Skip to main content

2018 | OriginalPaper | Buchkapitel

Study on the Effect of Applied Pressure on Directional Dendritic Growth by In-Situ Observation

verfasst von : Shan Shang, Keyan Wu, Leewei Kuo, Zhiqiang Han

Erschienen in: TMS 2018 147th Annual Meeting & Exhibition Supplemental Proceedings

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A custom experimental apparatus was designed to realize the in-situ observation of dendritic growth under pressure in directional solidification of model material, succinonitrile. The evolution of dendritic growth under ambient pressure \((P_{0} )\) and pressure of 3.0 MPa (P) was captured by a high-speed microscope and compared by analyzing qualitative distinctions in morphology and the quantitative ones in tip velocity and SDAS. Qualitatively, increased pressure promotes dendrite growth in directional solidification, elevating growth velocity and facilitating the burgeoning and growth of secondary arms, resulting in longer and more developed dendrites and much smaller SDAS. Quantitatively, the average tip velocities under \(P_{0}\) and P are 14.5 μm/s and 29.8 μm/s, respectively, with 100% rise when growing under pressure P. Moreover, the SDAS is 50.3 μm and 30.2 μm, respectively, declining by 40% when solidified under pressure P. This phenomenon can be attributed to the effect of pressure on melting point and its destabilizing effect on S/L interface.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Ghomashchi MR, Vikhrov A (2000) Squeeze casting: an overview. J Mater Process Technol 101(1–3):1–9CrossRef Ghomashchi MR, Vikhrov A (2000) Squeeze casting: an overview. J Mater Process Technol 101(1–3):1–9CrossRef
2.
Zurück zum Zitat Masoumi M, Hu H (2011) Influence of applied pressure on microstructure and tensile properties of squeeze cast magnesium Mg–Al–Ca alloy. Mater Sci Eng A 528(10–11):3589–3593CrossRef Masoumi M, Hu H (2011) Influence of applied pressure on microstructure and tensile properties of squeeze cast magnesium Mg–Al–Ca alloy. Mater Sci Eng A 528(10–11):3589–3593CrossRef
3.
Zurück zum Zitat Han Z, Huang X, Luo AA, Sachdev AK, Liu B (2012) A quantitative model for describing crystal nucleation in pressurized solidification during squeeze casting. Scripta Mater 66(5): 215–218CrossRef Han Z, Huang X, Luo AA, Sachdev AK, Liu B (2012) A quantitative model for describing crystal nucleation in pressurized solidification during squeeze casting. Scripta Mater 66(5): 215–218CrossRef
4.
Zurück zum Zitat Shang S, Han Z, Sun W, Luo AA (2017) A phase field model coupled with pressure-effect-embedded thermodynamic modeling for describing microstructure and microsegregation in pressurized solidification of a ternary magnesium alloy. Comput Mater Sci 136:264–270CrossRef Shang S, Han Z, Sun W, Luo AA (2017) A phase field model coupled with pressure-effect-embedded thermodynamic modeling for describing microstructure and microsegregation in pressurized solidification of a ternary magnesium alloy. Comput Mater Sci 136:264–270CrossRef
5.
Zurück zum Zitat Pan H, Han Z, Liu B (2016) Study on Dendritic Growth in Pressurized Solidification of Mg–Al Alloy Using Phase Field Simulation. J Mater Sci Technol 32(1):68–75CrossRef Pan H, Han Z, Liu B (2016) Study on Dendritic Growth in Pressurized Solidification of Mg–Al Alloy Using Phase Field Simulation. J Mater Sci Technol 32(1):68–75CrossRef
6.
Zurück zum Zitat Han Z, Pan H, Li Y, Luo AA, Sachdev AK (2015) Study on Pressurized Solidification Behavior and Microstructure Characteristics of Squeeze Casting Magnesium Alloy AZ91D. Metall Mater Trans B 46(1):328–336CrossRef Han Z, Pan H, Li Y, Luo AA, Sachdev AK (2015) Study on Pressurized Solidification Behavior and Microstructure Characteristics of Squeeze Casting Magnesium Alloy AZ91D. Metall Mater Trans B 46(1):328–336CrossRef
7.
Zurück zum Zitat Shang S, Hu B, Han Z, Sun W, Luo AA (2017). Macro- and Micro-Simulation and Experiment Study on Microstructure and Mechanical Properties of Squeeze Casting Wheel of Magnesium Alloy. Proceedings of the 4th World Congress on Integrated Computational Materials Engineering (ICME 2017), Ypsilanti, Michigan, 21–25 May 2017 Shang S, Hu B, Han Z, Sun W, Luo AA (2017). Macro- and Micro-Simulation and Experiment Study on Microstructure and Mechanical Properties of Squeeze Casting Wheel of Magnesium Alloy. Proceedings of the 4th World Congress on Integrated Computational Materials Engineering (ICME 2017), Ypsilanti, Michigan, 21–25 May 2017
8.
Zurück zum Zitat Yokoyama C, Tamura Y, Nishiyama Y (1998) Crystal growth rates of tricaprin and trilaurin under high pressures. J Cryst Growth 191(4):827–833CrossRef Yokoyama C, Tamura Y, Nishiyama Y (1998) Crystal growth rates of tricaprin and trilaurin under high pressures. J Cryst Growth 191(4):827–833CrossRef
9.
Zurück zum Zitat Sawada T, Takemura K, Shigematsu K, Yoda S, Kawasaki K (1995) Diffusion field around a dendrite growing under microgravity. Phys Rev E 51(5):R3834–R3837CrossRef Sawada T, Takemura K, Shigematsu K, Yoda S, Kawasaki K (1995) Diffusion field around a dendrite growing under microgravity. Phys Rev E 51(5):R3834–R3837CrossRef
10.
Zurück zum Zitat Sawada T, Takemura K, Shigematsu K, Yoda S, Kawasaki K (1998) Effects of gravity on a free dendrite of NH4Cl grown by dynamic pressure control. J Cryst Growth 191(1–2):225–233CrossRef Sawada T, Takemura K, Shigematsu K, Yoda S, Kawasaki K (1998) Effects of gravity on a free dendrite of NH4Cl grown by dynamic pressure control. J Cryst Growth 191(1–2):225–233CrossRef
11.
Zurück zum Zitat Koss MB, LaCombe JC, Chait A, Pines V, Zlatkowski M, Glicksman ME, Kar P (2005) Pressure-mediated effects on thermal dendrites. J Cryst Growth 279(1–2):170–185CrossRef Koss MB, LaCombe JC, Chait A, Pines V, Zlatkowski M, Glicksman ME, Kar P (2005) Pressure-mediated effects on thermal dendrites. J Cryst Growth 279(1–2):170–185CrossRef
12.
Zurück zum Zitat Kar P, LaCombe JC, Koss MB (2004) Velocity and radius transients during pressure mediated dendritic growth of succinonitrile. Mater Sci Tech-Lond 20(10):1273–1280CrossRef Kar P, LaCombe JC, Koss MB (2004) Velocity and radius transients during pressure mediated dendritic growth of succinonitrile. Mater Sci Tech-Lond 20(10):1273–1280CrossRef
13.
Zurück zum Zitat LaCombe JC, Koss MB, Tennenhouse LA, Winsa EA, Glicksman ME (1998) The Clapeyron effect in succinonitrile: applications to crystal growth. J. Cryst. Growth 194(1):143–148CrossRef LaCombe JC, Koss MB, Tennenhouse LA, Winsa EA, Glicksman ME (1998) The Clapeyron effect in succinonitrile: applications to crystal growth. J. Cryst. Growth 194(1):143–148CrossRef
Metadaten
Titel
Study on the Effect of Applied Pressure on Directional Dendritic Growth by In-Situ Observation
verfasst von
Shan Shang
Keyan Wu
Leewei Kuo
Zhiqiang Han
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-72526-0_33

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.