Skip to main content
Erschienen in: Fluid Dynamics 3/2023

01.06.2023

Structure of Shock Wave in Oxygen

verfasst von: A. I. Erofeev, S. V. Rusakov

Erschienen in: Fluid Dynamics | Ausgabe 3/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The results of numerical study of relaxation processes in oxygen at high temperatures are presented. Collisions of particles (atoms and molecules) are described by the molecular dynamics methods based on trajectory calculations within the framework of classical mechanics. A complex of programs for calculating the relaxation processes in mixtures of high-temperature gases involving internal modes that describe rotational and vibrational motions in molecules and molecular dissociation and atomic recombination in the presence of a third body is described. The relaxation process is described with reference to variation in the parameters in a mixture of atomic and molecular oxygen with various initial temperatures of the translational and internal modes. The results of calculations of the structure of shock wave in oxygen with the maximum translational temperature on the front higher than 5000–11 000 K are given. The results obtained are compared with experimental data.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jaffe, R., Schwenke, D.W., and Chaban, G., Vibrational and rotational excitation and relaxation of nitrogen from accurate theoretical calculations, AIAA 2008-1208, p. 14. Jaffe, R., Schwenke, D.W., and Chaban, G., Vibrational and rotational excitation and relaxation of nitrogen from accurate theoretical calculations, AIAA 2008-1208, p. 14.
2.
Zurück zum Zitat Jaffe, R., Schwenke, D.W., and Chaban, G., Vibrational and rotational excitation and dissociation in N2–N2 collisions from accurate theoretical calculations, AIAA 2010-4517, p. 13. Jaffe, R., Schwenke, D.W., and Chaban, G., Vibrational and rotational excitation and dissociation in N2–N2 collisions from accurate theoretical calculations, AIAA 2010-4517, p. 13.
3.
Zurück zum Zitat Varga, Z., Paukku, Y., and Truhlar, D.G,. Potential energy surfaces for O + O2 collision, J. Chem. Phys., 2017, vol. 147, p. 154312. Varga, Z., Paukku, Y., and Truhlar, D.G,. Potential energy surfaces for O + O2 collision, J. Chem. Phys., 2017, vol. 147, p. 154312.
4.
Zurück zum Zitat Paukku, Y., Varga, Z., and Truhlar, D.G., Potential energy surface of triplet O4, J. Chem. Phys., 2018, vol. 148, p. 124314. Paukku, Y., Varga, Z., and Truhlar, D.G., Potential energy surface of triplet O4, J. Chem. Phys., 2018, vol. 148, p. 124314.
5.
Zurück zum Zitat Grover, M.S., Torres, E., and Schwartzentruber T.E., Direct molecular simulation of internal energy relaxation and dissociation in oxygen, Phys. Fluids, 2019, vol. 31, p. 076107. Grover, M.S., Torres, E., and Schwartzentruber T.E., Direct molecular simulation of internal energy relaxation and dissociation in oxygen, Phys. Fluids, 2019, vol. 31, p. 076107.
6.
Zurück zum Zitat Jaffe, R.L., Schwenke, D.W., Grover, M., Valentini, P., Schwartzentruber, T.E., Venturi, S., and Panesi, M., Comparison of quantum mechanical and empirical potential energy surfaces and computed rate coefficients for N2 dissociation, AIAA 2016-0503, p. 25. Jaffe, R.L., Schwenke, D.W., Grover, M., Valentini, P., Schwartzentruber, T.E., Venturi, S., and Panesi, M., Comparison of quantum mechanical and empirical potential energy surfaces and computed rate coefficients for N2 dissociation, AIAA 2016-0503, p. 25.
7.
Zurück zum Zitat Pogosbekyan, M.Yu., and Sergievskaya, A. L., Simulation of the oxygen dissociation reaction under the thermally nonequilibium conditions: models, trajectory calculations, and experiment, Khim. Fiz., 2018, vol. 37, no. 4, pp. 20–31. Pogosbekyan, M.Yu., and Sergievskaya, A. L., Simulation of the oxygen dissociation reaction under the thermally nonequilibium conditions: models, trajectory calculations, and experiment, Khim. Fiz., 2018, vol. 37, no. 4, pp. 20–31.
8.
Zurück zum Zitat Esposito, F., Armenise, I., and Capitelli M., N–N2 state to state vibrational relaxation and dissociation rates based on quasiclassical calculations, Chem. Phys., 2006, vol. 331, no. 1, pp. 1–8.CrossRef Esposito, F., Armenise, I., and Capitelli M., N–N2 state to state vibrational relaxation and dissociation rates based on quasiclassical calculations, Chem. Phys., 2006, vol. 331, no. 1, pp. 1–8.CrossRef
9.
Zurück zum Zitat Macpherson, A.K., Rotational temperature profiles of shock waves in diatomic gases, J. Fluid Mech., 1971, vol. 49, no. 2, pp. 337–351.CrossRefADS Macpherson, A.K., Rotational temperature profiles of shock waves in diatomic gases, J. Fluid Mech., 1971, vol. 49, no. 2, pp. 337–351.CrossRefADS
12.
Zurück zum Zitat Konowalow, D.D. and Hirschfelder, J.O., Intermolecular potential functions for nonpolar molecules, Phys. Fluids, 1961, vol. 4, no. 5, pp. 629–636.MathSciNetCrossRefADS Konowalow, D.D. and Hirschfelder, J.O., Intermolecular potential functions for nonpolar molecules, Phys. Fluids, 1961, vol. 4, no. 5, pp. 629–636.MathSciNetCrossRefADS
13.
Zurück zum Zitat Konowalow, D.D. and Hirschfelder, J.O., Morse potential parameters for O–O, N–N, and N–O interaction, Phys. Fluids, 1961, vol. 4, no. 5. pp. 637–642. Konowalow, D.D. and Hirschfelder, J.O., Morse potential parameters for O–O, N–N, and N–O interaction, Phys. Fluids, 1961, vol. 4, no. 5. pp. 637–642.
14.
Zurück zum Zitat Gordeev, O.A., Kalinin, A.P., Komov, A.L., Lyusternik, V.E., Samuilov, E.V., Sokolova, I.A., and Fokin, L.R., Interaction Potentials, Elastic Cross-Sections, and Collision Integrals of Air Component at Temperatures to 20 000 K. Reviews of the Thermophysical Properties of Matters, TFTs, Moscow, IVTAN, no. 5 (55), 1985. Gordeev, O.A., Kalinin, A.P., Komov, A.L., Lyusternik, V.E., Samuilov, E.V., Sokolova, I.A., and Fokin, L.R., Interaction Potentials, Elastic Cross-Sections, and Collision Integrals of Air Component at Temperatures to 20 000 K. Reviews of the Thermophysical Properties of Matters, TFTs, Moscow, IVTAN, no. 5 (55), 1985.
15.
Zurück zum Zitat Erofeev, A.I. and Rusakov, S.V., Application of the classical trajectory calculations of molecular collisions to computing the transfer coefficients and studying the rarefied gas outflow into vacuum, Uch. Zap. TsAGI, 2020, vol. 51, no. 5, pp. 13–28. Erofeev, A.I. and Rusakov, S.V., Application of the classical trajectory calculations of molecular collisions to computing the transfer coefficients and studying the rarefied gas outflow into vacuum, Uch. Zap. TsAGI, 2020, vol. 51, no. 5, pp. 13–28.
16.
Zurück zum Zitat Karplus, M., Porter, R.N., and Sharma, R.D., Exchange reactions with activation energy. I. Simple barrier potential for (H, H2), J. Chem. Phys., 1965, vol. 43, no. 9, pp. 3259–3287.CrossRefADS Karplus, M., Porter, R.N., and Sharma, R.D., Exchange reactions with activation energy. I. Simple barrier potential for (H, H2), J. Chem. Phys., 1965, vol. 43, no. 9, pp. 3259–3287.CrossRefADS
18.
Zurück zum Zitat Polak, L.S., Gol’denberg, M.Ya, and Levitskii, A.A., Vychislitel’nye metody v khimicheskoi kinetike (Computational Methods in Chemical Kinetics), Moscow: Nauka, 1984. Polak, L.S., Gol’denberg, M.Ya, and Levitskii, A.A., Vychislitel’nye metody v khimicheskoi kinetike (Computational Methods in Chemical Kinetics), Moscow: Nauka, 1984.
19.
Zurück zum Zitat Stupochenko, E.V., Losev, S.A., and Osipov, A.I., Relaksatsionnye protsessy v udarnykh volnakh (Relaxation Processes in Shock Waves), Moscow: Nauka, 1965. Stupochenko, E.V., Losev, S.A., and Osipov, A.I., Relaksatsionnye protsessy v udarnykh volnakh (Relaxation Processes in Shock Waves), Moscow: Nauka, 1965.
20.
Zurück zum Zitat Nikitin, E.U., Teoriya elementarnykh atomno-moleculyarnykh protsessov v gazakh (Theory of Elementary Atomic-Molecular Processes in Gases), Moscow: Khimiya, 1970. Nikitin, E.U., Teoriya elementarnykh atomno-moleculyarnykh protsessov v gazakh (Theory of Elementary Atomic-Molecular Processes in Gases), Moscow: Khimiya, 1970.
21.
Zurück zum Zitat Jaffe, R.L., The calculation of high-temperature equilibrium and nonequilibrium specific heat data for N2, O2 and NO, AIAA-87-1633. Jaffe, R.L., The calculation of high-temperature equilibrium and nonequilibrium specific heat data for N2, O2 and NO, AIAA-87-1633.
22.
Zurück zum Zitat Capitelli, M., Colonna, G., Giordano, D., Maraffa, L., Casavola, F., Minelli, P., Pagano, D., Pietanza, L.D., and Taccogna, F., Tables of Internal Partition Functions and Thermodynamic Properties of High-Temperature Mars-Atmosphere Species from 50 to 50000 K, ESA STR-246, ESA Publications Division. ESTEC, Noordwijk, The Netherlands, 2005. Capitelli, M., Colonna, G., Giordano, D., Maraffa, L., Casavola, F., Minelli, P., Pagano, D., Pietanza, L.D., and Taccogna, F., Tables of Internal Partition Functions and Thermodynamic Properties of High-Temperature Mars-Atmosphere Species from 50 to 50000 K, ESA STR-246, ESA Publications Division. ESTEC, Noordwijk, The Netherlands, 2005.
23.
Zurück zum Zitat Jaffe, R.L., Schwenker, D.W., and Panesi, M., First principles calculation of heavy particle rate coefficients, in: Hypersonic Nonequilibrium Flows: Fundamentals and Recent Advances, Ed. by Josynla, E., AIAA, 2015. Jaffe, R.L., Schwenker, D.W., and Panesi, M., First principles calculation of heavy particle rate coefficients, in: Hypersonic Nonequilibrium Flows: Fundamentals and Recent Advances, Ed. by Josynla, E., AIAA, 2015.
24.
Zurück zum Zitat Bender, J.D., Valentini, P., Nompelis, I., et al., An improved potential energy surface and multi-temperature quasiclassical trajectory calculations of N2 + N2 dissociation reactions, J. Chem. Phys., 2015, vol. 143, p. 054304. https://doi.org/10.1063/1.4927571 Bender, J.D., Valentini, P., Nompelis, I., et al., An improved potential energy surface and multi-temperature quasiclassical trajectory calculations of N2 + N2 dissociation reactions, J. Chem. Phys., 2015, vol. 143, p. 054304. https://​doi.​org/​10.​1063/​1.​4927571
25.
Zurück zum Zitat Landau, L.D. and Lifshitz, E.M., Quantum Mechanics, Non-Relativistic Theory, 3rd ed., Pergamon, 1977. Landau, L.D. and Lifshitz, E.M., Quantum Mechanics, Non-Relativistic Theory, 3rd ed., Pergamon, 1977.
26.
Zurück zum Zitat Park, C., Assessment of a two-temperature model for dissociating and weakly ionizing nitrogen, J. Thermophys. Heat Trans., 1988, vol. 2, no. 1, pp. 8–16.CrossRefADS Park, C., Assessment of a two-temperature model for dissociating and weakly ionizing nitrogen, J. Thermophys. Heat Trans., 1988, vol. 2, no. 1, pp. 8–16.CrossRefADS
27.
Zurück zum Zitat Losev, S.A., Makarov, V.N., Pogosbekyan, M.J., Shatalov, O.P., and Nikol’sky, V.S., Thermochemical nonequilibrium kinetic models in strong shock waves on air, AIAA-94-1990. Losev, S.A., Makarov, V.N., Pogosbekyan, M.J., Shatalov, O.P., and Nikol’sky, V.S., Thermochemical nonequilibrium kinetic models in strong shock waves on air, AIAA-94-1990.
28.
Zurück zum Zitat Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., Molecular Theory of Gases and Liquids, New York: Wiley, 1954.MATH Hirschfelder, J.O., Curtiss, C.F., and Bird, R.B., Molecular Theory of Gases and Liquids, New York: Wiley, 1954.MATH
29.
Zurück zum Zitat Zel’dovich Ya.B. and Raizer, Yu.P., Fizika udarnykh voln i vysokotemperaturnykh fizicheskikh yavlenii (Physics of Shock Waves and High-Temperature Physical Phenomena), Moscow: Nauka, 1966. Zel’dovich Ya.B. and Raizer, Yu.P., Fizika udarnykh voln i vysokotemperaturnykh fizicheskikh yavlenii (Physics of Shock Waves and High-Temperature Physical Phenomena), Moscow: Nauka, 1966.
30.
Zurück zum Zitat Zabelinskii, I.E., Ibraguimova, L.B., and Shatalov, O.P., Measurement of the vibrational temperature of oxygen behind a shock wave front under thermal and chemical nonequilibrium conditions, Fluid Dyn., 2010, vol. 45, no. 3, pp. 485–492.CrossRefADS Zabelinskii, I.E., Ibraguimova, L.B., and Shatalov, O.P., Measurement of the vibrational temperature of oxygen behind a shock wave front under thermal and chemical nonequilibrium conditions, Fluid Dyn., 2010, vol. 45, no. 3, pp. 485–492.CrossRefADS
31.
Zurück zum Zitat Ibraguimova, L. B., Sergievskaya, A. L., and Shatalov, O.P., Dissociation rate constants for oxygen at temperatures up to 11 000 K, Fluid Dyn., 2013, vol. 48, no. 4, pp. 550–555.CrossRefMATHADS Ibraguimova, L. B., Sergievskaya, A. L., and Shatalov, O.P., Dissociation rate constants for oxygen at temperatures up to 11 000 K, Fluid Dyn., 2013, vol. 48, no. 4, pp. 550–555.CrossRefMATHADS
32.
Zurück zum Zitat Ibraguimova, L.B., Sergievskaya, A.L., Levashov, V.Yu., Shatalov, O.P., Tunik Yu.V., and Zabelinskii, I.E., Investigation of oxygen dissociation and vibrational relaxation at temperatures 4000–10 800 K, J. Chem. Phys., 2013, vol. 139, p. 034317. https://doi.org/10.1063/1.4813070 Ibraguimova, L.B., Sergievskaya, A.L., Levashov, V.Yu., Shatalov, O.P., Tunik Yu.V., and Zabelinskii, I.E., Investigation of oxygen dissociation and vibrational relaxation at temperatures 4000–10 800 K, J. Chem. Phys., 2013, vol. 139, p. 034317. https://​doi.​org/​10.​1063/​1.​4813070
Metadaten
Titel
Structure of Shock Wave in Oxygen
verfasst von
A. I. Erofeev
S. V. Rusakov
Publikationsdatum
01.06.2023
Verlag
Pleiades Publishing
Erschienen in
Fluid Dynamics / Ausgabe 3/2023
Print ISSN: 0015-4628
Elektronische ISSN: 1573-8507
DOI
https://doi.org/10.1134/S0015462823600189

Weitere Artikel der Ausgabe 3/2023

Fluid Dynamics 3/2023 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.