Skip to main content

2014 | OriginalPaper | Buchkapitel

6. Structure, Function, and Development of Blood Vessels: Lessons for Tissue Engineering

verfasst von : Hamisha Ardalani, Amir H. Assadi, William L. Murphy

Erschienen in: Engineering in Translational Medicine

Verlag: Springer London

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The establishment of blood vessel networks is a matter of life and death for tissues and organisms. Failure to form a functional vascular network causes early death of embryos, and also dysfunction of endothelial cells (ECs) contributes to many diseases, including stroke, thrombosis, and atherosclerosis. Furthermore, there is a considerable clinical need for alternatives to the autologous vein and artery tissues used for vascular reconstructive surgeries such as lower limb bypass, arteriovenous shunts, and repairs of congenital defects to the pulmonary outflow tract. So far, synthetic materials, particularly in small-diameter applications, have not matched the efficacy of native tissues.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6(4):389–395CrossRef Carmeliet P (2000) Mechanisms of angiogenesis and arteriogenesis. Nat Med 6(4):389–395CrossRef
2.
Zurück zum Zitat Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9(6):685–693CrossRef Jain RK (2003) Molecular regulation of vessel maturation. Nat Med 9(6):685–693CrossRef
3.
Zurück zum Zitat Maton A (1994) Human biology and health, 3rd edn. Englewood Cliffs, Prentice Hall, New Jersey Maton A (1994) Human biology and health, 3rd edn. Englewood Cliffs, Prentice Hall, New Jersey
4.
Zurück zum Zitat Ruoslahti E, Engvall E (1997) Integrins and vascular extracellular matrix assembly. J Clin Invest 99(6):1149–1152CrossRef Ruoslahti E, Engvall E (1997) Integrins and vascular extracellular matrix assembly. J Clin Invest 99(6):1149–1152CrossRef
5.
Zurück zum Zitat Kelleher CM, McLean SE, Mecham RP (2004) Vascular extracellular matrix and aortic development. Curr Top Dev Biol 62:153–188CrossRef Kelleher CM, McLean SE, Mecham RP (2004) Vascular extracellular matrix and aortic development. Curr Top Dev Biol 62:153–188CrossRef
6.
Zurück zum Zitat Bae H, Puranik AS, Gauvin R et al (2012) Building vascular networks. Sci Transl Med 4(160):160ps23 Bae H, Puranik AS, Gauvin R et al (2012) Building vascular networks. Sci Transl Med 4(160):160ps23
7.
Zurück zum Zitat Herbert SP, Stainier DY (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12(9):551–564CrossRef Herbert SP, Stainier DY (2011) Molecular control of endothelial cell behaviour during blood vessel morphogenesis. Nat Rev Mol Cell Biol 12(9):551–564CrossRef
8.
Zurück zum Zitat Holderfield MT, Hughes CCW (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-β in vascular morphogenesis. Circ Res 102(6):637–652CrossRef Holderfield MT, Hughes CCW (2008) Crosstalk between vascular endothelial growth factor, notch, and transforming growth factor-β in vascular morphogenesis. Circ Res 102(6):637–652CrossRef
9.
Zurück zum Zitat Sainson RC, Aoto J, Nakatsu MN et al (2005) Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J 19(8):1027–1029 Sainson RC, Aoto J, Nakatsu MN et al (2005) Cell-autonomous notch signaling regulates endothelial cell branching and proliferation during vascular tubulogenesis. FASEB J 19(8):1027–1029
10.
Zurück zum Zitat Cao L, Arany PR, Wang Y-S et al (2009) Promoting angiogenesis via manipulation of VEGF responsiveness with notch signaling. Biomaterials 30(25):4085–4093CrossRef Cao L, Arany PR, Wang Y-S et al (2009) Promoting angiogenesis via manipulation of VEGF responsiveness with notch signaling. Biomaterials 30(25):4085–4093CrossRef
11.
Zurück zum Zitat Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nat 473(7347):298–307CrossRef Carmeliet P, Jain RK (2011) Molecular mechanisms and clinical applications of angiogenesis. Nat 473(7347):298–307CrossRef
12.
Zurück zum Zitat Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478CrossRef Adams RH, Alitalo K (2007) Molecular regulation of angiogenesis and lymphangiogenesis. Nat Rev Mol Cell Biol 8(6):464–478CrossRef
13.
Zurück zum Zitat Gaengel K, Genové G, Armulik A et al (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29(5):630–638CrossRef Gaengel K, Genové G, Armulik A et al (2009) Endothelial-mural cell signaling in vascular development and angiogenesis. Arterioscler Thromb Vasc Biol 29(5):630–638CrossRef
14.
Zurück zum Zitat Allende ML, Yamashita T, Proia RL (2003) G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood 102(10):3665–3667CrossRef Allende ML, Yamashita T, Proia RL (2003) G-protein-coupled receptor S1P1 acts within endothelial cells to regulate vascular maturation. Blood 102(10):3665–3667CrossRef
15.
Zurück zum Zitat Augustin HG, Koh GY, Thurston G et al (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10(3):165–177CrossRef Augustin HG, Koh GY, Thurston G et al (2009) Control of vascular morphogenesis and homeostasis through the angiopoietin-Tie system. Nat Rev Mol Cell Biol 10(3):165–177CrossRef
16.
Zurück zum Zitat Bix G, Iozzo RV (2008) Novel interactions of perlecan: unraveling perlecan’s role in angiogenesis. J MRT 71(5):339–348 Bix G, Iozzo RV (2008) Novel interactions of perlecan: unraveling perlecan’s role in angiogenesis. J MRT 71(5):339–348
17.
Zurück zum Zitat Hallmann R, Horn N, Selg M et al (2005) Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 85(3):979–1000CrossRef Hallmann R, Horn N, Selg M et al (2005) Expression and function of laminins in the embryonic and mature vasculature. Physiol Rev 85(3):979–1000CrossRef
18.
Zurück zum Zitat Hayashi K (1992) Endothelial cells interact with the core protein of basement membrane perlecan through beta 1 and beta 3 integrins: an adhesion modulated by glycosaminoglycan. J Cell Biol 119(4):945–959CrossRef Hayashi K (1992) Endothelial cells interact with the core protein of basement membrane perlecan through beta 1 and beta 3 integrins: an adhesion modulated by glycosaminoglycan. J Cell Biol 119(4):945–959CrossRef
19.
Zurück zum Zitat Davis GE (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Cir Res 97(11):1093–1107CrossRef Davis GE (2005) Endothelial extracellular matrix: biosynthesis, remodeling, and functions during vascular morphogenesis and neovessel stabilization. Cir Res 97(11):1093–1107CrossRef
20.
Zurück zum Zitat Stratman AN, Davis GE (2011) Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: influence on vascular tube remodeling, maturation, and stabilization. Microsc Microanal 18(01):68–80CrossRef Stratman AN, Davis GE (2011) Endothelial cell-pericyte interactions stimulate basement membrane matrix assembly: influence on vascular tube remodeling, maturation, and stabilization. Microsc Microanal 18(01):68–80CrossRef
21.
Zurück zum Zitat Saunders WB, Bohnsack BL, Faske JB et al (2006) Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J Cell Biol 175(1):179–191CrossRef Saunders WB, Bohnsack BL, Faske JB et al (2006) Coregulation of vascular tube stabilization by endothelial cell TIMP-2 and pericyte TIMP-3. J Cell Biol 175(1):179–191CrossRef
22.
Zurück zum Zitat Risau W, Sariola H, Zerwes HG et al (1988) Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102(3):471–478 Risau W, Sariola H, Zerwes HG et al (1988) Vasculogenesis and angiogenesis in embryonic-stem-cell-derived embryoid bodies. Development 102(3):471–478
23.
Zurück zum Zitat Vittet D, Prandini MH, Berthier R et al (1996) Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood 88(9):3424–3431 Vittet D, Prandini MH, Berthier R et al (1996) Embryonic stem cells differentiate in vitro to endothelial cells through successive maturation steps. Blood 88(9):3424–3431
24.
Zurück zum Zitat Choi K, Chung YS, Zhang WJ (2005) Hematopoietic and endothelial development of mouse embryonic stem cells in culture. Methods Mol Med 105:359–368 Choi K, Chung YS, Zhang WJ (2005) Hematopoietic and endothelial development of mouse embryonic stem cells in culture. Methods Mol Med 105:359–368
25.
Zurück zum Zitat Levenberg S (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci 99(7):4391–4396CrossRef Levenberg S (2002) Endothelial cells derived from human embryonic stem cells. Proc Natl Acad Sci 99(7):4391–4396CrossRef
26.
Zurück zum Zitat Levenberg S (2005) Engineering blood vessels from stem cells: recent advances and applications. Curr Opin Biotechnol 16(5):516–523CrossRef Levenberg S (2005) Engineering blood vessels from stem cells: recent advances and applications. Curr Opin Biotechnol 16(5):516–523CrossRef
27.
Zurück zum Zitat Gerecht-Nir S, Dazard J-E, Golan-Mashiach M et al (2005) Vascular gene expression and phenotypic correlation during differentiation of human embryonic stem cells. Dev Dyn 232(2):487–497CrossRef Gerecht-Nir S, Dazard J-E, Golan-Mashiach M et al (2005) Vascular gene expression and phenotypic correlation during differentiation of human embryonic stem cells. Dev Dyn 232(2):487–497CrossRef
28.
Zurück zum Zitat Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9(6):702–712CrossRef Rafii S, Lyden D (2003) Therapeutic stem and progenitor cell transplantation for organ vascularization and regeneration. Nat Med 9(6):702–712CrossRef
29.
Zurück zum Zitat Yamashita J, Itoh H, Hirashima M et al (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408(6808):92–96CrossRef Yamashita J, Itoh H, Hirashima M et al (2000) Flk1-positive cells derived from embryonic stem cells serve as vascular progenitors. Nature 408(6808):92–96CrossRef
30.
Zurück zum Zitat Iida M, Heike T, Yoshimoto M et al (2005) Identification of cardiac stem cells with FLK1, CD31, and VE-cadherin expression during embryonic stem cell differentiation. FASEB J 19(3):371–378CrossRef Iida M, Heike T, Yoshimoto M et al (2005) Identification of cardiac stem cells with FLK1, CD31, and VE-cadherin expression during embryonic stem cell differentiation. FASEB J 19(3):371–378CrossRef
31.
Zurück zum Zitat Gerecht-Nir S, Ziskind A, Cohen S et al (2003) Human embryonic stem cells as an in vitro model for human vascular development and the induction of vascular differentiation. Lab Invest 83(12):1811–1820CrossRef Gerecht-Nir S, Ziskind A, Cohen S et al (2003) Human embryonic stem cells as an in vitro model for human vascular development and the induction of vascular differentiation. Lab Invest 83(12):1811–1820CrossRef
32.
Zurück zum Zitat Kaufman DS (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad of Sci 98(19):10716–10721CrossRef Kaufman DS (2001) Hematopoietic colony-forming cells derived from human embryonic stem cells. Proc Natl Acad of Sci 98(19):10716–10721CrossRef
33.
Zurück zum Zitat Asahara T (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–966CrossRef Asahara T (1997) Isolation of putative progenitor endothelial cells for angiogenesis. Science 275(5302):964–966CrossRef
34.
Zurück zum Zitat Kawamoto A, Gwon H-C, Iwaguro H et al (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for Myocardial Ischemia. Circulation 103(5):634–637CrossRef Kawamoto A, Gwon H-C, Iwaguro H et al (2001) Therapeutic potential of ex vivo expanded endothelial progenitor cells for Myocardial Ischemia. Circulation 103(5):634–637CrossRef
35.
Zurück zum Zitat Kocher AA, Schuster MD, Szabolcs MJ et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7(4):430–436CrossRef Kocher AA, Schuster MD, Szabolcs MJ et al (2001) Neovascularization of ischemic myocardium by human bone-marrow-derived angioblasts prevents cardiomyocyte apoptosis, reduces remodeling and improves cardiac function. Nat Med 7(4):430–436CrossRef
36.
Zurück zum Zitat Stamm C, Westphal B, Kleine H-D et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361(9351):45–46CrossRef Stamm C, Westphal B, Kleine H-D et al (2003) Autologous bone-marrow stem-cell transplantation for myocardial regeneration. Lancet 361(9351):45–46CrossRef
37.
Zurück zum Zitat Ingram DA, Mead LE, Tanaka H et al (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104(9):2752–2760CrossRef Ingram DA, Mead LE, Tanaka H et al (2004) Identification of a novel hierarchy of endothelial progenitor cells using human peripheral and umbilical cord blood. Blood 104(9):2752–2760CrossRef
38.
Zurück zum Zitat Narazaki G, Uosaki H, Teranishi M et al (2008) Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118(5):498–506CrossRef Narazaki G, Uosaki H, Teranishi M et al (2008) Directed and systematic differentiation of cardiovascular cells from mouse induced pluripotent stem cells. Circulation 118(5):498–506CrossRef
39.
Zurück zum Zitat Rufaihah AJ, Huang NF, Jamé S et al (2011) Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol 31(11):e72–79CrossRef Rufaihah AJ, Huang NF, Jamé S et al (2011) Endothelial cells derived from human iPSCS increase capillary density and improve perfusion in a mouse model of peripheral arterial disease. Arterioscler Thromb Vasc Biol 31(11):e72–79CrossRef
40.
Zurück zum Zitat Rufaihah AJ, Huang NF, Kim J et al (2013) Human induced pluripotent stem cell-derived endothelial cells exhibit functional heterogeneity. Am J Transl Res 5(1):21–35 Rufaihah AJ, Huang NF, Kim J et al (2013) Human induced pluripotent stem cell-derived endothelial cells exhibit functional heterogeneity. Am J Transl Res 5(1):21–35
41.
Zurück zum Zitat Volz KS, Miljan E, Khoo A et al (2012) Development of pluripotent stem cells for vascular therapy. Vascul Pharmacol 56(5–6):288–296CrossRef Volz KS, Miljan E, Khoo A et al (2012) Development of pluripotent stem cells for vascular therapy. Vascul Pharmacol 56(5–6):288–296CrossRef
42.
Zurück zum Zitat Schoen FJ (2011) Heart valve tissue engineering: quo vadis? Curr Opin Biotechnol 22(5):698–705CrossRef Schoen FJ (2011) Heart valve tissue engineering: quo vadis? Curr Opin Biotechnol 22(5):698–705CrossRef
43.
Zurück zum Zitat Pankajakshan D, Agrawal DK (2010) Scaffolds in tissue engineering of blood vessels. Can J Physiol Pharmacol 88(9):855–873CrossRef Pankajakshan D, Agrawal DK (2010) Scaffolds in tissue engineering of blood vessels. Can J Physiol Pharmacol 88(9):855–873CrossRef
44.
Zurück zum Zitat Vismara R, Soncini M, Talò G et al (2010) A bioreactor with compliance monitoring for heart valve grafts. Ann Biomed Eng 38(1):100–108CrossRef Vismara R, Soncini M, Talò G et al (2010) A bioreactor with compliance monitoring for heart valve grafts. Ann Biomed Eng 38(1):100–108CrossRef
45.
Zurück zum Zitat Rubbens MP, Driessen-Mol A, Boerboom RA et al (2009) Quantification of the temporal evolution of collagen orientation in mechanically conditioned engineered cardiovascular tissues. Ann Biomed Eng 37(7):1263–1272CrossRef Rubbens MP, Driessen-Mol A, Boerboom RA et al (2009) Quantification of the temporal evolution of collagen orientation in mechanically conditioned engineered cardiovascular tissues. Ann Biomed Eng 37(7):1263–1272CrossRef
46.
Zurück zum Zitat Balguid A, Mol A, Van Vlimmeren MA et al (2009) Hypoxia induces near-native mechanical properties in engineered heart valve tissue. Circulation 119(2):290–297CrossRef Balguid A, Mol A, Van Vlimmeren MA et al (2009) Hypoxia induces near-native mechanical properties in engineered heart valve tissue. Circulation 119(2):290–297CrossRef
47.
Zurück zum Zitat Wang L, Wilshaw S-P, Korossis S et al (2009) Factors influencing the oxygen consumption rate of aortic valve interstitial cells: application to tissue engineering. Tissue Eng Part C Methods 15(3):355–363CrossRef Wang L, Wilshaw S-P, Korossis S et al (2009) Factors influencing the oxygen consumption rate of aortic valve interstitial cells: application to tissue engineering. Tissue Eng Part C Methods 15(3):355–363CrossRef
48.
Zurück zum Zitat Robinson PS, Johnson SL, Evans MC et al (2008) Functional tissue-engineered valves from cell-remodeled fibrin with commissural alignment of cell-produced collagen. Tissue Eng Part A 14(1):83–95CrossRef Robinson PS, Johnson SL, Evans MC et al (2008) Functional tissue-engineered valves from cell-remodeled fibrin with commissural alignment of cell-produced collagen. Tissue Eng Part A 14(1):83–95CrossRef
49.
Zurück zum Zitat Flanagan TC, Sachweh JS, Frese J et al (2009) In vivo remodeling and structural characterization of fibrin-based tissue-engineered heart valves in the adult sheep model. Tissue Eng Part A 15(10):2965–2976CrossRef Flanagan TC, Sachweh JS, Frese J et al (2009) In vivo remodeling and structural characterization of fibrin-based tissue-engineered heart valves in the adult sheep model. Tissue Eng Part A 15(10):2965–2976CrossRef
50.
Zurück zum Zitat Niklason LE (1999) Functional arteries grown in vitro. Science 284(5413):489–493CrossRef Niklason LE (1999) Functional arteries grown in vitro. Science 284(5413):489–493CrossRef
51.
Zurück zum Zitat Liao J, Joyce EM, Sacks MS (2008) Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials 29(8):1065–1074CrossRef Liao J, Joyce EM, Sacks MS (2008) Effects of decellularization on the mechanical and structural properties of the porcine aortic valve leaflet. Biomaterials 29(8):1065–1074CrossRef
52.
Zurück zum Zitat Bayrak A, Tyralla M, Ladhoff J et al (2010) Human immune responses to porcine xenogeneic matrices and their extracellular matrix constituents in vitro. Biomaterials 31(14):3793–3803CrossRef Bayrak A, Tyralla M, Ladhoff J et al (2010) Human immune responses to porcine xenogeneic matrices and their extracellular matrix constituents in vitro. Biomaterials 31(14):3793–3803CrossRef
53.
Zurück zum Zitat Honge JL, Funder J, Hansen E et al (2011) Recellularization of aortic valves in pigs. Eur J Cardiothorac Surg 39(6):829–834CrossRef Honge JL, Funder J, Hansen E et al (2011) Recellularization of aortic valves in pigs. Eur J Cardiothorac Surg 39(6):829–834CrossRef
54.
Zurück zum Zitat Baraki H, Tudorache I, Braun M et al (2009) Orthotopic replacement of the aortic valve with decellularized allograft in a sheep model. Biomaterials 30(31):6240–6246CrossRef Baraki H, Tudorache I, Braun M et al (2009) Orthotopic replacement of the aortic valve with decellularized allograft in a sheep model. Biomaterials 30(31):6240–6246CrossRef
55.
Zurück zum Zitat Dohmen PM, Lembcke A, Holinski S et al (2007) Midterm clinical results using a tissue-engineered pulmonary valve to reconstruct the right ventricular outflow tract during the Ross procedure. Ann Thorac Surg 84(3):729–736CrossRef Dohmen PM, Lembcke A, Holinski S et al (2007) Midterm clinical results using a tissue-engineered pulmonary valve to reconstruct the right ventricular outflow tract during the Ross procedure. Ann Thorac Surg 84(3):729–736CrossRef
56.
Zurück zum Zitat Hiemann NE, Mani M, Huebler M et al (2010) Complete destruction of a tissue-engineered porcine xenograft in pulmonary valve position after the Ross procedure. J Thorac Cardiovasc Surg 139(4):e67–68CrossRef Hiemann NE, Mani M, Huebler M et al (2010) Complete destruction of a tissue-engineered porcine xenograft in pulmonary valve position after the Ross procedure. J Thorac Cardiovasc Surg 139(4):e67–68CrossRef
57.
Zurück zum Zitat Shinoka T, Shum-Tim D, Ma PX et al (1998) Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg 115(3):536–546CrossRef Shinoka T, Shum-Tim D, Ma PX et al (1998) Creation of viable pulmonary artery autografts through tissue engineering. J Thorac Cardiovasc Surg 115(3):536–546CrossRef
58.
Zurück zum Zitat Chrobak KM, Potter DR, Tien J (2006) Formation of perfused, functional microvascular tubes in vitro. Microvasc Res 71(3):185–196CrossRef Chrobak KM, Potter DR, Tien J (2006) Formation of perfused, functional microvascular tubes in vitro. Microvasc Res 71(3):185–196CrossRef
59.
Zurück zum Zitat Norotte C, Marga FS, Niklason LE et al (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910–5917CrossRef Norotte C, Marga FS, Niklason LE et al (2009) Scaffold-free vascular tissue engineering using bioprinting. Biomaterials 30(30):5910–5917CrossRef
60.
Zurück zum Zitat L’heureux N, Pâquet S, Labbé R et al (1998) A completely biological tissue-engineered human blood vessel. FASEB J. 12(1):47–56 L’heureux N, Pâquet S, Labbé R et al (1998) A completely biological tissue-engineered human blood vessel. FASEB J. 12(1):47–56
61.
Zurück zum Zitat L’Heureux N, Dusserre N, Marini A et al (2007) Technology Insight: the evolution of tissue-engineered vascular grafts—from research to clinical practice. Nat Clin Pract Cardiovasc Med 4(7):389–395CrossRef L’Heureux N, Dusserre N, Marini A et al (2007) Technology Insight: the evolution of tissue-engineered vascular grafts—from research to clinical practice. Nat Clin Pract Cardiovasc Med 4(7):389–395CrossRef
62.
Zurück zum Zitat Saik JE, McHale MK, West JL (2012) Biofunctional materials for directing vascular development. Curr Vasc Pharmacol 10(3):331–341CrossRef Saik JE, McHale MK, West JL (2012) Biofunctional materials for directing vascular development. Curr Vasc Pharmacol 10(3):331–341CrossRef
63.
Zurück zum Zitat Hubbell JA (1999) Bioactive biomaterials. Curr Opin Biotechnol 10(2):123–129CrossRef Hubbell JA (1999) Bioactive biomaterials. Curr Opin Biotechnol 10(2):123–129CrossRef
64.
Zurück zum Zitat Lee K, Silva EA, Mooney DJ (2011) Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 8(55):153–170CrossRef Lee K, Silva EA, Mooney DJ (2011) Growth factor delivery-based tissue engineering: general approaches and a review of recent developments. J R Soc Interface 8(55):153–170CrossRef
65.
Zurück zum Zitat Maynard HD, Hubbell JA (2005) Discovery of a sulfated tetrapeptide that binds to vascular endothelial growth factor. Acta Biomater 1(4):451–459CrossRef Maynard HD, Hubbell JA (2005) Discovery of a sulfated tetrapeptide that binds to vascular endothelial growth factor. Acta Biomater 1(4):451–459CrossRef
66.
Zurück zum Zitat Koch S, Yao C, Grieb G et al (2006) Enhancing angiogenesis in collagen matrices by covalent incorporation of VEGF. J Mater Sci Mater Med 17(8):735–741CrossRef Koch S, Yao C, Grieb G et al (2006) Enhancing angiogenesis in collagen matrices by covalent incorporation of VEGF. J Mater Sci Mater Med 17(8):735–741CrossRef
67.
Zurück zum Zitat Moon JJ, Lee S-H, West JL (2007) Synthetic biomimetic hydrogels incorporated with Ephrin-A1 for therapeutic angiogenesis. Biomacromolecules 8(1):42–49CrossRef Moon JJ, Lee S-H, West JL (2007) Synthetic biomimetic hydrogels incorporated with Ephrin-A1 for therapeutic angiogenesis. Biomacromolecules 8(1):42–49CrossRef
68.
Zurück zum Zitat Leslie-Barbick JE, Moon JJ, West JL (2009) Covalently-immobilized vascular endothelial growth factor promotes endothelial cell tubulogenesis in poly(ethylene glycol) diacrylate hydrogels. J Biomater Sci Polym Ed 20(12):1763–1779CrossRef Leslie-Barbick JE, Moon JJ, West JL (2009) Covalently-immobilized vascular endothelial growth factor promotes endothelial cell tubulogenesis in poly(ethylene glycol) diacrylate hydrogels. J Biomater Sci Polym Ed 20(12):1763–1779CrossRef
69.
Zurück zum Zitat Saik JE, Gould DJ, Keswani AH et al (2011) Biomimetic hydrogels with immobilized Ephrin-A1 for therapeutic angiogenesis. Biomacromolecules 12(7):2715–2722CrossRef Saik JE, Gould DJ, Keswani AH et al (2011) Biomimetic hydrogels with immobilized Ephrin-A1 for therapeutic angiogenesis. Biomacromolecules 12(7):2715–2722CrossRef
70.
Zurück zum Zitat Ikeda Y, Fukuda N, Wada M et al (2004) Development of angiogenic cell and gene therapy by transplantation of umbilical cord blood with vascular endothelial growth factor gene. Hypertens Res 27(2):119–128CrossRef Ikeda Y, Fukuda N, Wada M et al (2004) Development of angiogenic cell and gene therapy by transplantation of umbilical cord blood with vascular endothelial growth factor gene. Hypertens Res 27(2):119–128CrossRef
71.
Zurück zum Zitat Pratt AB, Weber FE, Schmoekel HG et al (2004) Synthetic extracellular matrices for in situ tissue engineering. Biotechnol Bioeng 86(1):27–36CrossRef Pratt AB, Weber FE, Schmoekel HG et al (2004) Synthetic extracellular matrices for in situ tissue engineering. Biotechnol Bioeng 86(1):27–36CrossRef
72.
Zurück zum Zitat Rinsch C, Quinodoz P, Pittet B et al (2001) Delivery of FGF-2 but not VEGF by encapsulated genetically engineered myoblasts improves survival and vascularization in a model of acute skin flap ischemia. Gene Ther 8(7):523–533CrossRef Rinsch C, Quinodoz P, Pittet B et al (2001) Delivery of FGF-2 but not VEGF by encapsulated genetically engineered myoblasts improves survival and vascularization in a model of acute skin flap ischemia. Gene Ther 8(7):523–533CrossRef
73.
Zurück zum Zitat Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55CrossRef Lutolf MP, Hubbell JA (2005) Synthetic biomaterials as instructive extracellular microenvironments for morphogenesis in tissue engineering. Nat Biotechnol 23(1):47–55CrossRef
74.
Zurück zum Zitat Phelps EA, Landázuri N, Thulé PM et al (2010) Bioartificial matrices for therapeutic vascularization. Proc Natl Acad Sci 107(8):3323–3328CrossRef Phelps EA, Landázuri N, Thulé PM et al (2010) Bioartificial matrices for therapeutic vascularization. Proc Natl Acad Sci 107(8):3323–3328CrossRef
75.
Zurück zum Zitat Halstenberg S, Panitch A, Rizzi S et al (2002) Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 3(4):710–723 Halstenberg S, Panitch A, Rizzi S et al (2002) Biologically engineered protein-graft-poly(ethylene glycol) hydrogels: a cell adhesive and plasmin-degradable biosynthetic material for tissue repair. Biomacromolecules 3(4):710–723
76.
Zurück zum Zitat Moon JJ, Saik JE, Poché RA et al (2010) Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31(14):3840–3847CrossRef Moon JJ, Saik JE, Poché RA et al (2010) Biomimetic hydrogels with pro-angiogenic properties. Biomaterials 31(14):3840–3847CrossRef
77.
Zurück zum Zitat Salinas CN, Anseth KS (2008) The enhancement of chondrogenic differentiation of human mesenchymal stem cells by enzymatically regulated RGD functionalities. Biomaterials 29(15):2370–2377CrossRef Salinas CN, Anseth KS (2008) The enhancement of chondrogenic differentiation of human mesenchymal stem cells by enzymatically regulated RGD functionalities. Biomaterials 29(15):2370–2377CrossRef
78.
Zurück zum Zitat Zhu J (2010) Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31(17):4639–4656CrossRef Zhu J (2010) Bioactive modification of poly(ethylene glycol) hydrogels for tissue engineering. Biomaterials 31(17):4639–4656CrossRef
79.
Zurück zum Zitat Xiao Y, Truskey GA (1996) Effect of receptor-ligand affinity on the strength of endothelial cell adhesion. Biophys J 71(5):2869–2884CrossRef Xiao Y, Truskey GA (1996) Effect of receptor-ligand affinity on the strength of endothelial cell adhesion. Biophys J 71(5):2869–2884CrossRef
80.
Zurück zum Zitat Wacker BK, Alford SK, Scott EA et al (2008) Endothelial cell migration on RGD-Peptide-containing PEG hydrogels in the presence of Sphingosine 1-Phosphate. Biophys J 94(1):273–285CrossRef Wacker BK, Alford SK, Scott EA et al (2008) Endothelial cell migration on RGD-Peptide-containing PEG hydrogels in the presence of Sphingosine 1-Phosphate. Biophys J 94(1):273–285CrossRef
82.
Zurück zum Zitat Gauvin R, Parenteau-Bareil R, Dokmeci MR et al (2012) Hydrogels and microtechnologies for engineering the cellular microenvironment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(3):235–246CrossRef Gauvin R, Parenteau-Bareil R, Dokmeci MR et al (2012) Hydrogels and microtechnologies for engineering the cellular microenvironment. Wiley Interdiscip Rev Nanomed Nanobiotechnol 4(3):235–246CrossRef
83.
Zurück zum Zitat Ghajar CM, Chen X, Harris JW et al (2008) The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys J 94(5):1930–1941CrossRef Ghajar CM, Chen X, Harris JW et al (2008) The effect of matrix density on the regulation of 3-D capillary morphogenesis. Biophys J 94(5):1930–1941CrossRef
84.
Zurück zum Zitat Black AF, Berthod F, L’heureux N et al (1998) In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J 12(13):1331–1340 Black AF, Berthod F, L’heureux N et al (1998) In vitro reconstruction of a human capillary-like network in a tissue-engineered skin equivalent. FASEB J 12(13):1331–1340
85.
Zurück zum Zitat Hudon V, Berthod F, Black AF et al (2003) A tissue-engineered endothelialized dermis to study the modulation of angiogenic and angiostatic molecules on capillary-like tube formation in vitro. Br J Dermatol 148(6):1094–1104CrossRef Hudon V, Berthod F, Black AF et al (2003) A tissue-engineered endothelialized dermis to study the modulation of angiogenic and angiostatic molecules on capillary-like tube formation in vitro. Br J Dermatol 148(6):1094–1104CrossRef
86.
Zurück zum Zitat Tremblay P-L, Hudon V, Berthod F et al (2005) Inosculation of tissue-engineered capillaries with the host’s vasculature in a reconstructed skin transplanted on mice. Am J Transplant 5(5):1002–1010CrossRef Tremblay P-L, Hudon V, Berthod F et al (2005) Inosculation of tissue-engineered capillaries with the host’s vasculature in a reconstructed skin transplanted on mice. Am J Transplant 5(5):1002–1010CrossRef
87.
Zurück zum Zitat Alajati A, Laib AM, Weber H et al (2008) Spheroid-based engineering of a human vasculature in mice. Nat Methods 5(5):439–445CrossRef Alajati A, Laib AM, Weber H et al (2008) Spheroid-based engineering of a human vasculature in mice. Nat Methods 5(5):439–445CrossRef
88.
Zurück zum Zitat Sorrell JM, Baber MA, Caplan AI (2009) Influence of adult mesenchymal stem cells on in vitro vascular formation. Tissue Eng Part A 15(7):1751–1761CrossRef Sorrell JM, Baber MA, Caplan AI (2009) Influence of adult mesenchymal stem cells on in vitro vascular formation. Tissue Eng Part A 15(7):1751–1761CrossRef
89.
Zurück zum Zitat Tsigkou O, Pomerantseva I, Spencer JA et al (2010) Engineered vascularized bone grafts. Proc Natl Acad Sci 107(8):3311–3316CrossRef Tsigkou O, Pomerantseva I, Spencer JA et al (2010) Engineered vascularized bone grafts. Proc Natl Acad Sci 107(8):3311–3316CrossRef
90.
Zurück zum Zitat Zheng Y, Chen J, Craven M et al (2012) In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci 109(24):9342–9347CrossRef Zheng Y, Chen J, Craven M et al (2012) In vitro microvessels for the study of angiogenesis and thrombosis. Proc Natl Acad Sci 109(24):9342–9347CrossRef
91.
Zurück zum Zitat Raghavan S, Nelson CM, Baranski JD et al (2010) Geometrically controlled endothelial tubulogenesis in micropatterned gels. Tissue Eng Part A 16(7):2255–2263CrossRef Raghavan S, Nelson CM, Baranski JD et al (2010) Geometrically controlled endothelial tubulogenesis in micropatterned gels. Tissue Eng Part A 16(7):2255–2263CrossRef
92.
Zurück zum Zitat Sadr N, Zhu M, Osaki T et al (2011) SAM-based cell transfer to photopatterned hydrogels for microengineering vascular-like structures. Biomaterials 32(30):7479–7490CrossRef Sadr N, Zhu M, Osaki T et al (2011) SAM-based cell transfer to photopatterned hydrogels for microengineering vascular-like structures. Biomaterials 32(30):7479–7490CrossRef
93.
Zurück zum Zitat Miller JS, Stevens KR, Yang MT et al (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11(9):768–774CrossRef Miller JS, Stevens KR, Yang MT et al (2012) Rapid casting of patterned vascular networks for perfusable engineered three-dimensional tissues. Nat Mater 11(9):768–774CrossRef
94.
Zurück zum Zitat Chen X, Aledia AS, Popson SA et al (2010) Rapid anastomosis of endothelial progenitor cell–derived vessels with host vasculature is promoted by a high density of co-transplanted fibroblasts. Tissue Eng Part A 16(2):585–594CrossRef Chen X, Aledia AS, Popson SA et al (2010) Rapid anastomosis of endothelial progenitor cell–derived vessels with host vasculature is promoted by a high density of co-transplanted fibroblasts. Tissue Eng Part A 16(2):585–594CrossRef
95.
Zurück zum Zitat Cheng G, Liao S, Wong HK et al (2011) Engineered blood vessel networks connect to host vasculature via wrapping-and-tapping anastomosis. Blood 118(17):4740–4749CrossRef Cheng G, Liao S, Wong HK et al (2011) Engineered blood vessel networks connect to host vasculature via wrapping-and-tapping anastomosis. Blood 118(17):4740–4749CrossRef
96.
Zurück zum Zitat Korff T, Augustin HG (1999) Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J Cell Sci 112(19):3249–3258 Korff T, Augustin HG (1999) Tensional forces in fibrillar extracellular matrices control directional capillary sprouting. J Cell Sci 112(19):3249–3258
97.
Zurück zum Zitat Simionescu A, Schulte JB, Fercana G et al (2011) Inflammation in cardiovascular tissue engineering: the challenge to a promise: a minireview. Int J Inflam 2011:1–11CrossRef Simionescu A, Schulte JB, Fercana G et al (2011) Inflammation in cardiovascular tissue engineering: the challenge to a promise: a minireview. Int J Inflam 2011:1–11CrossRef
98.
Zurück zum Zitat Niklason LE, Langer RS (1997) Advances in tissue engineering of blood vessels and other tissues. Transpl Immunol 5(4):303–306CrossRef Niklason LE, Langer RS (1997) Advances in tissue engineering of blood vessels and other tissues. Transpl Immunol 5(4):303–306CrossRef
99.
Zurück zum Zitat Patel A, Fine B, Sandig M et al (2006) Elastin biosynthesis: the missing link in tissue-engineered blood vessels. Cardiovasc Res 71(1):40–49CrossRef Patel A, Fine B, Sandig M et al (2006) Elastin biosynthesis: the missing link in tissue-engineered blood vessels. Cardiovasc Res 71(1):40–49CrossRef
100.
Zurück zum Zitat Singh SK, Desai ND, Petroff SD et al (2008) The impact of diabetic status on coronary artery bypass graft patency: insights from the radial artery patency study. Circulation 118(14 Suppl):S222–225CrossRef Singh SK, Desai ND, Petroff SD et al (2008) The impact of diabetic status on coronary artery bypass graft patency: insights from the radial artery patency study. Circulation 118(14 Suppl):S222–225CrossRef
101.
Zurück zum Zitat Franco C, Gerhardt H (2012) Tissue engineering: blood vessels on a chip. Nature 488(7412):465–466CrossRef Franco C, Gerhardt H (2012) Tissue engineering: blood vessels on a chip. Nature 488(7412):465–466CrossRef
Metadaten
Titel
Structure, Function, and Development of Blood Vessels: Lessons for Tissue Engineering
verfasst von
Hamisha Ardalani
Amir H. Assadi
William L. Murphy
Copyright-Jahr
2014
Verlag
Springer London
DOI
https://doi.org/10.1007/978-1-4471-4372-7_6

Neuer Inhalt