Skip to main content
Erschienen in: Arabian Journal for Science and Engineering 2/2020

20.09.2019 | Research Article - Mechanical Engineering

Study on Aerodynamic Characteristics of Darrieus Vertical Axis Wind Turbines with Different Airfoil Maximum Thicknesses Through Computational Fluid Dynamics

verfasst von: Chenguang Song, Guoqing Wu, Weinan Zhu, Xudong Zhang

Erschienen in: Arabian Journal for Science and Engineering | Ausgabe 2/2020

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The aerodynamic characteristics of Darrieus vertical axis wind turbines (VAWTs) are affected by several geometrical parameters. Airfoil shape is one of the important factors which have not been received enough attention in the past, compared to other parameters such as solidity, number of blades, chord length, rotor diameter, pitch angle and aspect ratio. In this paper, four airfoils with varying maximum thickness (12%, 15%, 18% and 21%) are investigated by calculating the aerodynamic characteristics of Darrieus VAWTs using computational fluid dynamics technology. The power and torque characteristics, as well as their flow field characteristics, are analyzed. The results indicate that the power coefficient follows a trend of CP_NACA 0018 > CP_NACA 0015 > CP_NACA 0021 > CP_NACA 0012 below an optimum TSR, while it increases with the decrease in airfoil maximum thickness beyond the optimum TSR. The optimum TSR and operational zone also increase with the decrease in airfoil maximum thickness. An optimized airfoil thickness is determined to be between 15 and 18% for a relatively high power coefficient and appropriate optimum TSR, as well as a wider operational zone and a high efficiency band. Moreover, the airfoil maximum thickness influences the strength and region of the vorticity, as well as the interactions between blades and shed vortex, being the main reason for the observed differences in instantaneous torque coefficient. The vorticity of NACA 0015 model is weaker and smaller than that of NACA 0021 model when TSR is 2.0.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat ElCheikh, A.; Elkhoury, M.; Kiwata, T.; Kono, T.: Performance analysis of a small-scale orthopter-type vertical axis wind turbine. J. Wind Eng. Ind. Aerodyn. 180, 19–33 (2018) ElCheikh, A.; Elkhoury, M.; Kiwata, T.; Kono, T.: Performance analysis of a small-scale orthopter-type vertical axis wind turbine. J. Wind Eng. Ind. Aerodyn. 180, 19–33 (2018)
2.
Zurück zum Zitat Jain, P.; Abhishek, A.: Performance prediction and fundamental understanding of small scale vertical axis wind turbine with variable amplitude blade pitching. Renew. Energy 97, 97–113 (2016) Jain, P.; Abhishek, A.: Performance prediction and fundamental understanding of small scale vertical axis wind turbine with variable amplitude blade pitching. Renew. Energy 97, 97–113 (2016)
3.
Zurück zum Zitat Asr, M.T.; Nezhad, E.Z.; Mustapha, F.; Wiriadidjaja, S.: Study on start-up characteristics of H-Darrieus vertical axis wind turbines comprising NACA 4-digit series blade airfoils. Energy 112, 528–537 (2016) Asr, M.T.; Nezhad, E.Z.; Mustapha, F.; Wiriadidjaja, S.: Study on start-up characteristics of H-Darrieus vertical axis wind turbines comprising NACA 4-digit series blade airfoils. Energy 112, 528–537 (2016)
4.
Zurück zum Zitat Zhao, Z.Z.; Qian, S.Y.; Shen, W.Z.; Wang, T.G.; Xu, B.F.; Zheng, Y.; Wang, R.X.: Study on variable pitch strategy in H-type wind turbine considering effect of small angle of attack. J. Renew. Sustain. Energy 9, 053302 (2017) Zhao, Z.Z.; Qian, S.Y.; Shen, W.Z.; Wang, T.G.; Xu, B.F.; Zheng, Y.; Wang, R.X.: Study on variable pitch strategy in H-type wind turbine considering effect of small angle of attack. J. Renew. Sustain. Energy 9, 053302 (2017)
5.
Zurück zum Zitat Hui, I.; Cain, B.E.; Dabiri, J.O.: Public receptiveness of vertical axis wind turbines. Energy Policy 112, 258–271 (2018) Hui, I.; Cain, B.E.; Dabiri, J.O.: Public receptiveness of vertical axis wind turbines. Energy Policy 112, 258–271 (2018)
6.
Zurück zum Zitat Bangga, G.; Lutz, T.; Dessoky, A.; Krämer, E.: Unsteady Navier–Stokes studies on loads, wake, and dynamic stall characteristics of a two-bladed vertical axis wind turbine. J. Renew. Sustain. Energy 9, 053303 (2017) Bangga, G.; Lutz, T.; Dessoky, A.; Krämer, E.: Unsteady Navier–Stokes studies on loads, wake, and dynamic stall characteristics of a two-bladed vertical axis wind turbine. J. Renew. Sustain. Energy 9, 053303 (2017)
7.
Zurück zum Zitat Li, Q.; Maeda, T.; Kamada, Y.; Hiromori, Y.; Nakai, A.; Kasuya, T.: Study on stall behavior of a straight-bladed vertical axis wind turbine with numerical and experimental investigations. J. Wind Eng. Ind. Aerodyn. 164, 1–12 (2017) Li, Q.; Maeda, T.; Kamada, Y.; Hiromori, Y.; Nakai, A.; Kasuya, T.: Study on stall behavior of a straight-bladed vertical axis wind turbine with numerical and experimental investigations. J. Wind Eng. Ind. Aerodyn. 164, 1–12 (2017)
8.
Zurück zum Zitat Wong, K.H.; Chong, W.T.; Sukiman, N.L.; Poh, S.C.; Shiah, Y.C.; Wang, C.T.: Performance enhancements on vertical axis wind turbines using flow augmentation systems: a review. Renew. Sustain. Energy Rev. 73, 904–921 (2017) Wong, K.H.; Chong, W.T.; Sukiman, N.L.; Poh, S.C.; Shiah, Y.C.; Wang, C.T.: Performance enhancements on vertical axis wind turbines using flow augmentation systems: a review. Renew. Sustain. Energy Rev. 73, 904–921 (2017)
9.
Zurück zum Zitat Douak, M.; Aouachria, Z.; Rabehi, R.; Allam, N.: Wind energy systems: analysis of the self-starting physics of vertical axis wind turbine. Renew. Sustain. Energy Rev. 81, 1602–1610 (2018) Douak, M.; Aouachria, Z.; Rabehi, R.; Allam, N.: Wind energy systems: analysis of the self-starting physics of vertical axis wind turbine. Renew. Sustain. Energy Rev. 81, 1602–1610 (2018)
10.
Zurück zum Zitat Ferreira, C.S.; Scheurich, F.: Demonstrating that power and instantaneous loads are decoupled in a vertical-axis wind turbine. Wind Energy 17(3), 385–396 (2014) Ferreira, C.S.; Scheurich, F.: Demonstrating that power and instantaneous loads are decoupled in a vertical-axis wind turbine. Wind Energy 17(3), 385–396 (2014)
11.
Zurück zum Zitat Hand, B.; Cashman, A.: Conceptual design of a large-scale floating offshore vertical axis wind turbine. In: 9th International Conference on Applied Energy, 21–24 August, Cardiff, UK (2017) Hand, B.; Cashman, A.: Conceptual design of a large-scale floating offshore vertical axis wind turbine. In: 9th International Conference on Applied Energy, 21–24 August, Cardiff, UK (2017)
12.
Zurück zum Zitat Cheng, Z.S.; Madsen, H.A.; Gao, Z.; Moan, T.: A fully coupled method for numerical modeling and dynamic analysis of floating vertical axis wind turbines. Renew. Energy 107, 604–619 (2017) Cheng, Z.S.; Madsen, H.A.; Gao, Z.; Moan, T.: A fully coupled method for numerical modeling and dynamic analysis of floating vertical axis wind turbines. Renew. Energy 107, 604–619 (2017)
13.
Zurück zum Zitat Tjiu, W.; Marnoto, T.; Mat, S.; Ruslan, M.H.; Sopian, K.: Darrieus vertical axis wind turbine for power generation II: challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development. Renew. Energy 75, 560–571 (2015) Tjiu, W.; Marnoto, T.; Mat, S.; Ruslan, M.H.; Sopian, K.: Darrieus vertical axis wind turbine for power generation II: challenges in HAWT and the opportunity of multi-megawatt Darrieus VAWT development. Renew. Energy 75, 560–571 (2015)
14.
Zurück zum Zitat Kumar, R.; Raahemifar, K.; Fung, A.S.: A critical review of vertical axis wind turbines for urban applications. Renew. Sustain. Energy Rev. 89, 281–291 (2018) Kumar, R.; Raahemifar, K.; Fung, A.S.: A critical review of vertical axis wind turbines for urban applications. Renew. Sustain. Energy Rev. 89, 281–291 (2018)
15.
Zurück zum Zitat Lee, K.Y.; Tsao, S.H.; Tzeng, C.W.; Lin, H.J.: Influence of the vertical wind and wind direction on the power output of a small vertical-axis wind turbine installed on the rooftop of a building. Appl. Energy 209, 383–391 (2018) Lee, K.Y.; Tsao, S.H.; Tzeng, C.W.; Lin, H.J.: Influence of the vertical wind and wind direction on the power output of a small vertical-axis wind turbine installed on the rooftop of a building. Appl. Energy 209, 383–391 (2018)
16.
Zurück zum Zitat Chong, W.T.; Wang, X.H.; Wong, K.H.; Mojumder, J.C.; Poh, S.C.; Saw, L.H.; Lai, S.H.: Performance assessment of a hybrid solar-wind-rain eco-roof system for buildings. Energy Build. 127, 1028–1042 (2016) Chong, W.T.; Wang, X.H.; Wong, K.H.; Mojumder, J.C.; Poh, S.C.; Saw, L.H.; Lai, S.H.: Performance assessment of a hybrid solar-wind-rain eco-roof system for buildings. Energy Build. 127, 1028–1042 (2016)
17.
Zurück zum Zitat Stout, C.; Islam, S.; White, A.; Arnott, S.; Kollovozi, E.; Shaw, M.; Droubi, G.; Sinha, Y.; Bird, B.: Efficiency improvement of vertical axis wind turbines with an upstream deflector. In: 2nd International Conference on Advances on Clean Energy Research, 7–9 April, Berlin, Germany (2017) Stout, C.; Islam, S.; White, A.; Arnott, S.; Kollovozi, E.; Shaw, M.; Droubi, G.; Sinha, Y.; Bird, B.: Efficiency improvement of vertical axis wind turbines with an upstream deflector. In: 2nd International Conference on Advances on Clean Energy Research, 7–9 April, Berlin, Germany (2017)
18.
Zurück zum Zitat Wong, K.H.; Chong, W.T.; Poh, S.C.; Shiah, Y.C.; Sukiman, N.L.; Wang, C.T.: 3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine. Renew. Energy 129, 32–55 (2018) Wong, K.H.; Chong, W.T.; Poh, S.C.; Shiah, Y.C.; Sukiman, N.L.; Wang, C.T.: 3D CFD simulation and parametric study of a flat plate deflector for vertical axis wind turbine. Renew. Energy 129, 32–55 (2018)
19.
Zurück zum Zitat Chong, W.T.; Fazlizan, A.; Poh, S.C.; Pan, K.C.; Hew, W.P.; Hsiao, F.B.: The design, simulation and testing of an urban vertical axis wind turbine with the omni-direction-guide-vane. Appl. Energy 112, 601–609 (2013) Chong, W.T.; Fazlizan, A.; Poh, S.C.; Pan, K.C.; Hew, W.P.; Hsiao, F.B.: The design, simulation and testing of an urban vertical axis wind turbine with the omni-direction-guide-vane. Appl. Energy 112, 601–609 (2013)
20.
Zurück zum Zitat Shahizare, B.; Nik-Ghazali, N.; Chong, W.T.; Tabatabaeikia, S.; Izadyar, N.; Esmaeilzadeh, A.: Novel investigation of the different Omni-direction-guide-vane angles effects on the urban vertical axis wind turbine output power via three-dimensional numerical simulation. Energy Convers. Manag. 117, 206–217 (2016) Shahizare, B.; Nik-Ghazali, N.; Chong, W.T.; Tabatabaeikia, S.; Izadyar, N.; Esmaeilzadeh, A.: Novel investigation of the different Omni-direction-guide-vane angles effects on the urban vertical axis wind turbine output power via three-dimensional numerical simulation. Energy Convers. Manag. 117, 206–217 (2016)
21.
Zurück zum Zitat Santoli, L.D.; Albo, A.; Garcia, D.A.; Bruschi, D.; Cumo, F.: A preliminary energy and environmental assessment of a micro wind turbine prototype in natural protected areas. Sustain. Energy Technol. Assess. 8, 42–56 (2014) Santoli, L.D.; Albo, A.; Garcia, D.A.; Bruschi, D.; Cumo, F.: A preliminary energy and environmental assessment of a micro wind turbine prototype in natural protected areas. Sustain. Energy Technol. Assess. 8, 42–56 (2014)
22.
Zurück zum Zitat Alam, F.; Golde, S.: An aerodynamic study of a micro scale vertical axis wind turbine. In: 5th BSME International Conference on Thermal Engineering (2013) Alam, F.; Golde, S.: An aerodynamic study of a micro scale vertical axis wind turbine. In: 5th BSME International Conference on Thermal Engineering (2013)
23.
Zurück zum Zitat Loganathan, B.; Chowdhury, H.; Mustary, I.; Alam, F.: An experimental study of a cyclonic vertical axis wind turbine for domestic scale power generation. In: 6th BSME International Conference on Thermal Engineering (2015) Loganathan, B.; Chowdhury, H.; Mustary, I.; Alam, F.: An experimental study of a cyclonic vertical axis wind turbine for domestic scale power generation. In: 6th BSME International Conference on Thermal Engineering (2015)
24.
Zurück zum Zitat Li, Y.; Zhao, S.Y.; Tagawa, K.; Feng, F.: Starting performance effect of a truncated-cone-shaped wind gathering device on small-scale straight-bladed vertical axis wind turbine. Energy Convers. Manag. 167, 70–80 (2018) Li, Y.; Zhao, S.Y.; Tagawa, K.; Feng, F.: Starting performance effect of a truncated-cone-shaped wind gathering device on small-scale straight-bladed vertical axis wind turbine. Energy Convers. Manag. 167, 70–80 (2018)
25.
Zurück zum Zitat Dessoky, A.; Bangga, G.; Lutz, T.; Krämer, E.: Aerodynamic and aeroacoustic performance assessment of H-rotor darrieus VAWT equipped with wind-lens technology. Energy 175, 76–97 (2019) Dessoky, A.; Bangga, G.; Lutz, T.; Krämer, E.: Aerodynamic and aeroacoustic performance assessment of H-rotor darrieus VAWT equipped with wind-lens technology. Energy 175, 76–97 (2019)
26.
Zurück zum Zitat Siddiqui, M.S.; Rasheed, A.; Kvamsdal, T.; Tabib, M.: Effect of turbulence intensity on the performance of an offshore vertical axis wind turbine. In: 12th Deep Sea Offshore Wind R&D Conference (2015) Siddiqui, M.S.; Rasheed, A.; Kvamsdal, T.; Tabib, M.: Effect of turbulence intensity on the performance of an offshore vertical axis wind turbine. In: 12th Deep Sea Offshore Wind R&D Conference (2015)
27.
Zurück zum Zitat Möllerström, E.; Ottermo, F.; Goude, A.; Eriksson, S.; Hylander, J.; Bernhoff, H.: Turbulence influence on wind energy extraction for a medium size vertical axis wind turbine. Wind Energy 19(11), 1963–1973 (2016) Möllerström, E.; Ottermo, F.; Goude, A.; Eriksson, S.; Hylander, J.; Bernhoff, H.: Turbulence influence on wind energy extraction for a medium size vertical axis wind turbine. Wind Energy 19(11), 1963–1973 (2016)
28.
Zurück zum Zitat Rezaeiha, A.; Montazeri, H.; Blocken, B.: Characterization of aerodynamic performance of vertical axis wind turbines: impact of operational parameters. Energy Convers. Manag. 169, 45–77 (2018) Rezaeiha, A.; Montazeri, H.; Blocken, B.: Characterization of aerodynamic performance of vertical axis wind turbines: impact of operational parameters. Energy Convers. Manag. 169, 45–77 (2018)
29.
Zurück zum Zitat Parker, C.M.; Leftwich, M.C.: The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers. Exp. Fluids 57, 74 (2016) Parker, C.M.; Leftwich, M.C.: The effect of tip speed ratio on a vertical axis wind turbine at high Reynolds numbers. Exp. Fluids 57, 74 (2016)
30.
Zurück zum Zitat Bachant, P.; Wosnik, M.: Effects of Reynolds number on the energy conversion and near-wake dynamics of a high solidity vertical-axis cross-flow turbine. Energies 9, 73 (2016) Bachant, P.; Wosnik, M.: Effects of Reynolds number on the energy conversion and near-wake dynamics of a high solidity vertical-axis cross-flow turbine. Energies 9, 73 (2016)
31.
Zurück zum Zitat Li, Q.; Maeda, T.; Kamada, Y.; Murata, J.; Shimizu, K.; Ogasawara, T.; Nakai, A.; Kasuya, T.: Effect of solidity on aerodynamic forces around straight-bladed vertical axis wind turbine by wind tunnel experiments (depending on number of blades). Renew. Energy 96, 928–939 (2016) Li, Q.; Maeda, T.; Kamada, Y.; Murata, J.; Shimizu, K.; Ogasawara, T.; Nakai, A.; Kasuya, T.: Effect of solidity on aerodynamic forces around straight-bladed vertical axis wind turbine by wind tunnel experiments (depending on number of blades). Renew. Energy 96, 928–939 (2016)
32.
Zurück zum Zitat Cheng, Z.S.; Madsen, H.A.; Gao, Z.; Moan, T.: Effect of the number of blades on the dynamics of floating straight-bladed vertical axis wind turbines. Renew. Energy 101, 1285–1298 (2017) Cheng, Z.S.; Madsen, H.A.; Gao, Z.; Moan, T.: Effect of the number of blades on the dynamics of floating straight-bladed vertical axis wind turbines. Renew. Energy 101, 1285–1298 (2017)
33.
Zurück zum Zitat Lam, H.F.; Liu, Y.M.; Peng, H.Y.; Lee, C.F.; Liu, H.J.: Assessment of solidity effect on the power performance of H-rotor vertical axis wind turbines in turbulent flows. J. Renew. Sustain. Energy 10(2), 023304 (2018) Lam, H.F.; Liu, Y.M.; Peng, H.Y.; Lee, C.F.; Liu, H.J.: Assessment of solidity effect on the power performance of H-rotor vertical axis wind turbines in turbulent flows. J. Renew. Sustain. Energy 10(2), 023304 (2018)
34.
Zurück zum Zitat Rezaeiha, A.; Montazeri, H.; Blocken, B.: Towards optimal aerodynamic design of vertical axis wind turbines: impact of solidity and number of blades. Energy 165, 1129–1148 (2018) Rezaeiha, A.; Montazeri, H.; Blocken, B.: Towards optimal aerodynamic design of vertical axis wind turbines: impact of solidity and number of blades. Energy 165, 1129–1148 (2018)
35.
Zurück zum Zitat Lee, Y.T.; Lim, H.C.: Numerical study of the aerodynamic performance of a 500 W Darrieus-type vertical-axis wind turbine. Renew. Energy 83, 407–415 (2015) Lee, Y.T.; Lim, H.C.: Numerical study of the aerodynamic performance of a 500 W Darrieus-type vertical-axis wind turbine. Renew. Energy 83, 407–415 (2015)
36.
Zurück zum Zitat Du, G.; Wu, C.K.: Unsteady flow numerical simulation of vertical axis wind turbine. In: 2014 Asia-Pacific International Symposium on Aerospace Technology (2015) Du, G.; Wu, C.K.: Unsteady flow numerical simulation of vertical axis wind turbine. In: 2014 Asia-Pacific International Symposium on Aerospace Technology (2015)
37.
Zurück zum Zitat Surmantraa, R.B.; Chandramouli, S.; Premsai, T.P.; Prithviraj, P.; Vivek, M.; Velamati, R.K.: Numerical analysis of effect of pitch angle on a small scale vertical axis wind turbine. Int. J. Renew. Energy Res. 4(4), 929–935 (2014) Surmantraa, R.B.; Chandramouli, S.; Premsai, T.P.; Prithviraj, P.; Vivek, M.; Velamati, R.K.: Numerical analysis of effect of pitch angle on a small scale vertical axis wind turbine. Int. J. Renew. Energy Res. 4(4), 929–935 (2014)
38.
Zurück zum Zitat Rezaeiha, A.; Kalkman, I.; Blocken, B.: Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Appl. Energy 197, 132–150 (2017) Rezaeiha, A.; Kalkman, I.; Blocken, B.: Effect of pitch angle on power performance and aerodynamics of a vertical axis wind turbine. Appl. Energy 197, 132–150 (2017)
39.
Zurück zum Zitat Zanforlin, S.; Deluca, S.: Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed vertical axis wind turbines. Energy 148, 179–195 (2018) Zanforlin, S.; Deluca, S.: Effects of the Reynolds number and the tip losses on the optimal aspect ratio of straight-bladed vertical axis wind turbines. Energy 148, 179–195 (2018)
40.
Zurück zum Zitat Peng, H.Y.; Lam, H.F.; Liu, H.J.: Power performance assessment of H-rotor vertical axis wind turbines with different aspect ratios in turbulent flows via experiments. Energy 173, 121–132 (2019) Peng, H.Y.; Lam, H.F.; Liu, H.J.: Power performance assessment of H-rotor vertical axis wind turbines with different aspect ratios in turbulent flows via experiments. Energy 173, 121–132 (2019)
41.
Zurück zum Zitat Ismail, M.F.; Vijayaraghavan, K.: The effects of aerofoil profile modification on a vertical axis wind turbine performance. Energy 80, 20–31 (2015) Ismail, M.F.; Vijayaraghavan, K.: The effects of aerofoil profile modification on a vertical axis wind turbine performance. Energy 80, 20–31 (2015)
42.
Zurück zum Zitat Zamani, M.; Nazari, S.; Moshizi, S.A.; Maghrebi, M.J.: Three dimensional simulation of J-shaped Darrieus vertical axis wind turbine. Energy 116, 1243–1255 (2016) Zamani, M.; Nazari, S.; Moshizi, S.A.; Maghrebi, M.J.: Three dimensional simulation of J-shaped Darrieus vertical axis wind turbine. Energy 116, 1243–1255 (2016)
43.
Zurück zum Zitat Sobhani, E.; Ghaffari, M.; Maghrebi, M.J.: Numerical investigation of dimple effects on Darrieus vertical axis wind turbine. Energy 133, 231–241 (2017) Sobhani, E.; Ghaffari, M.; Maghrebi, M.J.: Numerical investigation of dimple effects on Darrieus vertical axis wind turbine. Energy 133, 231–241 (2017)
44.
Zurück zum Zitat Mohamed, M.H.: Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy 47, 522–530 (2012) Mohamed, M.H.: Performance investigation of H-rotor Darrieus turbine with new airfoil shapes. Energy 47, 522–530 (2012)
45.
Zurück zum Zitat Asr, M.T.; Nezhad, E.Z.; Mustapha, F.; Wiriadidjaja, S.: Study on start-up characteristics of H-Darrieus vertical axis wind turbines comprising NACA 4-digit series blade airfoils. Energy 112, 528–537 (2016) Asr, M.T.; Nezhad, E.Z.; Mustapha, F.; Wiriadidjaja, S.: Study on start-up characteristics of H-Darrieus vertical axis wind turbines comprising NACA 4-digit series blade airfoils. Energy 112, 528–537 (2016)
46.
Zurück zum Zitat Sengupta, A.R.; Biswas, A.; Gupta, R.: Studies of some high solidity symmetrical and unsymmetrical blade H-Darrieus rotors with respect to starting characteristics, dynamic performances and flow physics in low wind streams. Renew. Energy 93, 536–547 (2016) Sengupta, A.R.; Biswas, A.; Gupta, R.: Studies of some high solidity symmetrical and unsymmetrical blade H-Darrieus rotors with respect to starting characteristics, dynamic performances and flow physics in low wind streams. Renew. Energy 93, 536–547 (2016)
47.
Zurück zum Zitat Jafari, M.; Razavi, A.; Mirhosseini, M.: Effect of airfoil profile on aerodynamic performance and economic assessment of H-rotor vertical axis wind turbines. Energy 165, 792–810 (2018) Jafari, M.; Razavi, A.; Mirhosseini, M.: Effect of airfoil profile on aerodynamic performance and economic assessment of H-rotor vertical axis wind turbines. Energy 165, 792–810 (2018)
48.
Zurück zum Zitat Song, C.G.; Zheng, Y.; Zhao, Z.Z.; Zhang, Y.Q.; Li, C.; Jiang, H.: Investigation of meshing strategies and turbulence models of CFD simulations of vertical axis wind turbine. J. Renew. Sustain. Energy 7(3), 033111 (2015) Song, C.G.; Zheng, Y.; Zhao, Z.Z.; Zhang, Y.Q.; Li, C.; Jiang, H.: Investigation of meshing strategies and turbulence models of CFD simulations of vertical axis wind turbine. J. Renew. Sustain. Energy 7(3), 033111 (2015)
49.
Zurück zum Zitat Lanzafame, R.; Mauro, S.; Messina, M.: 2D CFD modeling of H-Darrieus wind turbines using a transition turbulence model. In: 68th Conference of the Italian Thermal Machines Engineering Association (2014) Lanzafame, R.; Mauro, S.; Messina, M.: 2D CFD modeling of H-Darrieus wind turbines using a transition turbulence model. In: 68th Conference of the Italian Thermal Machines Engineering Association (2014)
50.
Zurück zum Zitat Oler, J.W.; Strickland, J.H.; Im, B.J.; Graham, G.H.: Dynamic stall regulation of the Darrieus turbine. SAND Report No. 83-7029, Sandia National Laboratories, Albuquerque, pp. 67–96 (1983) Oler, J.W.; Strickland, J.H.; Im, B.J.; Graham, G.H.: Dynamic stall regulation of the Darrieus turbine. SAND Report No. 83-7029, Sandia National Laboratories, Albuquerque, pp. 67–96 (1983)
Metadaten
Titel
Study on Aerodynamic Characteristics of Darrieus Vertical Axis Wind Turbines with Different Airfoil Maximum Thicknesses Through Computational Fluid Dynamics
verfasst von
Chenguang Song
Guoqing Wu
Weinan Zhu
Xudong Zhang
Publikationsdatum
20.09.2019
Verlag
Springer Berlin Heidelberg
Erschienen in
Arabian Journal for Science and Engineering / Ausgabe 2/2020
Print ISSN: 2193-567X
Elektronische ISSN: 2191-4281
DOI
https://doi.org/10.1007/s13369-019-04127-8

Weitere Artikel der Ausgabe 2/2020

Arabian Journal for Science and Engineering 2/2020 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.