Skip to main content
Erschienen in: Chemistry and Technology of Fuels and Oils 6/2024

10.02.2024 | INNOVATIVE TECHNOLOGIES OF OIL AND GAS

Study on Seepage Characteristics and Capacity Evaluation of Shale Gas Reservoirs

verfasst von: Mou Chun, Shan Junfeng, Cui Guangzhi, Cui Xiaolei, Chi Runlong, Yang Shijie, Gong Hujun

Erschienen in: Chemistry and Technology of Fuels and Oils | Ausgabe 6/2024

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The formation, storage and seepage characteristics of shale gas reservoirs are significantly different from those of conventional oil and gas reservoirs, and their in-depth study is extremely important for improving energy security and promoting sustainable development. In this paper, based on the nonlinear seepage theory of shale gas reservoirs and the capacity analysis of test wells, a steady state capacity model integrating the apparent permeability model and the multi-scale transport mechanism is constructed to investigate the influence of various factors on the apparent permeability and the capacity of shale gas fractured horizontal wells, as well as to predict the production of shale gas wells. It is found that: apparent permeability is significantly affected by pore radius, and the non-Darcy effect is particularly significant under low-pressure and small-scale pore conditions; when the reservoir pressure is lower than 15 MPa, the sensitivity of apparent permeability to temperature and Langmuir volume increases, but decreases with the increase of Langmuir pressure; and the production capacity analysis of shale gas reservoirs shows that the production rates of fractured wells that consider the multiscale transport mechanism are generally higher than those considering Darcy flow only, especially in the case of low wellbore pressure and large pore radius; the effects of Langmuir volume and pressure on the production capacity are relatively small, and mainly noticeable in the range of wellbore flow pressure from 1 MPa to 15 MPa. The number of fracture bars has a significant effect on production, but too many fractures can lead to gap interference, which slows down production growth. The results of this research provide theoretical support for the scientific development of shale gas reservoirs and have important research and application value for the efficient and rational development of actual well sites.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C. Zou, Z. Yang, D. He and Y. Wang, “Theory, technology and prospects of conventional and unconventional natural gas,” Adv. Pet. Explor. Dev., 45(4): 604-618(2018).CrossRef C. Zou, Z. Yang, D. He and Y. Wang, “Theory, technology and prospects of conventional and unconventional natural gas,” Adv. Pet. Explor. Dev., 45(4): 604-618(2018).CrossRef
2.
Zurück zum Zitat H. Wang, F. Ma, X. Tong and Z. Liu, “Assessment of global unconventional oil and gas resources,” Pet. Explor. Dev., 43(6): 925-940(2016).CrossRef H. Wang, F. Ma, X. Tong and Z. Liu, “Assessment of global unconventional oil and gas resources,” Pet. Explor. Dev., 43(6): 925-940(2016).CrossRef
3.
Zurück zum Zitat C. Jia, Y. Zhang, and X. Zhao, “Prospects of and challenges to natural gas industry development in China,” Nat. Gas Ind. B., 1(1): 1-13(2014).CrossRef C. Jia, Y. Zhang, and X. Zhao, “Prospects of and challenges to natural gas industry development in China,” Nat. Gas Ind. B., 1(1): 1-13(2014).CrossRef
4.
Zurück zum Zitat D. J. Soeder, “The successful development of gas and oil resources from shales in North America,” J. Pet. Sci. Eng., 163: 399-420(2018).CrossRef D. J. Soeder, “The successful development of gas and oil resources from shales in North America,” J. Pet. Sci. Eng., 163: 399-420(2018).CrossRef
5.
Zurück zum Zitat Q. Wang, X. Chen, A. N. Jha and H. Rogers, “Natural gas from shale formation-the evolution, evidences and challenges of shale gas revolution in the United States,” Renewable Sustainable Energy Rev., 30: 1-28(2014).CrossRef Q. Wang, X. Chen, A. N. Jha and H. Rogers, “Natural gas from shale formation-the evolution, evidences and challenges of shale gas revolution in the United States,” Renewable Sustainable Energy Rev., 30: 1-28(2014).CrossRef
6.
Zurück zum Zitat M. A. Sayed, G. A. Al-Muntasheri and F. Liang, “Development of shale reservoirs: knowledge gained from developments in North America,” J. Pet. Sci. Eng., 157: 164-186(2017).CrossRef M. A. Sayed, G. A. Al-Muntasheri and F. Liang, “Development of shale reservoirs: knowledge gained from developments in North America,” J. Pet. Sci. Eng., 157: 164-186(2017).CrossRef
7.
Zurück zum Zitat D. Dong, Y. Wang, X. Li and C. Zou, “Breakthrough and prospect of shale gas exploration and development in China,” Nat. Gas Ind. B., 3(1): 12-26(2016).CrossRef D. Dong, Y. Wang, X. Li and C. Zou, “Breakthrough and prospect of shale gas exploration and development in China,” Nat. Gas Ind. B., 3(1): 12-26(2016).CrossRef
8.
Zurück zum Zitat G. Pi, X. Dong, C. Dong and J. Guo, “The status, obstacles and policy recommendations of shale gas development in China,” Sustainability, 7(3): 2353-2372(2015).CrossRef G. Pi, X. Dong, C. Dong and J. Guo, “The status, obstacles and policy recommendations of shale gas development in China,” Sustainability, 7(3): 2353-2372(2015).CrossRef
9.
Zurück zum Zitat C. Sun, H. Nie, W. Dang and Q. Chen, “Shale gas exploration and development in China: Current status, geological challenges, and future directions,” Energy Fuels, 35(8): 6359-6379(2021).CrossRef C. Sun, H. Nie, W. Dang and Q. Chen, “Shale gas exploration and development in China: Current status, geological challenges, and future directions,” Energy Fuels, 35(8): 6359-6379(2021).CrossRef
10.
Zurück zum Zitat Y. Ma, X. Cai, and P Zhao, “China’s shale gas exploration and development: understanding and practice,” Pet. Explor. Dev., 45(4): 589-603(2018).CrossRef Y. Ma, X. Cai, and P Zhao, “China’s shale gas exploration and development: understanding and practice,” Pet. Explor. Dev., 45(4): 589-603(2018).CrossRef
11.
Zurück zum Zitat L. Wang, A. Torres, L. Xiang, and X. Fei, “A technical review on shale gas production and unconventional reservoirs modeling,” Nat. Resour., 6(03): 141(2015). L. Wang, A. Torres, L. Xiang, and X. Fei, “A technical review on shale gas production and unconventional reservoirs modeling,” Nat. Resour., 6(03): 141(2015).
12.
Zurück zum Zitat A. M. Shar, A. A. Mahesar, and K. R. Memon, “Could shale gas meet energy deficit: its current status and future prospects,” J. Pet. Explor. Prod. Technol., 8: 957-967(2018).CrossRef A. M. Shar, A. A. Mahesar, and K. R. Memon, “Could shale gas meet energy deficit: its current status and future prospects,” J. Pet. Explor. Prod. Technol., 8: 957-967(2018).CrossRef
13.
Zurück zum Zitat B. Zhang, B. Shan, Y. Zhao and L. Zhang, “Review of formation and gas characteristics in shale gas reservoirs,” Energies, 13(20): 5427(2020). B. Zhang, B. Shan, Y. Zhao and L. Zhang, “Review of formation and gas characteristics in shale gas reservoirs,” Energies, 13(20): 5427(2020).
14.
Zurück zum Zitat S. Roy, R. Raju, H. F. Chuang and B.A. Cruden, “Modeling gas flow through microchannels and nanopores,” J. Appl. Phys., 93(8): 4870-4879(2003).CrossRefADS S. Roy, R. Raju, H. F. Chuang and B.A. Cruden, “Modeling gas flow through microchannels and nanopores,” J. Appl. Phys., 93(8): 4870-4879(2003).CrossRefADS
15.
Zurück zum Zitat C. L. Jordan, M. J. Fenniak, and C. R. Smith, “Case Studies: A Practical Approach to Gas-Production Analysis and Forecasting,” SPE Conf./Gas Technol. Symp. SPE: SPE-99351-MS(2006). C. L. Jordan, M. J. Fenniak, and C. R. Smith, “Case Studies: A Practical Approach to Gas-Production Analysis and Forecasting,” SPE Conf./Gas Technol. Symp. SPE: SPE-99351-MS(2006).
16.
Zurück zum Zitat M. Brown, E. Ozkan, R. Raghavan and H. Kazemi, “Practical solutions for pressure-transient responses of fractured horizontal wells in unconventional shale reservoirs,” SPE Reservoir Eval. Eng., 14(06): 663-676(2011).CrossRef M. Brown, E. Ozkan, R. Raghavan and H. Kazemi, “Practical solutions for pressure-transient responses of fractured horizontal wells in unconventional shale reservoirs,” SPE Reservoir Eval. Eng., 14(06): 663-676(2011).CrossRef
17.
Zurück zum Zitat J. Deng, W. Zhu, Q. Ma. “A new seepage model for shale gas reservoir and productivity analysis of fractured well,” Fuel, 124: 232-240(2014).CrossRef J. Deng, W. Zhu, Q. Ma. “A new seepage model for shale gas reservoir and productivity analysis of fractured well,” Fuel, 124: 232-240(2014).CrossRef
18.
Zurück zum Zitat X. Guo, H. Song, K. Wu and J. Killough, “Pressure characteristics and performance of multi-stage fractured horizontal well in shale gas reservoirs with coupled flow and geomechanics,” J. Pet. Sci. Eng., 163: 1-15(2018).CrossRef X. Guo, H. Song, K. Wu and J. Killough, “Pressure characteristics and performance of multi-stage fractured horizontal well in shale gas reservoirs with coupled flow and geomechanics,” J. Pet. Sci. Eng., 163: 1-15(2018).CrossRef
19.
Zurück zum Zitat T. Lu, S. Liu, and Z. Li, “A new approach to model shale gas production behavior by considering coupled multiple flow mechanisms for multiple fractured horizontal well,” Fuel, 237: 283-297(2019).CrossRef T. Lu, S. Liu, and Z. Li, “A new approach to model shale gas production behavior by considering coupled multiple flow mechanisms for multiple fractured horizontal well,” Fuel, 237: 283-297(2019).CrossRef
20.
Zurück zum Zitat Y. Wang, T. Jiang, and B. Zeng. “Calculation of steady-state production capacity after gas well fracturing,” J. Pet., 24(4): 65(2003). Y. Wang, T. Jiang, and B. Zeng. “Calculation of steady-state production capacity after gas well fracturing,” J. Pet., 24(4): 65(2003).
21.
Zurück zum Zitat S. Li, Y. Duan, W. Chen and N. Zhang, “Well test analysis of multi-fracture system in fractured horizontal wells,” Daqing Pet. Geol. Dev., 25(3): 67-69(2006). S. Li, Y. Duan, W. Chen and N. Zhang, “Well test analysis of multi-fracture system in fractured horizontal wells,” Daqing Pet. Geol. Dev., 25(3): 67-69(2006).
22.
Zurück zum Zitat B. Jiang, and D. Shi, “Modeling of fracturing in low-permeability sandstone gas reservoirs in the Ordos Basin,” Nat. Gas Ind., (4): 80-81(2009). B. Jiang, and D. Shi, “Modeling of fracturing in low-permeability sandstone gas reservoirs in the Ordos Basin,” Nat. Gas Ind., (4): 80-81(2009).
23.
Zurück zum Zitat Y. Duan, M. Wei, J. Li and Y. Tang, “Seepage mechanism of shale gas reservoirs and evaluation of fractured well capacity,” J. Chongqing Univ.: Nat. Sci. Ed., 34(4): 62-66(2011). Y. Duan, M. Wei, J. Li and Y. Tang, “Seepage mechanism of shale gas reservoirs and evaluation of fractured well capacity,” J. Chongqing Univ.: Nat. Sci. Ed., 34(4): 62-66(2011).
24.
Zurück zum Zitat J. Yao, H. Sun, D. Fan and C. Huang, “Transportation mechanism and numerical simulation of shale gas reservoir,” J. China Univ. Pet.: Nat. Sci. Ed., (1): 91-98(2013). J. Yao, H. Sun, D. Fan and C. Huang, “Transportation mechanism and numerical simulation of shale gas reservoir,” J. China Univ. Pet.: Nat. Sci. Ed., (1): 91-98(2013).
25.
Zurück zum Zitat Y. Wang, J. Chen, Y. Deng and C. Xiao, “Seepage modeling of volume fractured horizontal wells in shale gas reservoirs,” Nat. Gas Geosci., 29(12):1795-1802(2018). Y. Wang, J. Chen, Y. Deng and C. Xiao, “Seepage modeling of volume fractured horizontal wells in shale gas reservoirs,” Nat. Gas Geosci., 29(12):1795-1802(2018).
26.
Zurück zum Zitat Q. Wang, and M. Feng. “Nonlinear seepage modeling of horizontal wells for shale gas reservoir fracturing,” Sci. Technol. Eng., 19(12):108-114(2019). Q. Wang, and M. Feng. “Nonlinear seepage modeling of horizontal wells for shale gas reservoir fracturing,” Sci. Technol. Eng., 19(12):108-114(2019).
27.
Zurück zum Zitat C. Cao, T. Li, Y. Zhao and J. Xue, “Multi-field coupling permeability model in shale gas reservoir,” SPE Middle East Oil Gas Show Conf. SPE, D041S040R006(2017). C. Cao, T. Li, Y. Zhao and J. Xue, “Multi-field coupling permeability model in shale gas reservoir,” SPE Middle East Oil Gas Show Conf. SPE, D041S040R006(2017).
28.
Zurück zum Zitat E. Heraldy, Y. Hidayat, and M. Firdaus. “The langmuir isotherm adsorption equation: the monolayer approach,” IOP Conf. Series: Mater. Sci. Eng., IOP Publishing, 107(1): 012067(2016). E. Heraldy, Y. Hidayat, and M. Firdaus. “The langmuir isotherm adsorption equation: the monolayer approach,” IOP Conf. Series: Mater. Sci. Eng., IOP Publishing, 107(1): 012067(2016).
29.
Zurück zum Zitat G. J. I. Igwe, “Gas transport mechanism and slippage phenomenon in porous media,” Soc. Pet. Eng., (1985). G. J. I. Igwe, “Gas transport mechanism and slippage phenomenon in porous media,” Soc. Pet. Eng., (1985).
30.
Zurück zum Zitat F. Javadpour, “Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone),” J. Can. Pet. Technol., 48(08): 16-21(2009).CrossRef F. Javadpour, “Nanopores and apparent permeability of gas flow in mudrocks (shales and siltstone),” J. Can. Pet. Technol., 48(08): 16-21(2009).CrossRef
31.
Zurück zum Zitat A. Beskok, and E. K. George, “Report: a model for flows in channels, pipes, and ducts at micro and nano scales,” Microscale Thermophys. Eng., 3(1): 43-77(1999).CrossRef A. Beskok, and E. K. George, “Report: a model for flows in channels, pipes, and ducts at micro and nano scales,” Microscale Thermophys. Eng., 3(1): 43-77(1999).CrossRef
32.
Zurück zum Zitat D. Li, Y. Zhang, X, Sun and F. Zhao, “A new model of apparent permeability of real-state shale gas considering surface diffusion,” J. China Univ. Pet.: Nat. Sci. Ed., 42(4): 82-90(2018). D. Li, Y. Zhang, X, Sun and F. Zhao, “A new model of apparent permeability of real-state shale gas considering surface diffusion,” J. China Univ. Pet.: Nat. Sci. Ed., 42(4): 82-90(2018).
Metadaten
Titel
Study on Seepage Characteristics and Capacity Evaluation of Shale Gas Reservoirs
verfasst von
Mou Chun
Shan Junfeng
Cui Guangzhi
Cui Xiaolei
Chi Runlong
Yang Shijie
Gong Hujun
Publikationsdatum
10.02.2024
Verlag
Springer US
Erschienen in
Chemistry and Technology of Fuels and Oils / Ausgabe 6/2024
Print ISSN: 0009-3092
Elektronische ISSN: 1573-8310
DOI
https://doi.org/10.1007/s10553-024-01646-5

Weitere Artikel der Ausgabe 6/2024

Chemistry and Technology of Fuels and Oils 6/2024 Zur Ausgabe