Skip to main content
Erschienen in: Journal of Polymer Research 9/2022

01.09.2022 | Original Paper

Structure and mechanical properties of Poly(styrene-co-acrylate)/cellulose nanocrystals co-continuous composites via one-pot pickering emulsion polymerization

verfasst von: Yi He, Maoping Jiang, Wen Hu, Ishak Ahmad, Lin Gan, Aimin Pang, Jin Huang

Erschienen in: Journal of Polymer Research | Ausgabe 9/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Nanoparticle-doped polymeric composites usually suffer from poor mechanical toughness and strength, due to the hard formation of co-continuous submicron structure between matrix and nanoparticles. Here, a universal strategy to construct a co-continuous submicron structure in nanoparticle-doped polymeric composites was proposed for significant mechanical enhancement via integrating Pickering emulsion and copolymerization. The surface-grafted cellulose nanocrystals (CNCs) acted as the solid surfactant of Pickering emulsion forming an isolated percolation network, combined with the copolymerization of surface-grafted CNCs and polymer matrix, generating stronger interaction in composites. The poly(styrene-co-acrylate)/methylacryloyl-grafted CNC (PSA/mCNC) composites were obtained from one-pot Pickering emulsion polymerization. The tensile strength and the elongation at break of PSA/mCNC composites increased by 107% and 681%, respectively, when mCNCs were 0.5 wt%. The mechanical performance of PSA/mCNC composites exceeded the best PSA/CNC composites, whose tensile strength and the elongation at break only increased by 51% and 650%, respectively. The PSA/mCNC composites showed higher mechanical performance and simpler post-process, compared with similar commercial products. This strategy is universal for mechanical enforcement of other polymeric composites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Ghosh PK, Patel A, Kumar K (2016) Adhesive joining of copper using nano-filler composite adhesive. Polymer 87:159–169CrossRef Ghosh PK, Patel A, Kumar K (2016) Adhesive joining of copper using nano-filler composite adhesive. Polymer 87:159–169CrossRef
2.
Zurück zum Zitat Dileep P, Jacob S, Narayanankutty SK (2020) Functionalized nanosilica as an antimicrobial additive for waterborne paints. Prog Org Coat 142:105574CrossRef Dileep P, Jacob S, Narayanankutty SK (2020) Functionalized nanosilica as an antimicrobial additive for waterborne paints. Prog Org Coat 142:105574CrossRef
3.
Zurück zum Zitat Memon H, De Focatiis DS, Choi KS, Hou X (2021) Durability enhancement of low ice adhesion polymeric coatings. Prog Org Coat 151:106033CrossRef Memon H, De Focatiis DS, Choi KS, Hou X (2021) Durability enhancement of low ice adhesion polymeric coatings. Prog Org Coat 151:106033CrossRef
4.
Zurück zum Zitat Hashiguchi T, Yamamoto K, Kadokawa JI (2021) Fabrication of highly flexible nanochitin film and its composite film with anionic polysaccharide. Carbohyd Polym 270:118369CrossRef Hashiguchi T, Yamamoto K, Kadokawa JI (2021) Fabrication of highly flexible nanochitin film and its composite film with anionic polysaccharide. Carbohyd Polym 270:118369CrossRef
5.
Zurück zum Zitat An H, Gao Y, Wang S, Liang S, Wang X, Li N, Sun Z, Xiao J, Zhao X (2021) Long-term corrosion protection of styrene acrylic coatings enhanced by fluorine and nitrogen co-doped graphene oxide. Nanotechnology 33:105701CrossRef An H, Gao Y, Wang S, Liang S, Wang X, Li N, Sun Z, Xiao J, Zhao X (2021) Long-term corrosion protection of styrene acrylic coatings enhanced by fluorine and nitrogen co-doped graphene oxide. Nanotechnology 33:105701CrossRef
6.
Zurück zum Zitat Wang X, Xu L, Yang R, Huang R, Mao H (2022) Fluorescent CQD-Doped Styrene Acrylic Emulsion Coating Film with Enhanced Optical Properties. Int J Mol Sci 23:60CrossRef Wang X, Xu L, Yang R, Huang R, Mao H (2022) Fluorescent CQD-Doped Styrene Acrylic Emulsion Coating Film with Enhanced Optical Properties. Int J Mol Sci 23:60CrossRef
7.
Zurück zum Zitat Lan C, Zou L, Wang N, Qiu Y, Ma Y (2021) Multi-reflection-enhanced electromagnetic interference shielding performance of conductive nanocomposite coatings on fabrics. J Colloid Interface Sci 590:467–475CrossRef Lan C, Zou L, Wang N, Qiu Y, Ma Y (2021) Multi-reflection-enhanced electromagnetic interference shielding performance of conductive nanocomposite coatings on fabrics. J Colloid Interface Sci 590:467–475CrossRef
8.
Zurück zum Zitat Chen P, Sun J, Zhu Y, Yu X, Meng L, Li Y, Liu X (2016) Corrosion resistance of biodegradable Mg with a composite polymer coating. J Biomater Sci Polym Ed 27:1763–1774CrossRef Chen P, Sun J, Zhu Y, Yu X, Meng L, Li Y, Liu X (2016) Corrosion resistance of biodegradable Mg with a composite polymer coating. J Biomater Sci Polym Ed 27:1763–1774CrossRef
9.
Zurück zum Zitat Eayal Awwad KY, Yousif BF, Fallahnezhad K, Saleh K, Zeng X (2021) Influence of graphene nanoplatelets on mechanical properties and adhesive wear performance of epoxy-based composites. Friction 9:856–875CrossRef Eayal Awwad KY, Yousif BF, Fallahnezhad K, Saleh K, Zeng X (2021) Influence of graphene nanoplatelets on mechanical properties and adhesive wear performance of epoxy-based composites. Friction 9:856–875CrossRef
10.
Zurück zum Zitat Lee SH, Yu S, Shahzad F, Kim WN, Park C, Hong SM, Koo CM (2017) Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation. Nanoscale 9:13432–13440CrossRef Lee SH, Yu S, Shahzad F, Kim WN, Park C, Hong SM, Koo CM (2017) Density-tunable lightweight polymer composites with dual-functional ability of efficient EMI shielding and heat dissipation. Nanoscale 9:13432–13440CrossRef
11.
Zurück zum Zitat Yavas D, Zhang Z, Liu Q, Wu D (2021) Fracture behavior of 3D printed carbon fiber-reinforced polymer composites. Compos Sci Technol 208:108741CrossRef Yavas D, Zhang Z, Liu Q, Wu D (2021) Fracture behavior of 3D printed carbon fiber-reinforced polymer composites. Compos Sci Technol 208:108741CrossRef
12.
Zurück zum Zitat Wang Z, Tong X, Yang JC, Wang XJ, Zhang ML, Zhang G, Long Yang J (2019) Improved strength and toughness of semi-aromatic polyamide 6T-co-6 (PA6T/6)/GO composites via in situ polymerization. Compos Sci Technol 175:6–17CrossRef Wang Z, Tong X, Yang JC, Wang XJ, Zhang ML, Zhang G, Long Yang J (2019) Improved strength and toughness of semi-aromatic polyamide 6T-co-6 (PA6T/6)/GO composites via in situ polymerization. Compos Sci Technol 175:6–17CrossRef
13.
Zurück zum Zitat Lei Z, Wang J, Zhang C, Wu Q, Li J, Liu Y (2021) Fabrication of a mechanically tough and strong SiO2@ EPOSS modified novolac phenolic network by simultaneously improving its crosslinking inhomogeneity and crosslinking density. Compos Sci Technol 210:108810CrossRef Lei Z, Wang J, Zhang C, Wu Q, Li J, Liu Y (2021) Fabrication of a mechanically tough and strong SiO2@ EPOSS modified novolac phenolic network by simultaneously improving its crosslinking inhomogeneity and crosslinking density. Compos Sci Technol 210:108810CrossRef
14.
Zurück zum Zitat Mabrouk AB, Dufresne A, Boufi S (2020) Cellulose nanocrystal as ecofriendly stabilizer for emulsion polymerization and its application for waterborne adhesive. Carbohyd Polym 229:115504CrossRef Mabrouk AB, Dufresne A, Boufi S (2020) Cellulose nanocrystal as ecofriendly stabilizer for emulsion polymerization and its application for waterborne adhesive. Carbohyd Polym 229:115504CrossRef
15.
Zurück zum Zitat Sun G, Yang L, Liu R (2021) Thermal insulation coatings based on microporous particles from Pickering emulsion polymerization. Prog Org Coat 151:106023CrossRef Sun G, Yang L, Liu R (2021) Thermal insulation coatings based on microporous particles from Pickering emulsion polymerization. Prog Org Coat 151:106023CrossRef
16.
Zurück zum Zitat Cao H, Escamilla M, Anas M, Tan Z, Gulati S, Yun J, Arole KD, Lutkenhaus JL, Radovic M, Pentzer EB, Green MJ (2021) Synthesis and Electronic Applications of Particle-Templated Ti3C2Tz MXene–Polymer Films via Pickering Emulsion Polymerization. ACS Appl Mater Interfaces 13:51556–51566CrossRef Cao H, Escamilla M, Anas M, Tan Z, Gulati S, Yun J, Arole KD, Lutkenhaus JL, Radovic M, Pentzer EB, Green MJ (2021) Synthesis and Electronic Applications of Particle-Templated Ti3C2Tz MXene–Polymer Films via Pickering Emulsion Polymerization. ACS Appl Mater Interfaces 13:51556–51566CrossRef
17.
Zurück zum Zitat Dupont H, Laurichesse E, Héroguez V, Schmitt V (2021) Green Hydrophilic Capsules from Cellulose Nanocrystal-Stabilized Pickering Emulsion Polymerization: Morphology Control and Spongelike Behavior. Biomacromol 22:3497–3509CrossRef Dupont H, Laurichesse E, Héroguez V, Schmitt V (2021) Green Hydrophilic Capsules from Cellulose Nanocrystal-Stabilized Pickering Emulsion Polymerization: Morphology Control and Spongelike Behavior. Biomacromol 22:3497–3509CrossRef
18.
Zurück zum Zitat Errezma M, Mabrouk AB, Magnin A, Dufresne A, Boufi S (2018) Surfactant-free emulsion Pickering polymerization stabilized by aldehyde-functionalized cellulose nanocrystals. Carbohyd Polym 202:621–630CrossRef Errezma M, Mabrouk AB, Magnin A, Dufresne A, Boufi S (2018) Surfactant-free emulsion Pickering polymerization stabilized by aldehyde-functionalized cellulose nanocrystals. Carbohyd Polym 202:621–630CrossRef
19.
Zurück zum Zitat Zhang Z, Cheng M, San Gabriel M, Neto ÂAT, da Silva Bernardes J, Berry R, Tam KC (2019) Polymeric hollow microcapsules (PHM) via cellulose nanocrystal stabilized Pickering emulsion polymerization. J Colloid Interface Sci 555:489–497CrossRef Zhang Z, Cheng M, San Gabriel M, Neto ÂAT, da Silva Bernardes J, Berry R, Tam KC (2019) Polymeric hollow microcapsules (PHM) via cellulose nanocrystal stabilized Pickering emulsion polymerization. J Colloid Interface Sci 555:489–497CrossRef
20.
Zurück zum Zitat Dupont H, Héroguez V, Schmitt V (2022) Elaboration of capsules from Pickering double emulsion polymerization stabilized solely by cellulose nanocrystals. Carbohyd Polym 279:118997CrossRef Dupont H, Héroguez V, Schmitt V (2022) Elaboration of capsules from Pickering double emulsion polymerization stabilized solely by cellulose nanocrystals. Carbohyd Polym 279:118997CrossRef
21.
Zurück zum Zitat Yang T, Yuan D, Liu W, Zhang Z, Wang K, You Y, Ye H, Haan LT, Zhang Z, Zhou G (2022) Thermochromic Cholesteric Liquid Crystal Microcapsules with Cellulose Nanocrystals and a Melamine Resin Hybrid Shell. ACS Appl Mater Interfaces 14:4588–4597CrossRef Yang T, Yuan D, Liu W, Zhang Z, Wang K, You Y, Ye H, Haan LT, Zhang Z, Zhou G (2022) Thermochromic Cholesteric Liquid Crystal Microcapsules with Cellulose Nanocrystals and a Melamine Resin Hybrid Shell. ACS Appl Mater Interfaces 14:4588–4597CrossRef
22.
Zurück zum Zitat Zhang Z, Zhang Z, Chang T, Wang J, Wang X, Zhou G (2022) Phase change material microcapsules with melamine resin shell via cellulose nanocrystal stabilized Pickering emulsion in-situ polymerization. Chem Eng J 428:131164CrossRef Zhang Z, Zhang Z, Chang T, Wang J, Wang X, Zhou G (2022) Phase change material microcapsules with melamine resin shell via cellulose nanocrystal stabilized Pickering emulsion in-situ polymerization. Chem Eng J 428:131164CrossRef
23.
Zurück zum Zitat Miao C, Mirvakili MN, Hamad WY (2022) A rheological investigation of oil-in-water Pickering emulsions stabilized by cellulose nanocrystals. J Colloid Interface Sci 608:2820–2829CrossRef Miao C, Mirvakili MN, Hamad WY (2022) A rheological investigation of oil-in-water Pickering emulsions stabilized by cellulose nanocrystals. J Colloid Interface Sci 608:2820–2829CrossRef
24.
Zurück zum Zitat Dai H, Zhang H, Chen Y, Ma L, Wu J, Zhang Y (2021) Co-stabilization and properties regulation of Pickering emulsions by cellulose nanocrystals and nanofibrils from lemon seeds. Food Hydrocolloids 120:106884CrossRef Dai H, Zhang H, Chen Y, Ma L, Wu J, Zhang Y (2021) Co-stabilization and properties regulation of Pickering emulsions by cellulose nanocrystals and nanofibrils from lemon seeds. Food Hydrocolloids 120:106884CrossRef
25.
Zurück zum Zitat Ma T, Cui R, Lu S, Hu X, Xu B, Song Y, Hu X (2022) High internal phase Pickering emulsions stabilized by cellulose nanocrystals for 3D printing. Food Hydrocolloids 125:107418CrossRef Ma T, Cui R, Lu S, Hu X, Xu B, Song Y, Hu X (2022) High internal phase Pickering emulsions stabilized by cellulose nanocrystals for 3D printing. Food Hydrocolloids 125:107418CrossRef
26.
Zurück zum Zitat Geng S, Haque MMU, Oksman K (2016) Crosslinked poly (vinyl acetate)(PVAc) reinforced with cellulose nanocrystals (CNC): Structure and mechanical properties. Compos Sci Technol 126:35–42CrossRef Geng S, Haque MMU, Oksman K (2016) Crosslinked poly (vinyl acetate)(PVAc) reinforced with cellulose nanocrystals (CNC): Structure and mechanical properties. Compos Sci Technol 126:35–42CrossRef
27.
Zurück zum Zitat Wang B, Zhou J, Wang Z, Mu S, Wu R, Wang Z (2020) Cellulose nanocrystal/plant oil polymer composites with hydrophobicity, humidity-sensitivity, and high wet strength. Carbohyd Polym 231:115739CrossRef Wang B, Zhou J, Wang Z, Mu S, Wu R, Wang Z (2020) Cellulose nanocrystal/plant oil polymer composites with hydrophobicity, humidity-sensitivity, and high wet strength. Carbohyd Polym 231:115739CrossRef
28.
Zurück zum Zitat Gu M, Jiang C, Liu D, Prempeh N, Smalyukh II (2016) Cellulose nanocrystal/poly (ethylene glycol) composite as an iridescent coating on polymer substrates: Structure-color and interface adhesion. ACS Appl Mater Interfaces 8:32565–32573CrossRef Gu M, Jiang C, Liu D, Prempeh N, Smalyukh II (2016) Cellulose nanocrystal/poly (ethylene glycol) composite as an iridescent coating on polymer substrates: Structure-color and interface adhesion. ACS Appl Mater Interfaces 8:32565–32573CrossRef
29.
Zurück zum Zitat Xu J, Li X, Xu Y, Wang A, Xu Z, Wu X, Li D, Mu C, Ge L (2021) Dihydromyricetin-Loaded Pickering Emulsions Stabilized by Dialdehyde Cellulose Nanocrystals for Preparation of Antioxidant Gelatin-Based Edible Films. Food Bioprocess Technol 14:1648–1661CrossRef Xu J, Li X, Xu Y, Wang A, Xu Z, Wu X, Li D, Mu C, Ge L (2021) Dihydromyricetin-Loaded Pickering Emulsions Stabilized by Dialdehyde Cellulose Nanocrystals for Preparation of Antioxidant Gelatin-Based Edible Films. Food Bioprocess Technol 14:1648–1661CrossRef
30.
Zurück zum Zitat Li F, Yu HY, Li Y, Abdalkarim SYH, Zhu J, Zhou Y (2021) “Soft-rigid” synergistic reinforcement of PHBV composites with functionalized cellulose nanocrystals and amorphous recycled polycarbonate. Compos B Eng 206:108542CrossRef Li F, Yu HY, Li Y, Abdalkarim SYH, Zhu J, Zhou Y (2021) “Soft-rigid” synergistic reinforcement of PHBV composites with functionalized cellulose nanocrystals and amorphous recycled polycarbonate. Compos B Eng 206:108542CrossRef
31.
Zurück zum Zitat Gan L, Wang Y, Zhang M, Xia X, Huang J (2019) Hierarchically spacing DNA probes on bio-based nanocrystal for spatial detection requirements. Science Bulletin 64:934–940CrossRef Gan L, Wang Y, Zhang M, Xia X, Huang J (2019) Hierarchically spacing DNA probes on bio-based nanocrystal for spatial detection requirements. Science Bulletin 64:934–940CrossRef
32.
Zurück zum Zitat Siqueira G, Kokkinis D, Libanori R, Hausmann MK, Gladman AS, Neels A, Tingaut P, Zimmermann T, Lewis JA, Studart AR (2019) Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Adv Func Mater 27:1604619CrossRef Siqueira G, Kokkinis D, Libanori R, Hausmann MK, Gladman AS, Neels A, Tingaut P, Zimmermann T, Lewis JA, Studart AR (2019) Cellulose nanocrystal inks for 3D printing of textured cellular architectures. Adv Func Mater 27:1604619CrossRef
33.
Zurück zum Zitat Wang C, Li Y, Yu HY, Abdalkarim SYH, Zhou J, Yao J, Zhang L (2021) Continuous Meter-Scale Wet-Spinning of Cornlike Composite Fibers for Eco-Friendly Multifunctional Electronics. ACS Appl Mater Interfaces 13:40953–40963CrossRef Wang C, Li Y, Yu HY, Abdalkarim SYH, Zhou J, Yao J, Zhang L (2021) Continuous Meter-Scale Wet-Spinning of Cornlike Composite Fibers for Eco-Friendly Multifunctional Electronics. ACS Appl Mater Interfaces 13:40953–40963CrossRef
34.
Zurück zum Zitat Lu G, Zhu J, Yu H, Jin M, Abdalkarim SYH, Wei Y (2021) Degradation mechanism of green biopolyester nanocomposites with various cellulose nanocrystal based nanohybrids. Cellulose 28:7735–7748CrossRef Lu G, Zhu J, Yu H, Jin M, Abdalkarim SYH, Wei Y (2021) Degradation mechanism of green biopolyester nanocomposites with various cellulose nanocrystal based nanohybrids. Cellulose 28:7735–7748CrossRef
Metadaten
Titel
Structure and mechanical properties of Poly(styrene-co-acrylate)/cellulose nanocrystals co-continuous composites via one-pot pickering emulsion polymerization
verfasst von
Yi He
Maoping Jiang
Wen Hu
Ishak Ahmad
Lin Gan
Aimin Pang
Jin Huang
Publikationsdatum
01.09.2022
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 9/2022
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-022-03062-x

Weitere Artikel der Ausgabe 9/2022

Journal of Polymer Research 9/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.