Skip to main content

2016 | OriginalPaper | Buchkapitel

Structure, Mechanism, and Mutation of Bacterial Luciferase

verfasst von : Ruchanok Tinikul, Pimchai Chaiyen

Erschienen in: Bioluminescence: Fundamentals and Applications in Biotechnology - Volume 3

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Bacterial luciferase is a flavin-dependent monooxygenase found in bioluminescent bacteria. The enzyme catalyzes a light-emitting reaction by using reduced flavin, long chain aldehyde, and oxygen as substrates and yields oxidized flavin, carboxylic acid, and water as products with concomitant emission of blue-green light around 485–490 nm. The enzyme is a heterodimer consisting of two homologous subunits, designated as the α- and β-subunits. The reactive reaction center is located in the α-subunit, whereas the β-subunit is required for maintaining the active conformation of the α-subunit. The enzyme reaction occurs through the generation of a reactive C4a-oxygenflavin adduct, presumably C4a-peroxyflavin, before the light-emitting species is generated from the decomposition of an adduct between the C4a-peroxyflavin and the aldehyde. Because the luciferase reaction generates light, the enzyme has the potential to be used as a bioreporter for a wide variety of applications. With the recent invention of the fusion enzyme that can be expressed in mammalian cells, future possibilities for the development of additional bioreporter applications are promising.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat AbouKhair NK, Ziegler MM, Baldwin TO (1985) Bacterial luciferase: demonstration of a catalytically competent altered conformational state following a single turnover. Biochemistry 24:3942–3947CrossRef AbouKhair NK, Ziegler MM, Baldwin TO (1985) Bacterial luciferase: demonstration of a catalytically competent altered conformational state following a single turnover. Biochemistry 24:3942–3947CrossRef
2.
Zurück zum Zitat Abu-Soud HM, Clark AC, Francisco WA, Baldwin TO, Raushel FM (1993) Kinetic destabilization of the hydroperoxy flavin intermediate by site-directed modification of the reactive thiol in bacterial luciferase. J Biol Chem 268:7699–7706 Abu-Soud HM, Clark AC, Francisco WA, Baldwin TO, Raushel FM (1993) Kinetic destabilization of the hydroperoxy flavin intermediate by site-directed modification of the reactive thiol in bacterial luciferase. J Biol Chem 268:7699–7706
3.
Zurück zum Zitat Abu-Soud HM, Mullins LS, Baldwin TO, Raushel FM (1992) Stopped-flow kinetic analysis of the bacterial luciferase reaction. Biochemistry 31:3807–3813CrossRef Abu-Soud HM, Mullins LS, Baldwin TO, Raushel FM (1992) Stopped-flow kinetic analysis of the bacterial luciferase reaction. Biochemistry 31:3807–3813CrossRef
4.
Zurück zum Zitat Baldwin TO, Chen LH, Chlumsky LJ, Devine JH, Ziegler MM (1989) Site-directed mutagenesis of bacterial luciferase: analysis of the essential thiol. J Biolumin Chemilumin 4:40–48CrossRef Baldwin TO, Chen LH, Chlumsky LJ, Devine JH, Ziegler MM (1989) Site-directed mutagenesis of bacterial luciferase: analysis of the essential thiol. J Biolumin Chemilumin 4:40–48CrossRef
5.
Zurück zum Zitat Balke K, Kadow M, Mallin H, Saß S, Bornscheuer UT (2012) Discovery, application and protein engineering of Baeyer–Villiger monooxygenases for organic synthesis. Org Biomol Chem 10:6249–6265CrossRef Balke K, Kadow M, Mallin H, Saß S, Bornscheuer UT (2012) Discovery, application and protein engineering of Baeyer–Villiger monooxygenases for organic synthesis. Org Biomol Chem 10:6249–6265CrossRef
6.
Zurück zum Zitat Balny C, Hastings JW (1975) Fluorescence and bioluminescence of bacterial luciferase intermediates. Biochemistry 14:4719–4723CrossRef Balny C, Hastings JW (1975) Fluorescence and bioluminescence of bacterial luciferase intermediates. Biochemistry 14:4719–4723CrossRef
7.
Zurück zum Zitat Becvar JE, Tu S-C, Hastings JW (1978) Activity and stability of the luciferase-flavin intermediate. Biochemistry 17:1807–1812CrossRef Becvar JE, Tu S-C, Hastings JW (1978) Activity and stability of the luciferase-flavin intermediate. Biochemistry 17:1807–1812CrossRef
8.
Zurück zum Zitat Boylan M, Pelletier J, Meighen EA (1989) Fused bacterial luciferase subunits catalyze light emission in eukaryotes and prokaryotes. J Biol Chem 264:1915–1918 Boylan M, Pelletier J, Meighen EA (1989) Fused bacterial luciferase subunits catalyze light emission in eukaryotes and prokaryotes. J Biol Chem 264:1915–1918
9.
Zurück zum Zitat Branchini BR, Southworth TL, Khattak NF, Michelini E, Roda A (2005) Red- and green-emitting firefly luciferase mutants for bioluminescent reporter applications. Anal Biochem 345:140–148CrossRef Branchini BR, Southworth TL, Khattak NF, Michelini E, Roda A (2005) Red- and green-emitting firefly luciferase mutants for bioluminescent reporter applications. Anal Biochem 345:140–148CrossRef
10.
Zurück zum Zitat Campbell ZT, Baldwin TO (2009) Two lysine residues in the bacterial luciferase mobile loop stabilize reaction intermediates. J Biol Chem 284:32827–32834CrossRef Campbell ZT, Baldwin TO (2009) Two lysine residues in the bacterial luciferase mobile loop stabilize reaction intermediates. J Biol Chem 284:32827–32834CrossRef
11.
Zurück zum Zitat Campbell ZT, Baldwin TO, Miyashita O (2010) Analysis of the bacterial luciferase mobile loop by replica-exchange molecular dynamics. Biophys J 99:4012–4019CrossRef Campbell ZT, Baldwin TO, Miyashita O (2010) Analysis of the bacterial luciferase mobile loop by replica-exchange molecular dynamics. Biophys J 99:4012–4019CrossRef
12.
Zurück zum Zitat Campbell ZT, Weichsel A, Montfort WR, Baldwin TO (2009) Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the β subunit. Biochemistry 48:6085–6094CrossRef Campbell ZT, Weichsel A, Montfort WR, Baldwin TO (2009) Crystal structure of the bacterial luciferase/flavin complex provides insight into the function of the β subunit. Biochemistry 48:6085–6094CrossRef
13.
Zurück zum Zitat Chaiyen P, Fraaije MW, Mattevi A (2012) The enigmatic reaction of flavins with oxygen. Trends Biochem Sci 37:373–380CrossRef Chaiyen P, Fraaije MW, Mattevi A (2012) The enigmatic reaction of flavins with oxygen. Trends Biochem Sci 37:373–380CrossRef
14.
Zurück zum Zitat Choi H, Tang C-K, Tu S-C (1995) Catalytically active forms of the individual subunits of Vibrio harveyi luciferase and their kinetic and binding properties. J Biol Chem 270:16813–16819CrossRef Choi H, Tang C-K, Tu S-C (1995) Catalytically active forms of the individual subunits of Vibrio harveyi luciferase and their kinetic and binding properties. J Biol Chem 270:16813–16819CrossRef
15.
Zurück zum Zitat Cline TW, Hastings JW (1972) Mutationally altered bacterial luciferase. Implications for subunit functions. Biochemistry 11:3359–3370 Cline TW, Hastings JW (1972) Mutationally altered bacterial luciferase. Implications for subunit functions. Biochemistry 11:3359–3370
16.
Zurück zum Zitat Cline TW, Hastings JW (1974) Mutated luciferases with altered bioluminescence emission spectra. J Biol Chem 249:4668–4669 Cline TW, Hastings JW (1974) Mutated luciferases with altered bioluminescence emission spectra. J Biol Chem 249:4668–4669
17.
Zurück zum Zitat Cole LJ, Entsch B, Ortiz-Maldonado M, Ballou DP (2005) Properties of p-hydroxybenzoate hydroxylase when stabilized in its open conformation. Biochemistry 44:14807–14817CrossRef Cole LJ, Entsch B, Ortiz-Maldonado M, Ballou DP (2005) Properties of p-hydroxybenzoate hydroxylase when stabilized in its open conformation. Biochemistry 44:14807–14817CrossRef
18.
Zurück zum Zitat Delong EF, Steinhauer D, Israel A, Nealson KH (1987) Isolation of the lux gene from Photobacterium leiognathi and expression in Escherichia coli. Gene 54:203–210CrossRef Delong EF, Steinhauer D, Israel A, Nealson KH (1987) Isolation of the lux gene from Photobacterium leiognathi and expression in Escherichia coli. Gene 54:203–210CrossRef
19.
Zurück zum Zitat Eberhard A, Hastings JW (1972) A postulated mechanism for the bioluminescent oxidation of reduced flavin mononucleotide. Biochem Biophys Res Commun 47:348–353CrossRef Eberhard A, Hastings JW (1972) A postulated mechanism for the bioluminescent oxidation of reduced flavin mononucleotide. Biochem Biophys Res Commun 47:348–353CrossRef
20.
Zurück zum Zitat Eckstein JW, Hastings JW, Ghisla S (1993) Mechanism of bacterial bioluminescence: 4a,5-dihydroflavin analogs as models for luciferase hydroperoxide intermediates and the effect of substituents at the 8-position of flavin on luciferase kinetics. Biochemistry 32:404–411CrossRef Eckstein JW, Hastings JW, Ghisla S (1993) Mechanism of bacterial bioluminescence: 4a,5-dihydroflavin analogs as models for luciferase hydroperoxide intermediates and the effect of substituents at the 8-position of flavin on luciferase kinetics. Biochemistry 32:404–411CrossRef
21.
Zurück zum Zitat Engebrecht J, Simon M, Silverman M (1985) Measuring gene expression with light. Science 227:1345–1347CrossRef Engebrecht J, Simon M, Silverman M (1985) Measuring gene expression with light. Science 227:1345–1347CrossRef
22.
Zurück zum Zitat Entsch B, Cole LJ, Ballou DP (2005) Protein dynamics and electrostatics in the function of p-hydroxybenzoate hydroxylase. Arch Biochem Biophys 433:297–311CrossRef Entsch B, Cole LJ, Ballou DP (2005) Protein dynamics and electrostatics in the function of p-hydroxybenzoate hydroxylase. Arch Biochem Biophys 433:297–311CrossRef
23.
Zurück zum Zitat Escher A, O’Kane DJ, Lee J, Szalay AA (1989) Bacterial luciferase αβ fusion protein is fully active as a monomer and highly sensitive in vivo to elevated temperature. Proc Nati Acad Sci USA 86:6528–6532CrossRef Escher A, O’Kane DJ, Lee J, Szalay AA (1989) Bacterial luciferase αβ fusion protein is fully active as a monomer and highly sensitive in vivo to elevated temperature. Proc Nati Acad Sci USA 86:6528–6532CrossRef
24.
Zurück zum Zitat Fisher AJ, Thompson TB, Thoden JB, Baldwin TO (1996) The 1.5 Å resolution crystal structure of bacterial luciferase low salt conditions. J Biol Chem 271:21956–21968CrossRef Fisher AJ, Thompson TB, Thoden JB, Baldwin TO (1996) The 1.5 Å resolution crystal structure of bacterial luciferase low salt conditions. J Biol Chem 271:21956–21968CrossRef
25.
Zurück zum Zitat Francisco WA, Abu-Soud HM, Baldwin TO, Raushel FM (1993) Interaction of bacterial luciferase with aldehyde substrates and inhibitors. J Biol Chem 268:24734–24741 Francisco WA, Abu-Soud HM, Baldwin TO, Raushel FM (1993) Interaction of bacterial luciferase with aldehyde substrates and inhibitors. J Biol Chem 268:24734–24741
26.
Zurück zum Zitat Francisco WA, Abu-Soud HM, DelMonte AJ, Singleton DA, Baldwin TO, Raushel FM (1998) Deuterium kinetic isotope effects and the mechanism of the bacterial luciferase reaction. Biochemistry 37:2596–2606CrossRef Francisco WA, Abu-Soud HM, DelMonte AJ, Singleton DA, Baldwin TO, Raushel FM (1998) Deuterium kinetic isotope effects and the mechanism of the bacterial luciferase reaction. Biochemistry 37:2596–2606CrossRef
27.
Zurück zum Zitat Francisco WA, Abu-Soud HM, Topgi R, Baldwin TO, Raushel FM (1996) Interaction of bacterial luciferase with 8-substituted flavin mononucleotide derivatives. J Biol Chem 27:104–110 Francisco WA, Abu-Soud HM, Topgi R, Baldwin TO, Raushel FM (1996) Interaction of bacterial luciferase with 8-substituted flavin mononucleotide derivatives. J Biol Chem 27:104–110
28.
Zurück zum Zitat Fried A, Tu S-C (1984) Affinity labeling of the aldehyde site of bacterial luciferase. J Biol Chem 259:10754–10759 Fried A, Tu S-C (1984) Affinity labeling of the aldehyde site of bacterial luciferase. J Biol Chem 259:10754–10759
29.
Zurück zum Zitat Ghisla S, Hastings JW, Favaudon V, Lhoste JM (1978) Structure of the oxygen adduct intermediate in the bacterial luciferase reaction: 13C nuclear magnetic resonance determination. Proc Natl Acad Sci USA 75:5860–5863CrossRef Ghisla S, Hastings JW, Favaudon V, Lhoste JM (1978) Structure of the oxygen adduct intermediate in the bacterial luciferase reaction: 13C nuclear magnetic resonance determination. Proc Natl Acad Sci USA 75:5860–5863CrossRef
30.
Zurück zum Zitat Ghisla S, Massey V (1989) Mechanisms of flavoprotein-catalyzed reactions. Eur J Biochem 181:1–17CrossRef Ghisla S, Massey V (1989) Mechanisms of flavoprotein-catalyzed reactions. Eur J Biochem 181:1–17CrossRef
31.
Zurück zum Zitat Gunsalus-Miguel A, Meighen EA, Nicoli MZ, Nealson KH, Hastings JW (1972) Purification and properties of bacterial luciferases. J Biol Chem 247:398–404 Gunsalus-Miguel A, Meighen EA, Nicoli MZ, Nealson KH, Hastings JW (1972) Purification and properties of bacterial luciferases. J Biol Chem 247:398–404
32.
Zurück zum Zitat Hastings JW, Balny C, Peuch CL, Douzou P (1973) Spectral properties of an oxygenated luciferase-flavin intermediate isolated by low-temperature chromatography. Proc Natl Acad Sci USA 70:3468–3472CrossRef Hastings JW, Balny C, Peuch CL, Douzou P (1973) Spectral properties of an oxygenated luciferase-flavin intermediate isolated by low-temperature chromatography. Proc Natl Acad Sci USA 70:3468–3472CrossRef
33.
Zurück zum Zitat Hastings JW, Balny C (1975) The oxygenated bacterial luciferase-flavin intermediate. Reaction products via the light and dark pathways. J Biol Chem 250:7288–7293 Hastings JW, Balny C (1975) The oxygenated bacterial luciferase-flavin intermediate. Reaction products via the light and dark pathways. J Biol Chem 250:7288–7293
34.
Zurück zum Zitat Holzman TF, Baldwin TO (1980) Proteolytic inactivation of luciferases from three species of luminous marine bacteria, Beneckea harveyi, Photobacterium fischeri, and Photobacterium phosphoreum: evidence of a conserved structural feature. Proc Natl Acad Sci USA 77:6363–6367CrossRef Holzman TF, Baldwin TO (1980) Proteolytic inactivation of luciferases from three species of luminous marine bacteria, Beneckea harveyi, Photobacterium fischeri, and Photobacterium phosphoreum: evidence of a conserved structural feature. Proc Natl Acad Sci USA 77:6363–6367CrossRef
35.
Zurück zum Zitat Holzman TF, Baldwin TO (1980) The effects of phosphate on the structure and stability of the luciferases from Beneckea harveyi, Photobacterium fischeri, and Photobacterium phosphoreum. Biochem Biophys Res Commun 94:1199–1206CrossRef Holzman TF, Baldwin TO (1980) The effects of phosphate on the structure and stability of the luciferases from Beneckea harveyi, Photobacterium fischeri, and Photobacterium phosphoreum. Biochem Biophys Res Commun 94:1199–1206CrossRef
36.
Zurück zum Zitat Holzman TF, Baldwin TO (1983) Reversible inhibition of the bacterial luciferase catalyzed bioluminescence reaction by aldehyde substrate: kinetic mechanism and ligand effects. Biochemistry 22:2838–2846CrossRef Holzman TF, Baldwin TO (1983) Reversible inhibition of the bacterial luciferase catalyzed bioluminescence reaction by aldehyde substrate: kinetic mechanism and ligand effects. Biochemistry 22:2838–2846CrossRef
37.
Zurück zum Zitat Hosseinkhani S, Szittner R, Meighen EA (2005) Random mutagenesis of bacterial luciferase: critical role of Glu175 in the control of luminescence decay. Biochem J 385:575–580CrossRef Hosseinkhani S, Szittner R, Meighen EA (2005) Random mutagenesis of bacterial luciferase: critical role of Glu175 in the control of luminescence decay. Biochem J 385:575–580CrossRef
38.
Zurück zum Zitat Huang S, Tu S-C (1997) Identification and characterization of a catalytic base in bacterial luciferase by chemical rescue of a dark mutant. Biochemistry 36:14609–14615CrossRef Huang S, Tu S-C (1997) Identification and characterization of a catalytic base in bacterial luciferase by chemical rescue of a dark mutant. Biochemistry 36:14609–14615CrossRef
39.
Zurück zum Zitat Huijbers MM, Montersino S, Westphal AH, Tischler D, van Berkel WJ (2014) Flavin dependent monooxygenases. Arch Biochem Biophys 544:2–17CrossRef Huijbers MM, Montersino S, Westphal AH, Tischler D, van Berkel WJ (2014) Flavin dependent monooxygenases. Arch Biochem Biophys 544:2–17CrossRef
40.
Zurück zum Zitat Kaaret TW, Bruice TC (1990) Electrochemical luminescence with N(5)-ethyl-4a-hydroxy-3-methyl-4a,5-dihydrolumiflavin. The mechanism of bacterial luciferase. Photochem Photobiol 51:629–633CrossRef Kaaret TW, Bruice TC (1990) Electrochemical luminescence with N(5)-ethyl-4a-hydroxy-3-methyl-4a,5-dihydrolumiflavin. The mechanism of bacterial luciferase. Photochem Photobiol 51:629–633CrossRef
41.
Zurück zum Zitat KÜrfurst M, Ghisla S, Hastings JW (1984) Characterization and postulated structure of the primary emitter in the bacterial luciferase reaction. Proc Natl Acad Sci USA 81:2990–2994CrossRef KÜrfurst M, Ghisla S, Hastings JW (1984) Characterization and postulated structure of the primary emitter in the bacterial luciferase reaction. Proc Natl Acad Sci USA 81:2990–2994CrossRef
42.
Zurück zum Zitat Kurfuerst M, Macheroux P, Ghisla S, Hastins JW (1987) Isolation and characterization of the transient, luciferase-bound flavin-4a-hydroxide in the bacterial luciferase reaction. Biochim Biophys Acta 924:104–110CrossRef Kurfuerst M, Macheroux P, Ghisla S, Hastins JW (1987) Isolation and characterization of the transient, luciferase-bound flavin-4a-hydroxide in the bacterial luciferase reaction. Biochim Biophys Acta 924:104–110CrossRef
43.
Zurück zum Zitat Lei B, Cho KW, Tu S-C (1994) Mechanism of aldehyde inhibition of Vibrio harveyi luciferase. Identification of two aldehyde sites and relationship between aldehyde and flavin binding. J Biol Chem 269:5612–5618 Lei B, Cho KW, Tu S-C (1994) Mechanism of aldehyde inhibition of Vibrio harveyi luciferase. Identification of two aldehyde sites and relationship between aldehyde and flavin binding. J Biol Chem 269:5612–5618
44.
Zurück zum Zitat Lei B, Ding Q, Tu S-C (2004) Identity of the emitter in the bacterial luciferase luminescence reaction: binding and fluorescence quantum yield studies of 5-decyl-4a-hydroxy-4a,5-dihydroriboflavin-5’-phosphate as a model. Biochemistry 43:15975–15982CrossRef Lei B, Ding Q, Tu S-C (2004) Identity of the emitter in the bacterial luciferase luminescence reaction: binding and fluorescence quantum yield studies of 5-decyl-4a-hydroxy-4a,5-dihydroriboflavin-5’-phosphate as a model. Biochemistry 43:15975–15982CrossRef
45.
Zurück zum Zitat Li C-H, Tu S-C (2005) Active site hydrophobicity is critical to the bioluminescence activity of Vibrio harveyi luciferase. Biochemistry 44:12970–12977CrossRef Li C-H, Tu S-C (2005) Active site hydrophobicity is critical to the bioluminescence activity of Vibrio harveyi luciferase. Biochemistry 44:12970–12977CrossRef
46.
Zurück zum Zitat Li Z, Meighen EA (1994) The turnover of bacterial luciferase is limited by a slow decomposition of the ternary enzyme-product complex of luciferase, FMN, and fatty acid. J Biol Chem 269:6640–6644 Li Z, Meighen EA (1994) The turnover of bacterial luciferase is limited by a slow decomposition of the ternary enzyme-product complex of luciferase, FMN, and fatty acid. J Biol Chem 269:6640–6644
47.
Zurück zum Zitat Lin LY-C, Sulea T, Szittner R, Kor C, Purisima EO, Meighen EA (2002) Implications of the reactive thiol and the proximal non-proline cis-peptide bond in the structure and function of Vibrio harveyi luciferase. Biochemistry 41:9938–9945CrossRef Lin LY-C, Sulea T, Szittner R, Kor C, Purisima EO, Meighen EA (2002) Implications of the reactive thiol and the proximal non-proline cis-peptide bond in the structure and function of Vibrio harveyi luciferase. Biochemistry 41:9938–9945CrossRef
48.
Zurück zum Zitat Lin LY-C, Szittner R, Friedman R, Meighen EA (2004) Changes in the kinetics and emission spectrum on mutation of the chromophore-binding platform in Vibrio harveyi luciferase. Biochemistry 43:3183–3194CrossRef Lin LY-C, Szittner R, Friedman R, Meighen EA (2004) Changes in the kinetics and emission spectrum on mutation of the chromophore-binding platform in Vibrio harveyi luciferase. Biochemistry 43:3183–3194CrossRef
49.
Zurück zum Zitat Low JC, Tu S-C (2002) Functional roles of conserved residues in the unstructured loop of Vibrio harveyi bacterial luciferase. Biochemistry 41:1724–1731CrossRef Low JC, Tu S-C (2002) Functional roles of conserved residues in the unstructured loop of Vibrio harveyi bacterial luciferase. Biochemistry 41:1724–1731CrossRef
50.
Zurück zum Zitat Macheroux P, Ghisla S, Hastings JW (1993) Spectral detection of an intermediate preceding the excited state in the bacterial luciferase reaction. Biochemistry 32:14183–14186CrossRef Macheroux P, Ghisla S, Hastings JW (1993) Spectral detection of an intermediate preceding the excited state in the bacterial luciferase reaction. Biochemistry 32:14183–14186CrossRef
51.
Zurück zum Zitat Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Mol Biol Rev 55:123–142 Meighen EA (1991) Molecular biology of bacterial bioluminescence. Microbiol Mol Biol Rev 55:123–142
52.
Zurück zum Zitat Moore C, Lei B, Tu S-C (1999) Relationship between the conserved α subunit arginine 107 and effects of phosphate on activity and stability of Vibrio harveyi luciferase. Arch Biochem Biophys 370:45–50CrossRef Moore C, Lei B, Tu S-C (1999) Relationship between the conserved α subunit arginine 107 and effects of phosphate on activity and stability of Vibrio harveyi luciferase. Arch Biochem Biophys 370:45–50CrossRef
53.
Zurück zum Zitat Nicoli MZ, Meighen EA, Hastings JW (1974) Bacterial luciferase. Chemistry of the reactive sulfhydryl. J Biol Chem 249:2385–2392 Nicoli MZ, Meighen EA, Hastings JW (1974) Bacterial luciferase. Chemistry of the reactive sulfhydryl. J Biol Chem 249:2385–2392
54.
Zurück zum Zitat Nijvipakul S, Ballou DP, Chaiyen P (2010) Reduction kinetics of a flavin oxidoreductase LuxG from Photobacterium leiognathi (TH1): Half-sites reactivity. Biochemistry 49:9241–9248CrossRef Nijvipakul S, Ballou DP, Chaiyen P (2010) Reduction kinetics of a flavin oxidoreductase LuxG from Photobacterium leiognathi (TH1): Half-sites reactivity. Biochemistry 49:9241–9248CrossRef
55.
Zurück zum Zitat Nijvipakul S, Wongratana J, Suadee C, Entsch B, Ballou DP, Chaiyen P (2008) LuxG is a functioning flavin reductase for bacterial luminescence. J Bacteriol 190:1531–1538CrossRef Nijvipakul S, Wongratana J, Suadee C, Entsch B, Ballou DP, Chaiyen P (2008) LuxG is a functioning flavin reductase for bacterial luminescence. J Bacteriol 190:1531–1538CrossRef
56.
Zurück zum Zitat Olsson O, Escher A, Sandberg G, Schell J, Koncz C, Szalay AA (1989) Engineering of monomeric bacterial luciferases by fusion of luxA and luxB genes in Vibrio harveyi. Genes 81:335–347 Olsson O, Escher A, Sandberg G, Schell J, Koncz C, Szalay AA (1989) Engineering of monomeric bacterial luciferases by fusion of luxA and luxB genes in Vibrio harveyi. Genes 81:335–347
57.
Zurück zum Zitat Palfey BA, Massey V (1998) Flavin-dependent enzymes. In: Sinnott M (ed) Comprehensive biological catalysis. Academic Press, San Deigo, A mechanistic reference, pp 1–27 Palfey BA, Massey V (1998) Flavin-dependent enzymes. In: Sinnott M (ed) Comprehensive biological catalysis. Academic Press, San Deigo, A mechanistic reference, pp 1–27
58.
Zurück zum Zitat Palfey BA, McDonald CA (2010) Control of catalysis in flavin-dependent monooxygenases. Arch Biochem Biophys 493:26–36CrossRef Palfey BA, McDonald CA (2010) Control of catalysis in flavin-dependent monooxygenases. Arch Biochem Biophys 493:26–36CrossRef
59.
Zurück zum Zitat Raushel FM, Baldwin TO (1989) Proposed mechanism for the bacterial bioluminescence reaction involving a dioxirane intermediate. Biochem Biophys Res Commun 164:1137–1142CrossRef Raushel FM, Baldwin TO (1989) Proposed mechanism for the bacterial bioluminescence reaction involving a dioxirane intermediate. Biochem Biophys Res Commun 164:1137–1142CrossRef
60.
Zurück zum Zitat Shimomura O (2006) Bioluminescence: chemical principles and methods, 1st edn. World Scientific Publishing Co. Pte. Ltd., Singapore, pp 30–46 Shimomura O (2006) Bioluminescence: chemical principles and methods, 1st edn. World Scientific Publishing Co. Pte. Ltd., Singapore, pp 30–46
61.
Zurück zum Zitat Sparks JM, Baldwin TO (2001) Functional implications of the unstructured loop in the (β/α)8 barrel structure of the bacterial luciferase α subunit. Biochemistry 40:15436–15443CrossRef Sparks JM, Baldwin TO (2001) Functional implications of the unstructured loop in the (β/α)8 barrel structure of the bacterial luciferase α subunit. Biochemistry 40:15436–15443CrossRef
62.
Zurück zum Zitat Suadee C, Nijvipakul S, Svasti J, Entsch B, Ballou DP, Chaiyen P (2007) Luciferase from Vibrio campbellii is more thermostable and binds reduced FMN better than its homologues. J Biochem 142:539–552CrossRef Suadee C, Nijvipakul S, Svasti J, Entsch B, Ballou DP, Chaiyen P (2007) Luciferase from Vibrio campbellii is more thermostable and binds reduced FMN better than its homologues. J Biochem 142:539–552CrossRef
63.
Zurück zum Zitat Sucharitakul J, Phongsak T, Entsch B, Svasti J, Chaiyen P, Ballou DP (2007) Kinetics of a two-component p-hydroxyphenylacetate hydroxylase explain how reduced flavin is transferred from the reductase to the oxygenase. Biochemistry 46(783):8611–8623CrossRef Sucharitakul J, Phongsak T, Entsch B, Svasti J, Chaiyen P, Ballou DP (2007) Kinetics of a two-component p-hydroxyphenylacetate hydroxylase explain how reduced flavin is transferred from the reductase to the oxygenase. Biochemistry 46(783):8611–8623CrossRef
64.
Zurück zum Zitat Sucharitakul J, Tinikul R, Chaiyen P (2014) Coordination of reduced flavin transfer between the proteins of two-component flavin-dependent monooxygenases. Arch Biochem Biophys 555–556:33–46 Sucharitakul J, Tinikul R, Chaiyen P (2014) Coordination of reduced flavin transfer between the proteins of two-component flavin-dependent monooxygenases. Arch Biochem Biophys 555–556:33–46
65.
Zurück zum Zitat Suzuki K, Kaidoh T, Katagiri M, Tsuchiya T (1983) O2 incorporation into a long-chain fatty acid during bacterial luminescence. Biochim Biophys Acta 722:279–301 Suzuki K, Kaidoh T, Katagiri M, Tsuchiya T (1983) O2 incorporation into a long-chain fatty acid during bacterial luminescence. Biochim Biophys Acta 722:279–301
66.
Zurück zum Zitat Szittner R, Meighen E (1990) Nucleotide sequence, expression, and properties of luciferase coded by lux genes from a terrestrial bacterium. J Biol Chem 265:16581–16587 Szittner R, Meighen E (1990) Nucleotide sequence, expression, and properties of luciferase coded by lux genes from a terrestrial bacterium. J Biol Chem 265:16581–16587
67.
Zurück zum Zitat Tinikul R, Pitsawong W, Sucharitakul J, Nijvipakul S, Ballou DP, Chaiyen P (2013) The transfer of reduced flavin mononucleotide from LuxG oxidoreductase to luciferase occurs via free diffusion. Biochemistry 52:6834–6843CrossRef Tinikul R, Pitsawong W, Sucharitakul J, Nijvipakul S, Ballou DP, Chaiyen P (2013) The transfer of reduced flavin mononucleotide from LuxG oxidoreductase to luciferase occurs via free diffusion. Biochemistry 52:6834–6843CrossRef
68.
Zurück zum Zitat Tinikul R, Thotsaporn K, Thaveekarn W, Jitrapakdee S, Chaiyen P (2012) The fusion Vibrio campbellii luciferase as a eukaryotic gene reporter. J Biotechnol 162:346–353CrossRef Tinikul R, Thotsaporn K, Thaveekarn W, Jitrapakdee S, Chaiyen P (2012) The fusion Vibrio campbellii luciferase as a eukaryotic gene reporter. J Biotechnol 162:346–353CrossRef
69.
Zurück zum Zitat Tongsook C, Sucharitakul J, Thotsaporn K, Chaiyen P (2011) Interactions with the substrate phenolic group are essential for hydroxylation by the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase. J Biol Chem 286:44491–44502CrossRef Tongsook C, Sucharitakul J, Thotsaporn K, Chaiyen P (2011) Interactions with the substrate phenolic group are essential for hydroxylation by the oxygenase component of p-hydroxyphenylacetate 3-hydroxylase. J Biol Chem 286:44491–44502CrossRef
70.
Zurück zum Zitat Tu S-C (1982) Isolation and properties of bacterial luciferase intermediates containing different oxygenated flavins. J Biol Chem 257:3719–3725 Tu S-C (1982) Isolation and properties of bacterial luciferase intermediates containing different oxygenated flavins. J Biol Chem 257:3719–3725
71.
Zurück zum Zitat Ulitzur S, Hastings JW (1979) Evidence for tetradecanal as the natural aldehyde in bacterial bioluminescence. Proc Natl Acad Sci USA 76:265–267CrossRef Ulitzur S, Hastings JW (1979) Evidence for tetradecanal as the natural aldehyde in bacterial bioluminescence. Proc Natl Acad Sci USA 76:265–267CrossRef
72.
Zurück zum Zitat Valkova N, Szittner R, Meighen EA (1999) Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases. Biochemistry 38:13820–13828CrossRef Valkova N, Szittner R, Meighen EA (1999) Control of luminescence decay and flavin binding by the LuxA carboxyl-terminal regions in chimeric bacterial luciferases. Biochemistry 38:13820–13828CrossRef
73.
Zurück zum Zitat van Berkel WJH, Kamerbeek NM, Fraaije MW (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124:670–689CrossRef van Berkel WJH, Kamerbeek NM, Fraaije MW (2006) Flavoprotein monooxygenases, a diverse class of oxidative biocatalysts. J Biotechnol 124:670–689CrossRef
74.
Zurück zum Zitat Villa R, Willetts A (1997) Oxidations by microbial NADH plus FMN-dependent luciferases from Photobacterium phosphoreum and Vibrio fischeri. J Mol Catal B: Enzym 2:193–197CrossRef Villa R, Willetts A (1997) Oxidations by microbial NADH plus FMN-dependent luciferases from Photobacterium phosphoreum and Vibrio fischeri. J Mol Catal B: Enzym 2:193–197CrossRef
75.
Zurück zum Zitat Werlund-Karlsson A, Saviranta P, Karp M (2002) Generation of thermostable monomeric luciferases from Photorhabdus luminescens. Biochem Biophys Res Commun 296:1072–1076CrossRef Werlund-Karlsson A, Saviranta P, Karp M (2002) Generation of thermostable monomeric luciferases from Photorhabdus luminescens. Biochem Biophys Res Commun 296:1072–1076CrossRef
76.
Zurück zum Zitat Xi L, Cho K-W, Herndon ME, Tu S-C (1990) Elicitation of an oxidase activity in bacterial luciferase by site-directed mutation of a noncatalytic residue. J Biol Chem 265:4200–4203 Xi L, Cho K-W, Herndon ME, Tu S-C (1990) Elicitation of an oxidase activity in bacterial luciferase by site-directed mutation of a noncatalytic residue. J Biol Chem 265:4200–4203
77.
Zurück zum Zitat Xin X, Xi L, Tu S-C (1991) Functional consequences of site-directed mutation of conserved histidyl residues of the bacterial luciferase α subunit. Biochemistry 30:11255–11262CrossRef Xin X, Xi L, Tu S-C (1991) Functional consequences of site-directed mutation of conserved histidyl residues of the bacterial luciferase α subunit. Biochemistry 30:11255–11262CrossRef
78.
Zurück zum Zitat Xin X, Xi L, Tu S-C (1994) Probing the Vibrio harveyi luciferase β subunit functionality and the intersubunit domain by site-directed mutagenesis. Biochemistry 33:12194–12201CrossRef Xin X, Xi L, Tu S-C (1994) Probing the Vibrio harveyi luciferase β subunit functionality and the intersubunit domain by site-directed mutagenesis. Biochemistry 33:12194–12201CrossRef
Metadaten
Titel
Structure, Mechanism, and Mutation of Bacterial Luciferase
verfasst von
Ruchanok Tinikul
Pimchai Chaiyen
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/10_2014_281