhang WJ, Chang MT, Lin CT, Chang KD, Yu YC, Wang JTW, Chang CS, Li LJ, Lin TW (2012) Synthesis of large-area MoS2 atomic layers with chemical vapor deposition. Adv Mater 24:2320–2325CrossRef
23.
Zurück zum Zitat Najmaei S, Liu Z, Zhou W, Zou XL, Shi G, Lei SD, Yakobson BI, Idrobo JC, Ajayan PM, Lou J (2013) Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater 12:754–759CrossRef Najmaei S, Liu Z, Zhou W, Zou XL, Shi G, Lei SD, Yakobson BI, Idrobo JC, Ajayan PM, Lou J (2013) Vapour phase growth and grain boundary structure of molybdenum disulphide atomic layers. Nat Mater 12:754–759CrossRef
24.
Zurück zum Zitat Wang XS, Feng HB, Wu YM, Jiao LY (2013) Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J Am Chem Soc 135:5304–5307CrossRef Wang XS, Feng HB, Wu YM, Jiao LY (2013) Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J Am Chem Soc 135:5304–5307CrossRef
25.
Zurück zum Zitat Lin YC, Zhang WJ, Huang JK, Liu KK, Lee YH, Liang CT, Chu CW, Li LJ (2012) Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 4:6637–6641CrossRef Lin YC, Zhang WJ, Huang JK, Liu KK, Lee YH, Liang CT, Chu CW, Li LJ (2012) Wafer-scale MoS2 thin layers prepared by MoO3 sulfurization. Nanoscale 4:6637–6641CrossRef
26.
Zurück zum Zitat Lee YH, Yu LL, Wang H, Fang WJ, Ling X, Shi YM, Lin CT, Huang JK, Chang MT, Chang CS, Dresselhaus M, Palacios T, Li LJ, Kong J (2013) Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett 13:1852–1857CrossRef Lee YH, Yu LL, Wang H, Fang WJ, Ling X, Shi YM, Lin CT, Huang JK, Chang MT, Chang CS, Dresselhaus M, Palacios T, Li LJ, Kong J (2013) Synthesis and transfer of single-layer transition metal disulfides on diverse surfaces. Nano Lett 13:1852–1857CrossRef
27.
Zurück zum Zitat Ji QQ, Zhang YF, Gao T, Zhang Y, Ma DL, Liu MX, Chen YB, Qiao XF, Tan PH, Kan M, Feng J, Sun Q, Liu ZF (2013) Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett 13:3870–3877CrossRef Ji QQ, Zhang YF, Gao T, Zhang Y, Ma DL, Liu MX, Chen YB, Qiao XF, Tan PH, Kan M, Feng J, Sun Q, Liu ZF (2013) Epitaxial monolayer MoS2 on mica with novel photoluminescence. Nano Lett 13:3870–3877CrossRef
28.
Zurück zum Zitat Ling X, Lee YH, Lin YX, Fang WJ, Yu LL, Dresselhaus MS, Kong J (2014) Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett 14:464–472CrossRef Ling X, Lee YH, Lin YX, Fang WJ, Yu LL, Dresselhaus MS, Kong J (2014) Role of the seeding promoter in MoS2 growth by chemical vapor deposition. Nano Lett 14:464–472CrossRef
29.
Zurück zum Zitat Jeon J, Lee J, Yoo G, Park JH, Yeom GY, Jang YH, Lee S (2016) Size-tunable synthesis of monolayer MoS2 nanoparticles and their applications in non-volatile memory devices. Nanoscale 8:16995–17003CrossRef Jeon J, Lee J, Yoo G, Park JH, Yeom GY, Jang YH, Lee S (2016) Size-tunable synthesis of monolayer MoS2 nanoparticles and their applications in non-volatile memory devices. Nanoscale 8:16995–17003CrossRef
30.
Zurück zum Zitat Schmidt H, Wang S, Chu L, Toh M, Kumar R, Zhao W, Neto AHC, Martin J, Adam S, Özyilmaz B, Eda G (2014) Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett 14:1909–1913CrossRef Schmidt H, Wang S, Chu L, Toh M, Kumar R, Zhao W, Neto AHC, Martin J, Adam S, Özyilmaz B, Eda G (2014) Transport properties of monolayer MoS2 grown by chemical vapor deposition. Nano Lett 14:1909–1913CrossRef
31.
Zurück zum Zitat Feng Q, Zhu Y, Hong J, Zhang M, Duan W, Mao N, Wu J, Xu H, Dong F, Lin F, Jin C, Wang C, Zhang J, Xie L (2014) Growth of large-area 2D MoS2(1-x)Se2x semiconductor alloys. Adv Mater 26:2648–2653CrossRef Feng Q, Zhu Y, Hong J, Zhang M, Duan W, Mao N, Wu J, Xu H, Dong F, Lin F, Jin C, Wang C, Zhang J, Xie L (2014) Growth of large-area 2D MoS2(1-x)Se2x semiconductor alloys. Adv Mater 26:2648–2653CrossRef
32.
Zurück zum Zitat Yu Z, Pan Y, Shen Y, Wang Z, Ong Z-Y, Xu T, Xin R, Pan L, Wang B, Sun L, Wang J, Zhang G, Zhang YW, Shi Y, Wang X (2014) Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat Commun 5:5290-1-7 Yu Z, Pan Y, Shen Y, Wang Z, Ong Z-Y, Xu T, Xin R, Pan L, Wang B, Sun L, Wang J, Zhang G, Zhang YW, Shi Y, Wang X (2014) Towards intrinsic charge transport in monolayer molybdenum disulfide by defect and interface engineering. Nat Commun 5:5290-1-7
33.
Zurück zum Zitat Radisavljevic B, Kis A (2013) Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat Mater 12:815–820CrossRef Radisavljevic B, Kis A (2013) Mobility engineering and a metal-insulator transition in monolayer MoS2. Nat Mater 12:815–820CrossRef
34.
Zurück zum Zitat Qiu H, Pan L, Yao Z, Li J, Shi Y, Wang X (2012) Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl Phys Lett 100:123104-1 Qiu H, Pan L, Yao Z, Li J, Shi Y, Wang X (2012) Electrical characterization of back-gated bi-layer MoS2 field-effect transistors and the effect of ambient on their performances. Appl Phys Lett 100:123104-1
35.
Zurück zum Zitat Wang H, Yu L, Lee Y-H, Shi Y, Hsu A, Chin ML, Li L-J, Dubey M, Kong J, Palacios T (2012) Integrated circuits based on bilayer MoS2 transistors. Nano Lett 12:4674–4680CrossRef Wang H, Yu L, Lee Y-H, Shi Y, Hsu A, Chin ML, Li L-J, Dubey M, Kong J, Palacios T (2012) Integrated circuits based on bilayer MoS2 transistors. Nano Lett 12:4674–4680CrossRef
36.
Zurück zum Zitat Fuhrer MS, Hone J (2013) Measurement of mobility in dual-gated MoS2 transistors. Nat Nanotech 8:146–147CrossRef Fuhrer MS, Hone J (2013) Measurement of mobility in dual-gated MoS2 transistors. Nat Nanotech 8:146–147CrossRef
37.
Zurück zum Zitat Kaasbjerg K, Thygesen KS, Jacobsen KW (2012) Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys Rev B 85:115317-1 Kaasbjerg K, Thygesen KS, Jacobsen KW (2012) Phonon-limited mobility in n-type single-layer MoS2 from first principles. Phys Rev B 85:115317-1
38.
Zurück zum Zitat Jiang C, Rumyantsev S, Samnakay R, Shur M, Balandin A (2015) High-temperature performance of MoS2 thin-film transistors: direct current and pulse current-voltage characteristics. J Appl Phys 117:064301-1-6 Jiang C, Rumyantsev S, Samnakay R, Shur M, Balandin A (2015) High-temperature performance of MoS2 thin-film transistors: direct current and pulse current-voltage characteristics. J Appl Phys 117:064301-1-6
39.
Zurück zum Zitat Yue Q, Shao Z, Chang S, Li J (2013) Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res Lett 8:425-1-7CrossRef Yue Q, Shao Z, Chang S, Li J (2013) Adsorption of gas molecules on monolayer MoS2 and effect of applied electric field. Nanoscale Res Lett 8:425-1-7CrossRef
40.
Zurück zum Zitat Walter TN, Kwok F, Simchi H, Aldosari HM, Mohney SE (2017) Oxidation and oxidative vapor-phase etching of few-layer MoS2. J Vac Sci Technol, B 35:021203CrossRef Walter TN, Kwok F, Simchi H, Aldosari HM, Mohney SE (2017) Oxidation and oxidative vapor-phase etching of few-layer MoS2. J Vac Sci Technol, B 35:021203CrossRef
41.
Zurück zum Zitat Heo S, Ishiguro Y, Hayakawa R, Chikyow T, Wakayama Y (2016) Perspective: highly ordered MoS2 thin films grown by multi-step chemical vapor deposition process. APL Mater 4:030901-1-7CrossRef Heo S, Ishiguro Y, Hayakawa R, Chikyow T, Wakayama Y (2016) Perspective: highly ordered MoS2 thin films grown by multi-step chemical vapor deposition process. APL Mater 4:030901-1-7CrossRef
42.
Zurück zum Zitat Heo S, Hayakawa R, Wakayama Y (2017) Carrier transport properties of MoS2 field-effect transistors produced by multi-step chemical vapor deposition method. J Appl Phys 121:024301-1-6CrossRef Heo S, Hayakawa R, Wakayama Y (2017) Carrier transport properties of MoS2 field-effect transistors produced by multi-step chemical vapor deposition method. J Appl Phys 121:024301-1-6CrossRef
43.
Zurück zum Zitat Yoon Y, Ganapathi K, Salahuddin S (2011) How good can monolayer MoS2 transistors be? Nano Lett 11:3768–3773CrossRef Yoon Y, Ganapathi K, Salahuddin S (2011) How good can monolayer MoS2 transistors be? Nano Lett 11:3768–3773CrossRef
44.
Zurück zum Zitat Amin R, Hossain MdA, Zakaria Y (2018) Interfacial kinetics and ionic diffusivity of the electrodeposited MoS2 film. Appl Mater Interfaces 10:13509–13518CrossRef Amin R, Hossain MdA, Zakaria Y (2018) Interfacial kinetics and ionic diffusivity of the electrodeposited MoS2 film. Appl Mater Interfaces 10:13509–13518CrossRef
45.
Zurück zum Zitat Gatensby R, McEvoy N, Lee K, Hallam T, Berner NC, Rezvani E, Winters S, Georg MO, Duesberg S (2014) Controlled synthesis of transition metal dichalcogenide thin films for electronic applications. Appl Surf Sci 297:139–146CrossRef Gatensby R, McEvoy N, Lee K, Hallam T, Berner NC, Rezvani E, Winters S, Georg MO, Duesberg S (2014) Controlled synthesis of transition metal dichalcogenide thin films for electronic applications. Appl Surf Sci 297:139–146CrossRef
46.
Zurück zum Zitat Wang XS, Feng HB, Wu YM, Jiao LY (2013) Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J Am Chem Soc 135:5304–5307CrossRef Wang XS, Feng HB, Wu YM, Jiao LY (2013) Controlled synthesis of highly crystalline MoS2 flakes by chemical vapor deposition. J Am Chem Soc 135:5304–5307CrossRef
47.
Zurück zum Zitat Lince JR, Hilton MR, Bommannavar AS (1990) Oxygen substitution in sputter-deposited MoS2 films studied by extended X-ray absorption fine structure. X-ray photoelectron spectroscopy and X-ray diffraction, Surf Coat Technol 44:640–651 Lince JR, Hilton MR, Bommannavar AS (1990) Oxygen substitution in sputter-deposited MoS2 films studied by extended X-ray absorption fine structure. X-ray photoelectron spectroscopy and X-ray diffraction, Surf Coat Technol 44:640–651
48.
Zurück zum Zitat Li XL, Li YD (2003) Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. Chem Eur J 9:2726–2731CrossRef Li XL, Li YD (2003) Formation of MoS2 inorganic fullerenes (IFs) by the reaction of MoO3 nanobelts and S. Chem Eur J 9:2726–2731CrossRef
49.
Zurück zum Zitat Park J, Choudhary N, Smith J, Lee G, Kim M, Choi W (2015) Thickness modulated MoS2 grown by chemical vapor deposition for transparent and flexible electronic devices. Appl Phys Lett 106:012104-1-5 Park J, Choudhary N, Smith J, Lee G, Kim M, Choi W (2015) Thickness modulated MoS2 grown by chemical vapor deposition for transparent and flexible electronic devices. Appl Phys Lett 106:012104-1-5
50.
Zurück zum Zitat Greve DW (1998) Field Effect Devices and Applications: Devices for Portable, Low-Power, and Imaging Systems, 1st edn. Prentice Hall, New Jersey, p 87 Greve DW (1998) Field Effect Devices and Applications: Devices for Portable, Low-Power, and Imaging Systems, 1st edn. Prentice Hall, New Jersey, p 87
51.
Zurück zum Zitat Shah PB, Amani M, Chin ML, O’Regan TP, Crowne FJ, Dubey M (2014) Analysis of temperature dependent hysteresis in MoS2 field effect transistors for high frequency applications. Solid State Electron 91:87–90CrossRef Shah PB, Amani M, Chin ML, O’Regan TP, Crowne FJ, Dubey M (2014) Analysis of temperature dependent hysteresis in MoS2 field effect transistors for high frequency applications. Solid State Electron 91:87–90CrossRef
52.
Zurück zum Zitat Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan PM, Yakobson BI, Idrobo J-C (2013) Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett 13:2615–2622CrossRef Zhou W, Zou X, Najmaei S, Liu Z, Shi Y, Kong J, Lou J, Ajayan PM, Yakobson BI, Idrobo J-C (2013) Intrinsic structural defects in monolayer molybdenum disulfide. Nano Lett 13:2615–2622CrossRef
53.
Zurück zum Zitat Ghatak S, Pal AN, Ghosh A (2011) Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5:7707–7712CrossRef Ghatak S, Pal AN, Ghosh A (2011) Nature of electronic states in atomically thin MoS2 field-effect transistors. ACS Nano 5:7707–7712CrossRef
54.
Zurück zum Zitat Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J, Wang X (2013) Hopping transport through defect-induced localized states in molybdenum disulphide. Nat Commun 4:2642-1-6 Qiu H, Xu T, Wang Z, Ren W, Nan H, Ni Z, Chen Q, Yuan S, Miao F, Song F, Long G, Shi Y, Sun L, Wang J, Wang X (2013) Hopping transport through defect-induced localized states in molybdenum disulphide. Nat Commun 4:2642-1-6
55.
Zurück zum Zitat Late DJ, Liu B, Matte HSSR, Dravid VP, Rao CNR (2012) Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6:5635–5641CrossRef Late DJ, Liu B, Matte HSSR, Dravid VP, Rao CNR (2012) Hysteresis in single-layer MoS2 field effect transistors. ACS Nano 6:5635–5641CrossRef
56.
Zurück zum Zitat Na J, Joo M-K, Shin M, Huh J, Kim J-S, Piao M, Jin J-E, Jang H-K, Choi HJ, Shim JH, Kim G-T (2014) Low-frequency noise in multilayer MoS2 field-effect transistors: the effect of high-k passivation. Nanoscale 6:433–441CrossRef Na J, Joo M-K, Shin M, Huh J, Kim J-S, Piao M, Jin J-E, Jang H-K, Choi HJ, Shim JH, Kim G-T (2014) Low-frequency noise in multilayer MoS2 field-effect transistors: the effect of high-k passivation. Nanoscale 6:433–441CrossRef
57.
Zurück zum Zitat Park W, Park J, Jang J, Lee H, Jeong H, Cho K, Hong S, Lee T (2013) Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors. Nanotechnology 24:095202-1-5 Park W, Park J, Jang J, Lee H, Jeong H, Cho K, Hong S, Lee T (2013) Oxygen environmental and passivation effects on molybdenum disulfide field effect transistors. Nanotechnology 24:095202-1-5
58.
Zurück zum Zitat Perera MM, Lin M-W, Chuang H-J, Chamlagain BP, Wang C, Tan X, Cheng MM-C, Tománek Dband Zhou Z (2013) Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 7:4449–4458CrossRef Perera MM, Lin M-W, Chuang H-J, Chamlagain BP, Wang C, Tan X, Cheng MM-C, Tománek Dband Zhou Z (2013) Improved carrier mobility in few-layer MoS2 field-effect transistors with ionic-liquid gating. ACS Nano 7:4449–4458CrossRef
59.
Zurück zum Zitat Zhu W, Low T, Lee Y-H, Wang H, Farmer DB, Kong J, Xia F, Avouris P (2014) Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat Commun 5:3087-1-8 Zhu W, Low T, Lee Y-H, Wang H, Farmer DB, Kong J, Xia F, Avouris P (2014) Electronic transport and device prospects of monolayer molybdenum disulphide grown by chemical vapour deposition. Nat Commun 5:3087-1-8
Metadaten
Titel
Structural characterization and transistor properties of thickness-controllable MoS2 thin films
verfasst von
Yesul Jeong
Ji Yeong Sung
Yunju Choi
Jong Sung Jin
Jang-Hee Yoon
Sinae Heo
Ryoma Hayakawa
Yutaka Wakayama
Publikationsdatum
15.02.2019
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 10/2019
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-019-03435-6

Weitere Artikel der Ausgabe 10/2019

Journal of Materials Science 10/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.