Skip to main content
Erschienen in: Journal of Materials Science: Materials in Electronics 1/2018

27.09.2017

Study of structural and magnetoelectric properties of 1−x(Ba0.96Ca0.04TiO3)–x(ZnFe2O4) ceramic composites

Erschienen in: Journal of Materials Science: Materials in Electronics | Ausgabe 1/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Multiferroic ceramic composites of (1−x)Ba0.96Ca0.04TiO3–(x)ZnFe2O4 (BCT-ZF) were prepared from ferroelectric (FE) barium calcium titanate (BCT) and ferromagnetic (FM) zinc ferrite (ZF) by using the solid state reaction method with different mol% fractions of x (x = 0.1 and 0.2). The preliminary structural studies carried out by X-ray diffraction at room temperature reveals that the samples have a tetragonal structure along with the cubic spinel ferrite phase. Raman spectra of the composites also confirm the existence of BCT phase and ZF phase. The room temperature ferroelectric polarization measurements as a function of magnetic field show the existence strong magnetoelectric coupling of 10.85 (mV/(cm.Oe).

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat H. Schmid, Multi-ferroic magnetoelectrics. Ferroelectrics 162(1), 317–338 (1994)CrossRef H. Schmid, Multi-ferroic magnetoelectrics. Ferroelectrics 162(1), 317–338 (1994)CrossRef
2.
Zurück zum Zitat P. Fischer et al., Temperature dependence of the crystal and magnetic structures of BiFeO3. J. Phys. C 13(10), 1931 (1980)CrossRef P. Fischer et al., Temperature dependence of the crystal and magnetic structures of BiFeO3. J. Phys. C 13(10), 1931 (1980)CrossRef
3.
Zurück zum Zitat G.A. Smolenskiĭ, I.E. Chupis, Ferroelectromagnets. Soviet Phys. Uspekhi 25(7), 475 (1982)CrossRef G.A. Smolenskiĭ, I.E. Chupis, Ferroelectromagnets. Soviet Phys. Uspekhi 25(7), 475 (1982)CrossRef
4.
Zurück zum Zitat J. Wang et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613), 1719 (2003)CrossRef J. Wang et al., Epitaxial BiFeO3 multiferroic thin film heterostructures. Science 299(5613), 1719 (2003)CrossRef
5.
Zurück zum Zitat Y. Tokura, Multiferroics as quantum electromagnets. Science 312(5779), 1481 (2006)CrossRef Y. Tokura, Multiferroics as quantum electromagnets. Science 312(5779), 1481 (2006)CrossRef
6.
Zurück zum Zitat J.F. Scott, Data storage: multiferroic memories. Nat Mater. 6(4), 256–257 (2007)CrossRef J.F. Scott, Data storage: multiferroic memories. Nat Mater. 6(4), 256–257 (2007)CrossRef
7.
Zurück zum Zitat R. Palai et al., β phase and γ− β metal-insulator transition in multiferroic Bi Fe O3. Phys. Rev. B 77(1), 014110 (2008)CrossRef R. Palai et al., β phase and γ− β metal-insulator transition in multiferroic Bi Fe O3. Phys. Rev. B 77(1), 014110 (2008)CrossRef
8.
Zurück zum Zitat R. Palai, J.F. Scott, R.S. Katiyar, Phonon spectroscopy near phase transition temperatures in multiferroic BiFeO3 epitaxial thin films. Phys. Rev. B 81(2), 024115 (2010)CrossRef R. Palai, J.F. Scott, R.S. Katiyar, Phonon spectroscopy near phase transition temperatures in multiferroic BiFeO3 epitaxial thin films. Phys. Rev. B 81(2), 024115 (2010)CrossRef
9.
Zurück zum Zitat S.Y. Yang et al., Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications. Appl. Phys. Lett. 87(10), 102903 (2005)CrossRef S.Y. Yang et al., Metalorganic chemical vapor deposition of lead-free ferroelectric BiFeO3 films for memory applications. Appl. Phys. Lett. 87(10), 102903 (2005)CrossRef
10.
Zurück zum Zitat G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21(24), 2463–2485 (2009)CrossRef G. Catalan, J.F. Scott, Physics and applications of bismuth ferrite. Adv. Mater. 21(24), 2463–2485 (2009)CrossRef
11.
Zurück zum Zitat S.V. Kalinin, Multiferroics: Making a point of control. Nat. Phys., 13, 115–116 (2017)CrossRef S.V. Kalinin, Multiferroics: Making a point of control. Nat. Phys., 13, 115–116 (2017)CrossRef
12.
Zurück zum Zitat S. Nakashima et al., First-principles XANES simulations of spinel zinc ferrite with a disordered cation distribution. Phys. Rev. B 75(17), 174443 (2007)CrossRef S. Nakashima et al., First-principles XANES simulations of spinel zinc ferrite with a disordered cation distribution. Phys. Rev. B 75(17), 174443 (2007)CrossRef
13.
Zurück zum Zitat K.C. Verma, S. Tripathi, R. Kotnala, Magneto-electric/dielectric and fluorescence effects in multiferroic x BaTiO3–(1−x) ZnFe2O4 nanostructures. RSC Adv. 4(104), 60234–60242 (2014)CrossRef K.C. Verma, S. Tripathi, R. Kotnala, Magneto-electric/dielectric and fluorescence effects in multiferroic x BaTiO3–(1−x) ZnFe2O4 nanostructures. RSC Adv. 4(104), 60234–60242 (2014)CrossRef
14.
Zurück zum Zitat E.V. Ramana et al., Effect of Fe-doping on the structure and magnetoelectric properties of (Ba 0.85 Ca 0.15)(Ti 0.9 Zr 0.1) O3 synthesized by a chemical route. J. Mater. Chem. C 4(5), 1066–1079 (2016)CrossRef E.V. Ramana et al., Effect of Fe-doping on the structure and magnetoelectric properties of (Ba 0.85 Ca 0.15)(Ti 0.9 Zr 0.1) O3 synthesized by a chemical route. J. Mater. Chem. C 4(5), 1066–1079 (2016)CrossRef
15.
Zurück zum Zitat M. Bichurin et al., Magnetoelectric effect in layered structures of amorphous ferromagnetic alloy and gallium arsenide. J. Magn. Magn. Mater. 424, 115–117 (2017)CrossRef M. Bichurin et al., Magnetoelectric effect in layered structures of amorphous ferromagnetic alloy and gallium arsenide. J. Magn. Magn. Mater. 424, 115–117 (2017)CrossRef
16.
Zurück zum Zitat A. Sukhov et al., Magnetoelectric coupling in a ferroelectric/ferromagnetic chain revealed by ferromagnetic resonance. J. Appl. Phys. 113(1), 013908 (2013)CrossRef A. Sukhov et al., Magnetoelectric coupling in a ferroelectric/ferromagnetic chain revealed by ferromagnetic resonance. J. Appl. Phys. 113(1), 013908 (2013)CrossRef
17.
Zurück zum Zitat C.-L. Jia et al., Mechanism of interfacial magnetoelectric coupling in composite multiferroics. Phys. Rev. B 90(5), 054423 (2014)CrossRef C.-L. Jia et al., Mechanism of interfacial magnetoelectric coupling in composite multiferroics. Phys. Rev. B 90(5), 054423 (2014)CrossRef
18.
Zurück zum Zitat R. Rai et al., Dielectric and magnetic studies of (NKNLS) 1−x–(NZFO) x multiferroic composites. J. Alloys Compd. 614, 277–282 (2014)CrossRef R. Rai et al., Dielectric and magnetic studies of (NKNLS) 1−x–(NZFO) x multiferroic composites. J. Alloys Compd. 614, 277–282 (2014)CrossRef
19.
Zurück zum Zitat J. Ma et al., Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23(9), 1062–1087 (2011)CrossRef J. Ma et al., Recent progress in multiferroic magnetoelectric composites: from bulk to thin films. Adv. Mater. 23(9), 1062–1087 (2011)CrossRef
20.
Zurück zum Zitat C.-W. Nan et al., Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103(3), 031101 (2008)CrossRef C.-W. Nan et al., Multiferroic magnetoelectric composites: historical perspective, status, and future directions. J. Appl. Phys. 103(3), 031101 (2008)CrossRef
21.
Zurück zum Zitat P. Kumaria et al., State-of-the-art of lead free ferroelectrics: a critical review. Adv. Mater. Lett. 6(6), 453–484 (2015)CrossRef P. Kumaria et al., State-of-the-art of lead free ferroelectrics: a critical review. Adv. Mater. Lett. 6(6), 453–484 (2015)CrossRef
22.
Zurück zum Zitat W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103(25), 257602 (2009)CrossRef W. Liu, X. Ren, Large piezoelectric effect in Pb-free ceramics. Phys. Rev. Lett. 103(25), 257602 (2009)CrossRef
23.
Zurück zum Zitat T. Tou et al., Properties of (Bi0.5Na0.5) T 3 3 0 5 N 0 1 N2O3 lead—free piezoelectric ceramics and its application to ultrasonic cleaner. Jpn. J. Appl. Phys. 48(7S), 07GM03 (2009) T. Tou et al., Properties of (Bi0.5Na0.5) T 3 3 0 5 N 0 1 N2O3 lead—free piezoelectric ceramics and its application to ultrasonic cleaner. Jpn. J. Appl. Phys. 48(7S), 07GM03 (2009)
24.
Zurück zum Zitat M. Lal et al., Structural, Dielectric and Impedance Studies of KNNS–BKT Ceramics. Am. J. Mater. Sci. 7(2), 25–34 (2017) M. Lal et al., Structural, Dielectric and Impedance Studies of KNNS–BKT Ceramics. Am. J. Mater. Sci. 7(2), 25–34 (2017)
25.
Zurück zum Zitat A. Singh, R. Chatterjee, Structural and electrical properties of BKT rich Bi0.5K0.5TiO3–K0.5Na0.5NbO3 system. AIP Adv. 3(3), 032129 (2013)CrossRef A. Singh, R. Chatterjee, Structural and electrical properties of BKT rich Bi0.5K0.5TiO3–K0.5Na0.5NbO3 system. AIP Adv. 3(3), 032129 (2013)CrossRef
26.
Zurück zum Zitat H.F. Kay, P. Vousden, XCV. Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties. London, Edinburgh, and Dublin Philos. Mag. J. Sci. 40(309), 1019–1040 (1949)CrossRef H.F. Kay, P. Vousden, XCV. Symmetry changes in barium titanate at low temperatures and their relation to its ferroelectric properties. London, Edinburgh, and Dublin Philos. Mag. J. Sci. 40(309), 1019–1040 (1949)CrossRef
27.
Zurück zum Zitat A. Bratkovsky, A. Levanyuk, Smearing of phase transition due to a surface effect or a bulk inhomogeneity in ferroelectric nanostructures. Physical Rev. Lett. 94(10), 107601 (2005)CrossRef A. Bratkovsky, A. Levanyuk, Smearing of phase transition due to a surface effect or a bulk inhomogeneity in ferroelectric nanostructures. Physical Rev. Lett. 94(10), 107601 (2005)CrossRef
28.
Zurück zum Zitat E.J. Choi, Y. Ahn, E.J. Hahn, Size dependence of the magnetic properties in superparamagnetic zinc-ferrite nanoparticles. J. Kor. Phys. Soc. 53(4), 2090–2094 (2008) E.J. Choi, Y. Ahn, E.J. Hahn, Size dependence of the magnetic properties in superparamagnetic zinc-ferrite nanoparticles. J. Kor. Phys. Soc. 53(4), 2090–2094 (2008)
29.
Zurück zum Zitat J. Hochepied, P. Bonville, M. Pileni, Nonstoichiometric zinc ferrite nanocrystals: syntheses and unusual magnetic properties. J. Phys. Chem. B 104(5), 905–912 (2000)CrossRef J. Hochepied, P. Bonville, M. Pileni, Nonstoichiometric zinc ferrite nanocrystals: syntheses and unusual magnetic properties. J. Phys. Chem. B 104(5), 905–912 (2000)CrossRef
30.
Zurück zum Zitat S. Stewart et al., Cationic exchange in nanosized Zn Fe2O4 spinel revealed by experimental and simulated near-edge absorption structure. Phys. Rev. B 75(7), 073408 (2007)CrossRef S. Stewart et al., Cationic exchange in nanosized Zn Fe2O4 spinel revealed by experimental and simulated near-edge absorption structure. Phys. Rev. B 75(7), 073408 (2007)CrossRef
31.
Zurück zum Zitat S. Kumar, N. Ahlawat, N. Ahlawat, Microwave sintering time optimization to boost structural and electrical properties in BaTiO3 ceramics. J. Integr. Sci. Technol. 4(1), 10–16 (2016) S. Kumar, N. Ahlawat, N. Ahlawat, Microwave sintering time optimization to boost structural and electrical properties in BaTiO3 ceramics. J. Integr. Sci. Technol. 4(1), 10–16 (2016)
32.
Zurück zum Zitat V.S. Puli et al., Structure, dielectric tunability, thermal stability and diffuse phase transition behavior of lead free BZT–BCT ceramic capacitors. J. Phys. Chem. Solids 74(3), 466–475 (2013)CrossRef V.S. Puli et al., Structure, dielectric tunability, thermal stability and diffuse phase transition behavior of lead free BZT–BCT ceramic capacitors. J. Phys. Chem. Solids 74(3), 466–475 (2013)CrossRef
33.
Zurück zum Zitat J. Pokorný et al., Use of Raman spectroscopy to determine the site occupancy of dopants in BaTiO3. J. Appl. Phys. 109(11), 114110 (2011)CrossRef J. Pokorný et al., Use of Raman spectroscopy to determine the site occupancy of dopants in BaTiO3. J. Appl. Phys. 109(11), 114110 (2011)CrossRef
34.
Zurück zum Zitat J.P. Singh et al., Micro-Raman investigation of nanosized zinc ferrite: effect of crystallite size and fluence of irradiation. J. Raman Spectrosc. 42(7), 1510–1517 (2011)CrossRef J.P. Singh et al., Micro-Raman investigation of nanosized zinc ferrite: effect of crystallite size and fluence of irradiation. J. Raman Spectrosc. 42(7), 1510–1517 (2011)CrossRef
35.
Zurück zum Zitat A. Khamkongkaeo et al., Frequency-dependent magnetoelectricity of CoFe2O4-BaTiO3 particulate composites. Trans. Nonferr. Metals Soc. China 21(11), 2438–2442 (2011)CrossRef A. Khamkongkaeo et al., Frequency-dependent magnetoelectricity of CoFe2O4-BaTiO3 particulate composites. Trans. Nonferr. Metals Soc. China 21(11), 2438–2442 (2011)CrossRef
36.
Zurück zum Zitat S. Pachari, Structure, microstructure and magneto-dielectric properties of barium titanate-ferrite based composites. (National Institute of Technology Rourkela, Rourkela, 2015) S. Pachari, Structure, microstructure and magneto-dielectric properties of barium titanate-ferrite based composites. (National Institute of Technology Rourkela, Rourkela, 2015)
37.
Zurück zum Zitat A.S. Kumar et al., Multiferroic and magnetoelectric properties of Ba 0.85Ca 0.15 Zr 0.1 Ti0.9O3–CoFe2O4 core–shell nanocomposite. J. Magn. Magn. Mater. 418, 294–299 (2016)CrossRef A.S. Kumar et al., Multiferroic and magnetoelectric properties of Ba 0.85Ca 0.15 Zr 0.1 Ti0.9O3–CoFe2O4 core–shell nanocomposite. J. Magn. Magn. Mater. 418, 294–299 (2016)CrossRef
38.
Zurück zum Zitat K.W. Wagner, Zur theorie der unvollkommenen dielektrika. Ann. Phys. 345(5), 817–855 (1913)CrossRef K.W. Wagner, Zur theorie der unvollkommenen dielektrika. Ann. Phys. 345(5), 817–855 (1913)CrossRef
39.
Zurück zum Zitat C. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121 (1951)CrossRef C. Koops, On the dispersion of resistivity and dielectric constant of some semiconductors at audiofrequencies. Phys. Rev. 83(1), 121 (1951)CrossRef
40.
Zurück zum Zitat O. Udalov, N. Chtchelkatchev, I. Beloborodov, Coupling of ferroelectricity and ferromagnetism through Coulomb blockade in composite multiferroics. Phys. Rev. B 89(17), 174203 (2014)CrossRef O. Udalov, N. Chtchelkatchev, I. Beloborodov, Coupling of ferroelectricity and ferromagnetism through Coulomb blockade in composite multiferroics. Phys. Rev. B 89(17), 174203 (2014)CrossRef
41.
Zurück zum Zitat L. Chotorlishvili et al., Dynamics of localized modes in a composite multiferroic chain. Phys. Rev. Lett. 111(11), 117202 (2013)CrossRef L. Chotorlishvili et al., Dynamics of localized modes in a composite multiferroic chain. Phys. Rev. Lett. 111(11), 117202 (2013)CrossRef
42.
Zurück zum Zitat N. Sedlmayr, V. Dugaev, J. Berakdar, Current-induced interactions of multiple domain walls in magnetic quantum wires. Phys. Rev. B 79(17), 174422 (2009)CrossRef N. Sedlmayr, V. Dugaev, J. Berakdar, Current-induced interactions of multiple domain walls in magnetic quantum wires. Phys. Rev. B 79(17), 174422 (2009)CrossRef
43.
Zurück zum Zitat H. Katsura, N. Nagaosa, A.V. Balatsky, Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95(5), 057205 (2005)CrossRef H. Katsura, N. Nagaosa, A.V. Balatsky, Spin current and magnetoelectric effect in noncollinear magnets. Phys. Rev. Lett. 95(5), 057205 (2005)CrossRef
44.
Zurück zum Zitat S.S. Nair et al., Lead free heterogeneous multilayers with giant magneto electric coupling for microelectronics/microelectromechanical systems applications. J. Appl. Phys. 114(6), 064309 (2013)CrossRef S.S. Nair et al., Lead free heterogeneous multilayers with giant magneto electric coupling for microelectronics/microelectromechanical systems applications. J. Appl. Phys. 114(6), 064309 (2013)CrossRef
45.
Zurück zum Zitat H. Greve et al., Giant magnetoelectric coefficients in (Fe 90 Co 10) 78 Si 12 B 10–AlN thin film composites. Appl. Phys. Lett. 96(18), 182501 (2010)CrossRef H. Greve et al., Giant magnetoelectric coefficients in (Fe 90 Co 10) 78 Si 12 B 10–AlN thin film composites. Appl. Phys. Lett. 96(18), 182501 (2010)CrossRef
46.
Zurück zum Zitat C.-W. Nan et al., Large magnetoelectric response in multiferroic polymer-based composites. Phys. Rev. B 71(1), 014102 (2005)CrossRef C.-W. Nan et al., Large magnetoelectric response in multiferroic polymer-based composites. Phys. Rev. B 71(1), 014102 (2005)CrossRef
47.
Zurück zum Zitat V. Corral-Flores et al., Enhanced magnetoelectric effect in core-shell particulate composites. J. Appl. Phys. 99(8), 08J503 (2006)CrossRef V. Corral-Flores et al., Enhanced magnetoelectric effect in core-shell particulate composites. J. Appl. Phys. 99(8), 08J503 (2006)CrossRef
Metadaten
Titel
Study of structural and magnetoelectric properties of 1−x(Ba0.96Ca0.04TiO3)–x(ZnFe2O4) ceramic composites
Publikationsdatum
27.09.2017
Erschienen in
Journal of Materials Science: Materials in Electronics / Ausgabe 1/2018
Print ISSN: 0957-4522
Elektronische ISSN: 1573-482X
DOI
https://doi.org/10.1007/s10854-017-7890-6

Weitere Artikel der Ausgabe 1/2018

Journal of Materials Science: Materials in Electronics 1/2018 Zur Ausgabe

Neuer Inhalt