Skip to main content
Erschienen in: Experiments in Fluids 1/2007

01.07.2007 | Research Article

Study of two-phase flows in reduced gravity using ground based experiments

verfasst von: S. Vasavada, X. Sun, M. Ishii, W. Duval

Erschienen in: Experiments in Fluids | Ausgabe 1/2007

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Experimental studies have been carried out to support the development of a framework of the two-fluid model along with an interfacial area transport equation applicable to reduced gravity two-phase flows. The experimental study simulates the reduced gravity condition in ground based facilities by using two immiscible liquids of similar density namely, water as the continuous phase and Therminol 59® as the dispersed phase. We have acquired a total of eleven data sets in the bubbly flow and bubbly to slug flow transition regimes. These flow conditions have area-averaged void (volume) fractions ranging from 3 to 30% and channel Reynolds number for the continuous phase between 2,900 and 8,800. Flow visualization has been performed and a flow regime map developed which is compared with relevant bubbly to slug flow regime transition criteria. The comparison shows that the transition boundary is well predicted by the criterion based on critical void fraction. The value of the critical void fraction at transition was experimentally determined to be approximately 25%. In addition, important two-phase flow local parameters, including the void fraction, interfacial area concentration, droplet number frequency and droplet velocity, have been acquired at two axial locations using state-of-the-art multi-sensor conductivity probe. The radial profiles and axial development of the two-phase flow parameters show that the coalescence mechanism is enhanced by either increasing the continuous or dispersed phase Reynolds number. Evidence of turbulence induced particle interaction mechanism is highlighted. The data presented in this paper clearly show the marked differences in terms of bubble (droplet) size, phase distribution and phase interaction in two-phase flow between normal and reduced gravity conditions.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Fußnoten
1
The term “reduced gravity” is used to represent a situation in which the gravity field is reduced as compared to that on earth (g e ), ranging from lunar gravity (0.16g e ) to actual microgravity (10−6 g e ).
 
2
In this section, the term ‘bubble‘ should be understood to mean both bubble as well as droplet.
 
3
See Fig. 14 for Run 7. Area-averaged values for Run 6 are not explicitly given in the paper.
 
4
The term void fraction, when used in regard to the current experiments and data, should henceforth be taken to imply volume fraction of the dispersed phase. This implication is also relevant to the accompanying figures.
 
Literatur
Zurück zum Zitat Brauner N (1990) On the relations between two-phase flow under reduced gravity and earth experiment. Int Commun Heat Mass Transf 17:271–282CrossRef Brauner N (1990) On the relations between two-phase flow under reduced gravity and earth experiment. Int Commun Heat Mass Transf 17:271–282CrossRef
Zurück zum Zitat Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic, New York Clift R, Grace JR, Weber ME (1978) Bubbles, drops and particles. Academic, New York
Zurück zum Zitat Colin C, Fabre J, Dukler AE (1991) Gas-liquid flow at microgravity conditions – I dispersed bubble and slug flow. Int J Multiphase Flow 17:533–544CrossRef Colin C, Fabre J, Dukler AE (1991) Gas-liquid flow at microgravity conditions – I dispersed bubble and slug flow. Int J Multiphase Flow 17:533–544CrossRef
Zurück zum Zitat Colin C, Kamp A, Fabre J (1993) Influence of gravity on void and velocity distribution in two-phase gas-liquid flow in pipe. Adv Space Res 7:141–145CrossRef Colin C, Kamp A, Fabre J (1993) Influence of gravity on void and velocity distribution in two-phase gas-liquid flow in pipe. Adv Space Res 7:141–145CrossRef
Zurück zum Zitat Colin C, Fabre J, McQuillen J (1996) Bubble and slug flow at microgravity conditions: state of knowledge and open questions. Chem Eng Commun 141–142:155–173 Colin C, Fabre J, McQuillen J (1996) Bubble and slug flow at microgravity conditions: state of knowledge and open questions. Chem Eng Commun 141–142:155–173
Zurück zum Zitat Dukler AE, Fabre J, McQuillen JB, Vernon R (1988) Gas-liquid flow at microgravity conditions flow patterns and their transitions. Int J Multiphase Flow 14:389–400CrossRef Dukler AE, Fabre J, McQuillen JB, Vernon R (1988) Gas-liquid flow at microgravity conditions flow patterns and their transitions. Int J Multiphase Flow 14:389–400CrossRef
Zurück zum Zitat Fujii T, Ohta J, Nakazawa T, Morimoto O (1994) The behavior of an immiscible equal density liquid-liquid two-phase flow in a horizontal tube. JSME Int J Ser B 37:22–29 Fujii T, Ohta J, Nakazawa T, Morimoto O (1994) The behavior of an immiscible equal density liquid-liquid two-phase flow in a horizontal tube. JSME Int J Ser B 37:22–29
Zurück zum Zitat Grigoriev YI, Grogorov EI, Cykhotsky VM, Prokhorov YM, Gorbenco GA, Blinkov VN, Teniakov IE, Malukihin CA (1996) Two-phase heat transport loop of Central Themal Control System for the International Space Station “Alpha” Russian segment. AIChe Symposium Series-Heat Transfer, No. 310:9–17 Grigoriev YI, Grogorov EI, Cykhotsky VM, Prokhorov YM, Gorbenco GA, Blinkov VN, Teniakov IE, Malukihin CA (1996) Two-phase heat transport loop of Central Themal Control System for the International Space Station “Alpha” Russian segment. AIChe Symposium Series-Heat Transfer, No. 310:9–17
Zurück zum Zitat Hewitt GF (1996) Multiphase flow: gravity of the situation. In: Proceedings of the Third Microgravity Fluid Physics Conference, July 13–15, pp 3–23 Hewitt GF (1996) Multiphase flow: gravity of the situation. In: Proceedings of the Third Microgravity Fluid Physics Conference, July 13–15, pp 3–23
Zurück zum Zitat Hibiki T, Ishii M (1999) Experimental study on interfacial area transport in bubbly two-phase flows. Int J Heat Mass Transf 2:3019–3035CrossRef Hibiki T, Ishii M (1999) Experimental study on interfacial area transport in bubbly two-phase flows. Int J Heat Mass Transf 2:3019–3035CrossRef
Zurück zum Zitat Hibiki T, Ishii M (2002) Development of one-group interfacial area transport equation in bubbly flow systems. Int J Heat Mass Transf 45: 2351–2372MATHCrossRef Hibiki T, Ishii M (2002) Development of one-group interfacial area transport equation in bubbly flow systems. Int J Heat Mass Transf 45: 2351–2372MATHCrossRef
Zurück zum Zitat Ishii M, Hibiki T (2006) Thermo-fluid dynamics of two-phase flow. Springer, New York Ishii M, Hibiki T (2006) Thermo-fluid dynamics of two-phase flow. Springer, New York
Zurück zum Zitat Ishii M, Zuber N (1979) Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AICheJ 25:843–855CrossRef Ishii M, Zuber N (1979) Drag coefficient and relative velocity in bubbly, droplet or particulate flows. AICheJ 25:843–855CrossRef
Zurück zum Zitat Ishii M, Wu Q, Assad A, Uhle J (1998) Interfacial area transport equation for two-fluid model formulation. In: Proceedings of 1st annual IMuST meeting, Feb 26–28, Santa Barbara, CA Ishii M, Wu Q, Assad A, Uhle J (1998) Interfacial area transport equation for two-fluid model formulation. In: Proceedings of 1st annual IMuST meeting, Feb 26–28, Santa Barbara, CA
Zurück zum Zitat Ishii M, Kim S, Uhle J (2002) Interfacial area transport equation: model development and benchmark experiments. Int J Heat Mass Transf 45:3111–3123MATHCrossRef Ishii M, Kim S, Uhle J (2002) Interfacial area transport equation: model development and benchmark experiments. Int J Heat Mass Transf 45:3111–3123MATHCrossRef
Zurück zum Zitat Jayawardena SS, Balakotaiah V, Witte LC (1997) Flow pattern transition maps for microgravity two-phase flows. AICheJ 43:1637–1640CrossRef Jayawardena SS, Balakotaiah V, Witte LC (1997) Flow pattern transition maps for microgravity two-phase flows. AICheJ 43:1637–1640CrossRef
Zurück zum Zitat Kamp A, Colin C, Fabre J (1995) Local structure of turbulent bubbly pipe flow under different gravity conditions. In: Proceedings of 2nd international conference on multiphase flow, April 3–7, Kyoto, Japan Kamp A, Colin C, Fabre J (1995) Local structure of turbulent bubbly pipe flow under different gravity conditions. In: Proceedings of 2nd international conference on multiphase flow, April 3–7, Kyoto, Japan
Zurück zum Zitat Kataoka I, Ishii M, Serizawa A (1986) Local formulation and measurements of interfacial area concentration in two-phase flow. Int J Multiphase Flow 12:505–529MATHCrossRef Kataoka I, Ishii M, Serizawa A (1986) Local formulation and measurements of interfacial area concentration in two-phase flow. Int J Multiphase Flow 12:505–529MATHCrossRef
Zurück zum Zitat Keshock EG (1987) Two-phase flow tests conducted under normal and zero-gravity (KC-135 Aircraft) conditions. National Aeronautics and Space Administration, NAS9–17195 Keshock EG (1987) Two-phase flow tests conducted under normal and zero-gravity (KC-135 Aircraft) conditions. National Aeronautics and Space Administration, NAS9–17195
Zurück zum Zitat Kim S (1999) Interfacial area transport equation and measurements of local interfacial characteristics. PhD thesis, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana Kim S (1999) Interfacial area transport equation and measurements of local interfacial characteristics. PhD thesis, School of Nuclear Engineering, Purdue University, West Lafayette, Indiana
Zurück zum Zitat Kim S, Fu XY, Wang X, Ishii M (2000) Development of the miniaturized four-sensor conductivity probe and the signal processing scheme. Int J Heat Mass Transf 43:4101–4118MATHCrossRef Kim S, Fu XY, Wang X, Ishii M (2000) Development of the miniaturized four-sensor conductivity probe and the signal processing scheme. Int J Heat Mass Transf 43:4101–4118MATHCrossRef
Zurück zum Zitat Kocamustafaogullari G, Ishii M (1995) Foundation of the interfacial area transport equation and its closure relations. Int J Heat and Mass Transf 38:481–493MATHCrossRef Kocamustafaogullari G, Ishii M (1995) Foundation of the interfacial area transport equation and its closure relations. Int J Heat and Mass Transf 38:481–493MATHCrossRef
Zurück zum Zitat Kocamustafaogullari G, Ishii M, Chen IY (1984) Unified theory for predicting maximum fluid particle size for drops and bubbles. Nuclear Regulatory Commission, Rockville, Maryland, NUREG/CR-4028 Kocamustafaogullari G, Ishii M, Chen IY (1984) Unified theory for predicting maximum fluid particle size for drops and bubbles. Nuclear Regulatory Commission, Rockville, Maryland, NUREG/CR-4028
Zurück zum Zitat Lin YM, Rezkallah KS (1995) Numerical Predictions of turbulence structure in gas-liquid bubbly flows under normal and microgravity conditions. In: Proceedings of the second international conference on multiphase flow, 6:21–26 Lin YM, Rezkallah KS (1995) Numerical Predictions of turbulence structure in gas-liquid bubbly flows under normal and microgravity conditions. In: Proceedings of the second international conference on multiphase flow, 6:21–26
Zurück zum Zitat Lovell TK (1985) Liquid-vapor flow regime transition for use in the design of heat transfer loops in spacecraft: an investigation of two phase flow in zero gravity conditions. AFWAL (Air Force Wright Aeronautical Labs) Wright-Patterson Air Force Base, Ohio, TR-85–3021 Lovell TK (1985) Liquid-vapor flow regime transition for use in the design of heat transfer loops in spacecraft: an investigation of two phase flow in zero gravity conditions. AFWAL (Air Force Wright Aeronautical Labs) Wright-Patterson Air Force Base, Ohio, TR-85–3021
Zurück zum Zitat Lowe DC, Rezkallah KS (1999) Flow regime identification in microgravity two-phase flows using void fraction signals. Int J Multiphase Flow 25: 433–457CrossRef Lowe DC, Rezkallah KS (1999) Flow regime identification in microgravity two-phase flows using void fraction signals. Int J Multiphase Flow 25: 433–457CrossRef
Zurück zum Zitat Mishima K, Ishii M (1984) Flow regime transition criteria for upward two-phase flow in vertical tubes. Int J Heat and Mass Transf 27:723–737CrossRef Mishima K, Ishii M (1984) Flow regime transition criteria for upward two-phase flow in vertical tubes. Int J Heat and Mass Transf 27:723–737CrossRef
Zurück zum Zitat Nigmatulin TR, Bonetto FJ, Larreteguy AE, Lahey RT Jr, McQuillen JB (2000) An experimental study of dispersed liquid/liquid two-phase upflow in a pipe. Chem Eng Commun 182:121–162CrossRef Nigmatulin TR, Bonetto FJ, Larreteguy AE, Lahey RT Jr, McQuillen JB (2000) An experimental study of dispersed liquid/liquid two-phase upflow in a pipe. Chem Eng Commun 182:121–162CrossRef
Zurück zum Zitat Nobari MR, Jan YJ, Tryggvason G (1996) Head-on collision of drops-A numerical investigation. Phys Fluids 8:29–42MATHCrossRef Nobari MR, Jan YJ, Tryggvason G (1996) Head-on collision of drops-A numerical investigation. Phys Fluids 8:29–42MATHCrossRef
Zurück zum Zitat Ohta H, Inoue K, Yamada Y, Yoshida S, Fujiyama H, Ishikura S (1995) Microgravity flow boiling in a transparent tube. In: Proceedings of ASME/JSME thermal engineering conference 4:547–554 Ohta H, Inoue K, Yamada Y, Yoshida S, Fujiyama H, Ishikura S (1995) Microgravity flow boiling in a transparent tube. In: Proceedings of ASME/JSME thermal engineering conference 4:547–554
Zurück zum Zitat Parang M, Chao D (1998) Two-phase flow mapping and transition under microgravity conditions. In: Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA-1998–656 Parang M, Chao D (1998) Two-phase flow mapping and transition under microgravity conditions. In: Proceedings of the 36th AIAA Aerospace Sciences Meeting and Exhibit, Reno, Nevada, AIAA-1998–656
Zurück zum Zitat Parang M, Chao D (1999) Microgravity two-phase flow transition. In: Proceedings of the 37th AIAA aerospace sciences meeting and exhibit, Reno, Nevada, AIAA-1999–843 Parang M, Chao D (1999) Microgravity two-phase flow transition. In: Proceedings of the 37th AIAA aerospace sciences meeting and exhibit, Reno, Nevada, AIAA-1999–843
Zurück zum Zitat Pope S (2000) Turbulent flows. Cambridge University Press, CambridgeMATH Pope S (2000) Turbulent flows. Cambridge University Press, CambridgeMATH
Zurück zum Zitat Rashidnia N, Balasubramaniam R, Del Signore D (1992) Interfacial tension measurement of immiscible liquids using a capillary tube. AICheJ 38: 615–618CrossRef Rashidnia N, Balasubramaniam R, Del Signore D (1992) Interfacial tension measurement of immiscible liquids using a capillary tube. AICheJ 38: 615–618CrossRef
Zurück zum Zitat Rezkallah KS, Nakazawa N (1997) A study of slip ratio in two-phase gas-liquid flow at normal and microgravity conditions. In: Proceedings of 1997 ASME fluids engineering division annual summer meeting, Vancouver, CA Rezkallah KS, Nakazawa N (1997) A study of slip ratio in two-phase gas-liquid flow at normal and microgravity conditions. In: Proceedings of 1997 ASME fluids engineering division annual summer meeting, Vancouver, CA
Zurück zum Zitat Scheele GF, Meister BJ (1968) Drop formation at low velocities in liquid-liquid systems. AICheJ 14:9–19CrossRef Scheele GF, Meister BJ (1968) Drop formation at low velocities in liquid-liquid systems. AICheJ 14:9–19CrossRef
Zurück zum Zitat Straub J, Micko S (1996) Boiling on a wire under microgravity conditions: first results from a space experiment performed in 1996. In: Gorenflo D, Kenning DBR, Marvillet C (Eds.)Proceedings of EUROTHERM seminar, No. 48, Pool Boiling, 2:275–282 Straub J, Micko S (1996) Boiling on a wire under microgravity conditions: first results from a space experiment performed in 1996. In: Gorenflo D, Kenning DBR, Marvillet C (Eds.)Proceedings of EUROTHERM seminar, No. 48, Pool Boiling, 2:275–282
Zurück zum Zitat Sun X, Kim S, Ishii M, Beus SG (2003) Model evaluation of two-group interfacial area transport equation for confined upward flow. Nucl Eng Des 230:27–47CrossRef Sun X, Kim S, Ishii M, Beus SG (2003) Model evaluation of two-group interfacial area transport equation for confined upward flow. Nucl Eng Des 230:27–47CrossRef
Zurück zum Zitat Takamasa T, Hazuku T, Fukamachi N, Tamura N, Hibiki T, Ishii M (2004) Effect of gravity on axial development of bubbly flow at low liquid Reynolds number. Exp Fluids 37:631–644, DOI10.1007/s00348-004-0844-9CrossRef Takamasa T, Hazuku T, Fukamachi N, Tamura N, Hibiki T, Ishii M (2004) Effect of gravity on axial development of bubbly flow at low liquid Reynolds number. Exp Fluids 37:631–644, DOI10.1007/s00348-004-0844-9CrossRef
Zurück zum Zitat Tomiyama A, Tamai H, Zun I, Hosokawa S (2002) Transverse migration of single bubbles in simple shear flows. Chem Eng Sci 57:1849–1858CrossRef Tomiyama A, Tamai H, Zun I, Hosokawa S (2002) Transverse migration of single bubbles in simple shear flows. Chem Eng Sci 57:1849–1858CrossRef
Zurück zum Zitat Ungar EK, Chen IY, Chan SH (1998) Selection of a gravity insensitive ground test fluid and test configuration to allow simulation of two-phase flow in microgravity. In: Proceedings of the 7th AIAA/ASME joint thermophysics and heat transfer conference, June 14–18, Albuquerque, New Mexico 3: pp 71–77 Ungar EK, Chen IY, Chan SH (1998) Selection of a gravity insensitive ground test fluid and test configuration to allow simulation of two-phase flow in microgravity. In: Proceedings of the 7th AIAA/ASME joint thermophysics and heat transfer conference, June 14–18, Albuquerque, New Mexico 3: pp 71–77
Zurück zum Zitat Wang LP, Carey VP, Greif R, Abdollahian D (1990) Experimental simulation and analytical modeling of two-phase flow under zero-gravity conditions. Int J Multiphase Flow 16:407–419CrossRef Wang LP, Carey VP, Greif R, Abdollahian D (1990) Experimental simulation and analytical modeling of two-phase flow under zero-gravity conditions. Int J Multiphase Flow 16:407–419CrossRef
Zurück zum Zitat Wu Q, Kim S, Ishii M, Beus SG (1998) One-group interfacial area transport in vertical bubbly flow. Int J Heat and Mass Transf 41:1103–1112MATHCrossRef Wu Q, Kim S, Ishii M, Beus SG (1998) One-group interfacial area transport in vertical bubbly flow. Int J Heat and Mass Transf 41:1103–1112MATHCrossRef
Metadaten
Titel
Study of two-phase flows in reduced gravity using ground based experiments
verfasst von
S. Vasavada
X. Sun
M. Ishii
W. Duval
Publikationsdatum
01.07.2007
Verlag
Springer-Verlag
Erschienen in
Experiments in Fluids / Ausgabe 1/2007
Print ISSN: 0723-4864
Elektronische ISSN: 1432-1114
DOI
https://doi.org/10.1007/s00348-007-0321-3

Weitere Artikel der Ausgabe 1/2007

Experiments in Fluids 1/2007 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.