Skip to main content

2023 | OriginalPaper | Buchkapitel

Study of Different Transport Properties of MgZnO/ZnO and AlGaN/GaN High Electron Mobility Transistors: A Review

verfasst von : Yogesh Kumar Verma, Varun Mishra, Lucky Agarwal, Laxman Singh, Santosh Kumar Gupta

Erschienen in: HEMT Technology and Applications

Verlag: Springer Nature Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

ZnO material exhibits superior properties required for several electronic applications. It has been noticed that the different temperature-based models of conventional AlGaN/GaN HEMTs have been widely studied; however, physics-based analytical models including the effect of temperature for MgZnO/ZnO HEMT are not sufficiently explored much as of now in the literature. Accordingly, in this brief, the different transport properties and Fermi energy levels of AlGaN/GaN and MgZnO/ZnO HEMT are studied with respect to different temperatures. Further, we have also comparatively reviewed the important transport properties including 2DEG density, internal electric field, and optical gain of AlGaN/GaN and MgZnO/ZnO quantum well structures having identical dimensions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat T. Mimura, S. Hiyamizu, T. Fujii, K. Nanbu, A new field-effect transistor with selectively doped GaAs/n–AlxGa1−xAs heterojunctions. Jpn. J. Appl. Phys. 19(5), L225 (1980)CrossRef T. Mimura, S. Hiyamizu, T. Fujii, K. Nanbu, A new field-effect transistor with selectively doped GaAs/n–AlxGa1xAs heterojunctions. Jpn. J. Appl. Phys. 19(5), L225 (1980)CrossRef
2.
Zurück zum Zitat Y.-F. Wu et al., Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors. Appl. Phys. Lett. 69(10), 1438–1440 (1996)CrossRef Y.-F. Wu et al., Very high breakdown voltage and large transconductance realized on GaN heterojunction field effect transistors. Appl. Phys. Lett. 69(10), 1438–1440 (1996)CrossRef
3.
Zurück zum Zitat M.A. Khan et al., AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor. IEEE Electron Device Lett. 21(2), 63–65 (2000)CrossRef M.A. Khan et al., AlGaN/GaN metal oxide semiconductor heterostructure field effect transistor. IEEE Electron Device Lett. 21(2), 63–65 (2000)CrossRef
4.
Zurück zum Zitat P.M. Solomon, H. Morkoc, Modulation-doped GaAs/AlGaAs heterojunction field-effect transistors (MODFET’s), ultrahigh-speed device for supercomputers. IEEE Trans. Electron Devices 31(8), 1015–1027 (1984)CrossRef P.M. Solomon, H. Morkoc, Modulation-doped GaAs/AlGaAs heterojunction field-effect transistors (MODFET’s), ultrahigh-speed device for supercomputers. IEEE Trans. Electron Devices 31(8), 1015–1027 (1984)CrossRef
5.
Zurück zum Zitat K. Lee, M.S. Shur, T.J. Drummond, H. Morkoc, Parasitic MESFET in (Al, Ga) As/GaAs modulation doped FET’s and MODFET characterization. IEEE Trans. Electron Devices 31(1), 29–35 (1984)CrossRef K. Lee, M.S. Shur, T.J. Drummond, H. Morkoc, Parasitic MESFET in (Al, Ga) As/GaAs modulation doped FET’s and MODFET characterization. IEEE Trans. Electron Devices 31(1), 29–35 (1984)CrossRef
6.
Zurück zum Zitat H. Morkoc, P.M. Solomon, The hemt: A superfast transistor: an experimental GaAs–AlGaAs device switches in picoseconds and generates little heat. This is just what supercomputers need. IEEE Spectr. 21(2), 28–35 (1984)CrossRef H. Morkoc, P.M. Solomon, The hemt: A superfast transistor: an experimental GaAs–AlGaAs device switches in picoseconds and generates little heat. This is just what supercomputers need. IEEE Spectr. 21(2), 28–35 (1984)CrossRef
7.
Zurück zum Zitat R.L. Anderson, Germanium-gallium arsenide heterojunctions. IBM J. Res. Dev. 4(3), 283–287 (1960)CrossRef R.L. Anderson, Germanium-gallium arsenide heterojunctions. IBM J. Res. Dev. 4(3), 283–287 (1960)CrossRef
8.
Zurück zum Zitat L. Esaki, R. Tsu, Superlattice and negative conductivity in semiconductors. IBM Res. Note RC 2418 (1969) L. Esaki, R. Tsu, Superlattice and negative conductivity in semiconductors. IBM Res. Note RC 2418 (1969)
9.
Zurück zum Zitat R. Dingle, H.L. Störmer, A.C. Gossard, W. Wiegmann, Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl. Phys. Lett. 33(7), 665–667 (1978)CrossRef R. Dingle, H.L. Störmer, A.C. Gossard, W. Wiegmann, Electron mobilities in modulation-doped semiconductor heterojunction superlattices. Appl. Phys. Lett. 33(7), 665–667 (1978)CrossRef
10.
Zurück zum Zitat S. Hiyamizu, T. Mimura, T. Fujii, K. Nanb, High mobility of two-dimensional electrons at the GaAs/n-AlGaAs heterojunction interface. Appl. Phys. Lett. 37(9), 805–807 (1980)CrossRef S. Hiyamizu, T. Mimura, T. Fujii, K. Nanb, High mobility of two-dimensional electrons at the GaAs/n-AlGaAs heterojunction interface. Appl. Phys. Lett. 37(9), 805–807 (1980)CrossRef
11.
Zurück zum Zitat L.C. Witkowski, T.J. Drummond, C.M. Stanchak, H. Morkoc, High mobilities in AlxGa1−xAs–GaAs heterojuntions. Appl. Phys. Lett. 37(11), 1033–1035 (1980)CrossRef L.C. Witkowski, T.J. Drummond, C.M. Stanchak, H. Morkoc, High mobilities in AlxGa1xAs–GaAs heterojuntions. Appl. Phys. Lett. 37(11), 1033–1035 (1980)CrossRef
12.
Zurück zum Zitat W.I. Wang, C.E.C. Wood, L.F. Eastman, Extremely high electron mobilities in modulation-doped GaAs–AlxGa1−xAs heterojunction superlattices. Electron. Lett. 17(1), 36–37 (1981)CrossRef W.I. Wang, C.E.C. Wood, L.F. Eastman, Extremely high electron mobilities in modulation-doped GaAs–AlxGa1xAs heterojunction superlattices. Electron. Lett. 17(1), 36–37 (1981)CrossRef
13.
Zurück zum Zitat D. Delagebeaudeuf, N.T. Linh, Metal-(n) AlGaAs–GaAs two-dimensional electron gas FET. IEEE Trans. Electron Devices 29(6), 955–960 (1982)CrossRef D. Delagebeaudeuf, N.T. Linh, Metal-(n) AlGaAs–GaAs two-dimensional electron gas FET. IEEE Trans. Electron Devices 29(6), 955–960 (1982)CrossRef
14.
Zurück zum Zitat T.J. Drummond, H. Morkoç, K. Lee, M. Shur, Model for modulation doped field effect transistor. IEEE Electron Device Lett. 3(11), 338–341 (1982)CrossRef T.J. Drummond, H. Morkoç, K. Lee, M. Shur, Model for modulation doped field effect transistor. IEEE Electron Device Lett. 3(11), 338–341 (1982)CrossRef
15.
Zurück zum Zitat K. Lee, M.S. Shur, T.J. Drummond, H. Morkoc, Current-voltage and capacitance-Voltage characteristics of modulation-doped field-effect transistors. IEEE Trans. Electron Devices 30(3), 207–212 (1983)CrossRef K. Lee, M.S. Shur, T.J. Drummond, H. Morkoc, Current-voltage and capacitance-Voltage characteristics of modulation-doped field-effect transistors. IEEE Trans. Electron Devices 30(3), 207–212 (1983)CrossRef
16.
Zurück zum Zitat M.H. Weiler, Y. Ayasli, DC and microwave modeis for AIxGa1−xAs/GaAs high electron mobility transistors. IEEE Trans. Electron Devices 31(12), 1854–1861 (1984)CrossRef M.H. Weiler, Y. Ayasli, DC and microwave modeis for AIxGa1xAs/GaAs high electron mobility transistors. IEEE Trans. Electron Devices 31(12), 1854–1861 (1984)CrossRef
17.
Zurück zum Zitat L.P. Sadwick, K.L. Wang, A treatise on the capacitance voltage relation of high electron mobility transistors. IEEE Trans. Electron Devices 33(5), 651–656 (1986)CrossRef L.P. Sadwick, K.L. Wang, A treatise on the capacitance voltage relation of high electron mobility transistors. IEEE Trans. Electron Devices 33(5), 651–656 (1986)CrossRef
18.
Zurück zum Zitat M.L. Majewski, An analytical DC model for the modulation-doped field-effect transistor. IEEE Trans. Electron Devices 34(9), 1902–1910 (1987)CrossRef M.L. Majewski, An analytical DC model for the modulation-doped field-effect transistor. IEEE Trans. Electron Devices 34(9), 1902–1910 (1987)CrossRef
19.
Zurück zum Zitat G. Salmer, J. Zimmermann, R. Fauquembergue, Modeling of MODFETs. IEEE Trans. Microw. Theory Tech. 36(7), 1124–1140 (1988)CrossRef G. Salmer, J. Zimmermann, R. Fauquembergue, Modeling of MODFETs. IEEE Trans. Microw. Theory Tech. 36(7), 1124–1140 (1988)CrossRef
20.
Zurück zum Zitat A.J. Shey, W.H. Ku, On the charge control of the two-dimensional electron gas for analytic modeling of HEMT’s. IEEE Electron Device Lett. 9(12), 624–626 (1988)CrossRef A.J. Shey, W.H. Ku, On the charge control of the two-dimensional electron gas for analytic modeling of HEMT’s. IEEE Electron Device Lett. 9(12), 624–626 (1988)CrossRef
21.
Zurück zum Zitat A.-J. Shey, W.H. Ku, An analytical current-voltage characteristics model for high electron mobility transistors based on nonlinear charge-control formulation. IEEE Trans. Electron Devices 36(10), 2299–2306 (1989)CrossRef A.-J. Shey, W.H. Ku, An analytical current-voltage characteristics model for high electron mobility transistors based on nonlinear charge-control formulation. IEEE Trans. Electron Devices 36(10), 2299–2306 (1989)CrossRef
22.
Zurück zum Zitat S.S. Shinde, P.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films. J. Phys. D. Appl. Phys. 41(10) (2008) S.S. Shinde, P.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Optoelectronic properties of sprayed transparent and conducting indium doped zinc oxide thin films. J. Phys. D. Appl. Phys. 41(10) (2008)
23.
Zurück zum Zitat Y.K. Verma, V. Mishra, S.K. Gupta, A physics based analytical model for MgZnO/ZnO HEMT. J. Circ. Syst. Comput. 29(1), 2050009-1 (2020) Y.K. Verma, V. Mishra, S.K. Gupta, A physics based analytical model for MgZnO/ZnO HEMT. J. Circ. Syst. Comput. 29(1), 2050009-1 (2020)
24.
Zurück zum Zitat Ü. Özgür et al., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 11 (2005)CrossRef Ü. Özgür et al., A comprehensive review of ZnO materials and devices. J. Appl. Phys. 98(4), 11 (2005)CrossRef
25.
Zurück zum Zitat P. Wang et al., Monte Carlo investigation of high-field electron transport characteristics in ZnMgO/ZnO heterostructures. IEEE Trans. Electron Devices 63(1), 517–523 (2016)CrossRef P. Wang et al., Monte Carlo investigation of high-field electron transport characteristics in ZnMgO/ZnO heterostructures. IEEE Trans. Electron Devices 63(1), 517–523 (2016)CrossRef
26.
Zurück zum Zitat Y.K. Verma, V. Mishra, P.K. Verma, S.K. Gupta, Analytical modelling and electrical characterisation of ZnO based HEMTs. Int. J. Electron. 106(5), 707–720 (2019) Y.K. Verma, V. Mishra, P.K. Verma, S.K. Gupta, Analytical modelling and electrical characterisation of ZnO based HEMTs. Int. J. Electron. 106(5), 707–720 (2019)
27.
Zurück zum Zitat M. Rouchdi, E. Salmani, B. Fares, N. Hassanain, A. Mzerd, Synthesis and characteristics of Mg doped ZnO thin films: experimental and ab-initio study. Results Phys. 7, 620–627 (2017)CrossRef M. Rouchdi, E. Salmani, B. Fares, N. Hassanain, A. Mzerd, Synthesis and characteristics of Mg doped ZnO thin films: experimental and ab-initio study. Results Phys. 7, 620–627 (2017)CrossRef
28.
Zurück zum Zitat M. Caglar, Y. Caglar, S. Ilican, Investigation of the effect of Mg doping for improvements of optical and electrical properties. Phys. B Condens. Matter 485, 6–13 (2016)CrossRef M. Caglar, Y. Caglar, S. Ilican, Investigation of the effect of Mg doping for improvements of optical and electrical properties. Phys. B Condens. Matter 485, 6–13 (2016)CrossRef
29.
Zurück zum Zitat S.S. Shinde, A.P. Korade, C.H. Bhosale, K.Y. Rajpure, Influence of tin doping onto structural, morphological, optoelectronic and impedance properties of sprayed ZnO thin films. J. Alloys Compd. 551, 688–693 (2013)CrossRef S.S. Shinde, A.P. Korade, C.H. Bhosale, K.Y. Rajpure, Influence of tin doping onto structural, morphological, optoelectronic and impedance properties of sprayed ZnO thin films. J. Alloys Compd. 551, 688–693 (2013)CrossRef
30.
Zurück zum Zitat S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Size dependent electron-phonon coupling in N, Li, In, Ga, F and Ag doped ZnO thin films. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 98, 453–456 (2012) S.S. Shinde, C.H. Bhosale, K.Y. Rajpure, Size dependent electron-phonon coupling in N, Li, In, Ga, F and Ag doped ZnO thin films. Spectrochim. Acta Part A Mol. Biomol. Spectrosc. 98, 453–456 (2012)
31.
Zurück zum Zitat L. Agarwal, B.K. Singh, S. Tripathi, P. Chakrabarti, Fabrication and characterization of Pd/cu doped ZnO/Si and Ni/cu doped ZnO/Si Schottky diodes. Thin Solid Films 612, 259–266 (2016)CrossRef L. Agarwal, B.K. Singh, S. Tripathi, P. Chakrabarti, Fabrication and characterization of Pd/cu doped ZnO/Si and Ni/cu doped ZnO/Si Schottky diodes. Thin Solid Films 612, 259–266 (2016)CrossRef
32.
Zurück zum Zitat B.K. Singh, S. Tripathi, pn homojunction based on Bi doped p-type ZnO and undoped n-type ZnO for optoelectronic application in yellow–red region of visible spectrum. J. Lumin. 198, 427–432 (2018)CrossRef B.K. Singh, S. Tripathi, pn homojunction based on Bi doped p-type ZnO and undoped n-type ZnO for optoelectronic application in yellow–red region of visible spectrum. J. Lumin. 198, 427–432 (2018)CrossRef
33.
Zurück zum Zitat Z.R. Dai, Z.W. Pan, Z.L. Wang, Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 13(1), 9–24 (2003)CrossRef Z.R. Dai, Z.W. Pan, Z.L. Wang, Novel nanostructures of functional oxides synthesized by thermal evaporation. Adv. Funct. Mater. 13(1), 9–24 (2003)CrossRef
35.
Zurück zum Zitat J.H. Campbell et al., NIF optical materials and fabrication technologies: an overview, in Optical Engineering at the Lawrence Livermore National Laboratory II: The National Ignition Facility, vol. 5341 (2004), pp. 84–101 J.H. Campbell et al., NIF optical materials and fabrication technologies: an overview, in Optical Engineering at the Lawrence Livermore National Laboratory II: The National Ignition Facility, vol. 5341 (2004), pp. 84–101
36.
Zurück zum Zitat S.S. Shinde, P.S. Shinde, S.M. Pawar, A.V. Moholkar, C.H. Bhosale, K.Y. Rajpure, Physical properties of transparent and conducting sprayed fluorine doped zinc oxide thin films. Solid State Sci. 10(9), 1209–1214 (2008)CrossRef S.S. Shinde, P.S. Shinde, S.M. Pawar, A.V. Moholkar, C.H. Bhosale, K.Y. Rajpure, Physical properties of transparent and conducting sprayed fluorine doped zinc oxide thin films. Solid State Sci. 10(9), 1209–1214 (2008)CrossRef
37.
Zurück zum Zitat M.A. Khan et al., Enhanced sheet charge density in DIBS grown CdO alloyed ZnO buffer based heterostructure. IEEE Electron Device Lett. 39(6), 827–830 (2018)CrossRef M.A. Khan et al., Enhanced sheet charge density in DIBS grown CdO alloyed ZnO buffer based heterostructure. IEEE Electron Device Lett. 39(6), 827–830 (2018)CrossRef
38.
Zurück zum Zitat F. Benharrats, K. Zitouni, A. Kadri, B. Gil, Determination of piezoelectric and spontaneous polarization fields in CdxZn1−xO/ZnO quantum wells grown along the polar 〈0001〉 direction. Superlattices Microstruct. 47(5), 592–596 (2010)CrossRef F. Benharrats, K. Zitouni, A. Kadri, B. Gil, Determination of piezoelectric and spontaneous polarization fields in CdxZn1xO/ZnO quantum wells grown along the polar 〈0001〉 direction. Superlattices Microstruct. 47(5), 592–596 (2010)CrossRef
39.
Zurück zum Zitat A. Ashrafi, C. Jagadish, Review of zincblende ZnO: stability of metastable ZnO phases. J. Appl. Phys. 102(7), 4 (2007)CrossRef A. Ashrafi, C. Jagadish, Review of zincblende ZnO: stability of metastable ZnO phases. J. Appl. Phys. 102(7), 4 (2007)CrossRef
40.
Zurück zum Zitat V. Bilgin, S. Kose, F. Atay, I. Akyuz, The effect of substrate temperature on the structural and some physical properties of ultrasonically sprayed CdS films. Mater. Chem. Phys. 94(1), 103–108 (2005)CrossRef V. Bilgin, S. Kose, F. Atay, I. Akyuz, The effect of substrate temperature on the structural and some physical properties of ultrasonically sprayed CdS films. Mater. Chem. Phys. 94(1), 103–108 (2005)CrossRef
41.
Zurück zum Zitat K. Li, D. Xue, Estimation of electronegativity values of elements in different valence states. J. Phys. Chem. A 110(39), 11332–11337 (2006)CrossRef K. Li, D. Xue, Estimation of electronegativity values of elements in different valence states. J. Phys. Chem. A 110(39), 11332–11337 (2006)CrossRef
42.
Zurück zum Zitat J.H. Lee et al., A study of electrical enhancement of polycrystalline MgZnO/ZnO bi-layer thin film transistors dependence on the thickness of ZnO layer. Curr. Appl. Phys. 15(9), 1010–1014 (2015)CrossRef J.H. Lee et al., A study of electrical enhancement of polycrystalline MgZnO/ZnO bi-layer thin film transistors dependence on the thickness of ZnO layer. Curr. Appl. Phys. 15(9), 1010–1014 (2015)CrossRef
43.
Zurück zum Zitat B.K. Singh, S. Tripathi, Fabrication and characterization of Au/p-ZnO Schottky contacts. Superlattices Microstruct. 85, 697–706 (2015)CrossRef B.K. Singh, S. Tripathi, Fabrication and characterization of Au/p-ZnO Schottky contacts. Superlattices Microstruct. 85, 697–706 (2015)CrossRef
45.
Zurück zum Zitat M.A. Khan, J.M. Van Hove, J.N. Kuznia, D.T. Olson, High electron mobility GaN/AlxGa1−xN heterostructures grown by low-pressure metalorganic chemical vapor deposition. Appl. Phys. Lett. 58(21), 2408–2410 (1991)CrossRef M.A. Khan, J.M. Van Hove, J.N. Kuznia, D.T. Olson, High electron mobility GaN/AlxGa1xN heterostructures grown by low-pressure metalorganic chemical vapor deposition. Appl. Phys. Lett. 58(21), 2408–2410 (1991)CrossRef
46.
Zurück zum Zitat M.S. Shur, GaN based transistors for high power applications. Solid. State. Electron. 42(12), 2131–2138 (1998)CrossRef M.S. Shur, GaN based transistors for high power applications. Solid. State. Electron. 42(12), 2131–2138 (1998)CrossRef
47.
Zurück zum Zitat M.A. Khan, J.N. Kuznia, D.T. Olson, W.J. Schaff, J.W. Burm, M.S. Shur, Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor. Appl. Phys. Lett. 65(9), 1121–1123 (1994) M.A. Khan, J.N. Kuznia, D.T. Olson, W.J. Schaff, J.W. Burm, M.S. Shur, Microwave performance of a 0.25 μm gate AlGaN/GaN heterostructure field effect transistor. Appl. Phys. Lett. 65(9), 1121–1123 (1994)
48.
Zurück zum Zitat M.A. Khan, M.S. Shur, J.N. Kuznia, Q. Chen, J. Burm, W. Schaff, Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300 °C. Appl. Phys. Lett. 66(9), 1083–1085 (1995)CrossRef M.A. Khan, M.S. Shur, J.N. Kuznia, Q. Chen, J. Burm, W. Schaff, Temperature activated conductance in GaN/AlGaN heterostructure field effect transistors operating at temperatures up to 300 °C. Appl. Phys. Lett. 66(9), 1083–1085 (1995)CrossRef
49.
Zurück zum Zitat J.M. Redwing et al., Two-dimensional electron gas properties of AlGaN/GaN heterostructures grown on 6H–SiC and sapphire substrates. Appl. Phys. Lett. 69(7), 963–965 (1996)CrossRef J.M. Redwing et al., Two-dimensional electron gas properties of AlGaN/GaN heterostructures grown on 6H–SiC and sapphire substrates. Appl. Phys. Lett. 69(7), 963–965 (1996)CrossRef
50.
Zurück zum Zitat S.C. Binari, J.M. Redwing, G. Kelner, W. Kruppa, AlGaN/GaN HEMTs grown on SiC substrates. Electron. Lett. 33(3), 242–243 (1997)CrossRef S.C. Binari, J.M. Redwing, G. Kelner, W. Kruppa, AlGaN/GaN HEMTs grown on SiC substrates. Electron. Lett. 33(3), 242–243 (1997)CrossRef
51.
Zurück zum Zitat W.S. Tan, M.J. Uren, P.W. Fry, P.A. Houston, R.S. Balmer, T. Martin, High temperature performance of AlGaN/GaN HEMTs on Si substrates. Solid. State. Electron. 50(3), 511–513 (2006)CrossRef W.S. Tan, M.J. Uren, P.W. Fry, P.A. Houston, R.S. Balmer, T. Martin, High temperature performance of AlGaN/GaN HEMTs on Si substrates. Solid. State. Electron. 50(3), 511–513 (2006)CrossRef
52.
Zurück zum Zitat I. Daumiller, C. Kirchner, M. Kamp, K.J. Ebeling, E. Kohn, Evaluation of the temperature stability of AlGaN/GaN heterostructure FETs. IEEE Electron Device Lett. 20(9), 448–450 (1999)CrossRef I. Daumiller, C. Kirchner, M. Kamp, K.J. Ebeling, E. Kohn, Evaluation of the temperature stability of AlGaN/GaN heterostructure FETs. IEEE Electron Device Lett. 20(9), 448–450 (1999)CrossRef
53.
Zurück zum Zitat I.P. Smorchkova et al., Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 86(8), 4520–4526 (1999)CrossRef I.P. Smorchkova et al., Polarization-induced charge and electron mobility in AlGaN/GaN heterostructures grown by plasma-assisted molecular-beam epitaxy. J. Appl. Phys. 86(8), 4520–4526 (1999)CrossRef
54.
Zurück zum Zitat S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, High-temperature effects of AlGaN/GaN high-electron-mobility transistors on sapphire and semi-insulating SiC substrates. Appl. Phys. Lett. 80(12), 2186–2188 (2002)CrossRef S. Arulkumaran, T. Egawa, H. Ishikawa, T. Jimbo, High-temperature effects of AlGaN/GaN high-electron-mobility transistors on sapphire and semi-insulating SiC substrates. Appl. Phys. Lett. 80(12), 2186–2188 (2002)CrossRef
55.
Zurück zum Zitat N. Maeda, K. Tsubaki, T. Saitoh, N. Kobayashi, High-temperature electron transport properties in AlGaN/GaN heterostructures. Appl. Phys. Lett. 79(11), 1634–1636 (2001)CrossRef N. Maeda, K. Tsubaki, T. Saitoh, N. Kobayashi, High-temperature electron transport properties in AlGaN/GaN heterostructures. Appl. Phys. Lett. 79(11), 1634–1636 (2001)CrossRef
56.
Zurück zum Zitat Y.-F. Wu et al., High Al-content AlGaN/GaN MODFETs for ultrahigh performance. IEEE Electron Device Lett. 19(2), 50–53 (1998)CrossRef Y.-F. Wu et al., High Al-content AlGaN/GaN MODFETs for ultrahigh performance. IEEE Electron Device Lett. 19(2), 50–53 (1998)CrossRef
57.
Zurück zum Zitat Y. Zhang, J. Singh, Charge control and mobility studies for an AlGaN/GaN high electron mobility transistor. J. Appl. Phys. 85(1), 587–594 (1999)CrossRef Y. Zhang, J. Singh, Charge control and mobility studies for an AlGaN/GaN high electron mobility transistor. J. Appl. Phys. 85(1), 587–594 (1999)CrossRef
58.
Zurück zum Zitat A. Agrawal, S. Sen, S. Haldar, R.S. Gupta, Analytical model for dc characteristics and small-signal parameters of AIGaN/GaN modulation-doped field-effect transistor for microwave circuit applications. Microw. Opt. Technol. Lett. 27(6), 413–419 (2000)CrossRef A. Agrawal, S. Sen, S. Haldar, R.S. Gupta, Analytical model for dc characteristics and small-signal parameters of AIGaN/GaN modulation-doped field-effect transistor for microwave circuit applications. Microw. Opt. Technol. Lett. 27(6), 413–419 (2000)CrossRef
59.
Zurück zum Zitat Y.-F. Wu, D. Kapolnek, J.P. Ibbetson, P. Parikh, B.P. Keller, U.K. Mishra, Very-high power density AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 48(3), 586–590 (2001)CrossRef Y.-F. Wu, D. Kapolnek, J.P. Ibbetson, P. Parikh, B.P. Keller, U.K. Mishra, Very-high power density AlGaN/GaN HEMTs. IEEE Trans. Electron Devices 48(3), 586–590 (2001)CrossRef
60.
Zurück zum Zitat A. Kranti, S. Haldar, R.S. Gupta, An accurate charge control model for spontaneous and piezoelectric polarization dependent two-dimensional electron gas sheet charge density of lattice-mismatched AlGaN/GaN HEMTs. Solid State Electron. 46, 621–630 (2002) A. Kranti, S. Haldar, R.S. Gupta, An accurate charge control model for spontaneous and piezoelectric polarization dependent two-dimensional electron gas sheet charge density of lattice-mismatched AlGaN/GaN HEMTs. Solid State Electron. 46, 621–630 (2002)
61.
Zurück zum Zitat F.A. Marino, P. Menegoli, High performance multigate transistor. Google Patents (2015) F.A. Marino, P. Menegoli, High performance multigate transistor. Google Patents (2015)
62.
Zurück zum Zitat S. Wu, R.T. Webster, A.F.M. Anwar, Physics-based intrinsic model for AlGaN/GaN HEMTs. Mater. Res. Soc. Internet J. Nitride Semicond. Res. 4, 775–780 (1999) S. Wu, R.T. Webster, A.F.M. Anwar, Physics-based intrinsic model for AlGaN/GaN HEMTs. Mater. Res. Soc. Internet J. Nitride Semicond. Res. 4, 775–780 (1999)
63.
Zurück zum Zitat J. Nause, S. Ganesan, High-electron mobility transistor with zinc oxide. Google Patents (2006) J. Nause, S. Ganesan, High-electron mobility transistor with zinc oxide. Google Patents (2006)
64.
Zurück zum Zitat T. Edahiro, N. Fujimura, T. Ito, Formation of two-dimensional electron gas and the magnetotransport behavior of ZnMnO/ZnO heterostructure. J. Appl. Phys. 93(10), 7673–7675 (2003)CrossRef T. Edahiro, N. Fujimura, T. Ito, Formation of two-dimensional electron gas and the magnetotransport behavior of ZnMnO/ZnO heterostructure. J. Appl. Phys. 93(10), 7673–7675 (2003)CrossRef
65.
Zurück zum Zitat K. Koike et al., Piezoelectric carrier confinement by lattice mismatch at ZnO/Zn0.6Mg0.4O heterointerface. Jpn. J. Appl. Phys. 43, L1372 (2004)CrossRef K. Koike et al., Piezoelectric carrier confinement by lattice mismatch at ZnO/Zn0.6Mg0.4O heterointerface. Jpn. J. Appl. Phys. 43, L1372 (2004)CrossRef
66.
Zurück zum Zitat K. Koike, I. Nakashima, K. Hashimoto, S. Sasa, M. Inoue, M. Yano, Characteristics of a Zn0.7Mg0.3O/ZnO heterostructure field-effect transistor grown on sapphire substrate by molecular-beam epitaxy. Appl. Phys. Lett. 87(11), 7–10 (2005)CrossRef K. Koike, I. Nakashima, K. Hashimoto, S. Sasa, M. Inoue, M. Yano, Characteristics of a Zn0.7Mg0.3O/ZnO heterostructure field-effect transistor grown on sapphire substrate by molecular-beam epitaxy. Appl. Phys. Lett. 87(11), 7–10 (2005)CrossRef
67.
Zurück zum Zitat H. Tampo et al., Two-dimensional electron gas in Zn polar ZnMgO/ZnO heterostructures grown by radical source molecular beam epitaxy. Appl. Phys. Lett. 89(13), 67–70 (2006)CrossRef H. Tampo et al., Two-dimensional electron gas in Zn polar ZnMgO/ZnO heterostructures grown by radical source molecular beam epitaxy. Appl. Phys. Lett. 89(13), 67–70 (2006)CrossRef
68.
Zurück zum Zitat H. Tampo et al., Strong excitonic transition of Zn1−x MgxO alloy. Appl. Phys. Lett. 91(26), 261907 (2007)CrossRef H. Tampo et al., Strong excitonic transition of Zn1x MgxO alloy. Appl. Phys. Lett. 91(26), 261907 (2007)CrossRef
69.
Zurück zum Zitat J.D. Ye et al., Two-dimensional electron gas in Zn-polar ZnMgO/ZnO heterostructure grown by metal-organic vapor phase epitaxy. Appl. Phys. Lett. 97(11), 2010–2012 (2010)CrossRef J.D. Ye et al., Two-dimensional electron gas in Zn-polar ZnMgO/ZnO heterostructure grown by metal-organic vapor phase epitaxy. Appl. Phys. Lett. 97(11), 2010–2012 (2010)CrossRef
70.
Zurück zum Zitat H. Tampo et al., Polarization-induced two-dimensional electron gases in ZnMgO/ZnO heterostructures. Appl. Phys. Lett. 93(20), 11–14 (2008)CrossRef H. Tampo et al., Polarization-induced two-dimensional electron gases in ZnMgO/ZnO heterostructures. Appl. Phys. Lett. 93(20), 11–14 (2008)CrossRef
71.
Zurück zum Zitat M. Brandt, H. von Wenckstern, G. Benndorf, H. Hochmuth, M. Lorenz, M. Grundmann, Formation of a two-dimensional electron gas in ZnO/MgZnO single heterostructures and quantum wells. Thin Solid Films 518(4), 1048–1052 (2009)CrossRef M. Brandt, H. von Wenckstern, G. Benndorf, H. Hochmuth, M. Lorenz, M. Grundmann, Formation of a two-dimensional electron gas in ZnO/MgZnO single heterostructures and quantum wells. Thin Solid Films 518(4), 1048–1052 (2009)CrossRef
72.
Zurück zum Zitat H.A. Chin et al., Two dimensional electron gases in polycrystalline MgZnO/ZnO heterostructures grown by RF-sputtering process. J. Appl. Phys. 108(5), 2–5 (2010)CrossRef H.A. Chin et al., Two dimensional electron gases in polycrystalline MgZnO/ZnO heterostructures grown by RF-sputtering process. J. Appl. Phys. 108(5), 2–5 (2010)CrossRef
73.
Zurück zum Zitat S. Sasa et al., Microwave performance of ZnO/ZnMgO heterostructure field effect transistors. Phys. Status Solidi 208(2), 449–452 (2011)CrossRef S. Sasa et al., Microwave performance of ZnO/ZnMgO heterostructure field effect transistors. Phys. Status Solidi 208(2), 449–452 (2011)CrossRef
74.
Zurück zum Zitat J. He, P. Wang, H. Chen, X. Guo, L. Guo, Y. Yang, Study on temperature effect on properties of ZnO/MgZnO based quantum cascade detector in mid-infrared region. Appl. Phys. Express 10(1), 11101 (2016)CrossRef J. He, P. Wang, H. Chen, X. Guo, L. Guo, Y. Yang, Study on temperature effect on properties of ZnO/MgZnO based quantum cascade detector in mid-infrared region. Appl. Phys. Express 10(1), 11101 (2016)CrossRef
75.
Zurück zum Zitat S.-H. Jang, S.F. Chichibu, Structural, elastic, and polarization parameters and band structures of wurtzite ZnO and MgO. J. Appl. Phys. 112(7), 73503 (2012)CrossRef S.-H. Jang, S.F. Chichibu, Structural, elastic, and polarization parameters and band structures of wurtzite ZnO and MgO. J. Appl. Phys. 112(7), 73503 (2012)CrossRef
76.
Zurück zum Zitat S.-H. Park, D. Ahn, Spontaneous and piezoelectric polarization effects in wurtzite ZnO/MgZnO quantum well lasers. Appl. Phys. Lett. 87(25), 253509 (2005)CrossRef S.-H. Park, D. Ahn, Spontaneous and piezoelectric polarization effects in wurtzite ZnO/MgZnO quantum well lasers. Appl. Phys. Lett. 87(25), 253509 (2005)CrossRef
Metadaten
Titel
Study of Different Transport Properties of MgZnO/ZnO and AlGaN/GaN High Electron Mobility Transistors: A Review
verfasst von
Yogesh Kumar Verma
Varun Mishra
Lucky Agarwal
Laxman Singh
Santosh Kumar Gupta
Copyright-Jahr
2023
Verlag
Springer Nature Singapore
DOI
https://doi.org/10.1007/978-981-19-2165-0_4

Neuer Inhalt