Skip to main content
Erschienen in: Journal of Electronic Materials 3/2021

02.01.2021 | Original Research Article

Sub-10-nm Scalability of Emerging Nanowire Junctionless FETs Using a Schottky Metallic Core

verfasst von: Aakash Kumar Jain, Aniket Singha

Erschienen in: Journal of Electronic Materials | Ausgabe 3/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Inefficient volume depletion is a dominant leakage mechanism in junctionless (JL) field-effect transistors (FET). Moreover, the realization of efficient volume depletion is compensated by the detrimental leakage mechanism of the lateral band-to-band tunneling (L-BTBT), which drastically degrades the performance of nanowire (NW) JLFETs with short gate lengths. A Schottky metallic core (SC) nanowire (NW) junctionless (JL) FET is therefore proposed herein to realize efficient volume depletion along with a significant reduction of the L-BTBT-induced parasitic leakage. Using calibrated three-dimensional (3-D) simulations, it is demonstrated that the presence of a Schottky metallic core effectively depletes the surrounding NW shell by abolishing the shielding effect of holes, which helps in realizing the efficient volume depletion that is desirable in OFF-state. Furthermore, it also leads to a significant reduction of the L-BTBT-induced parasitic bipolar junction transistor (BJT) action. This simultaneous suppression of both leakage mechanisms reduces the OFF-state current by around eight orders of magnitude, leading to a significant ON-state to OFF-state current (ION/IOFF) ratio of ~ 109 for a gate length of 20 nm. The reduced parasitic BJT action facilitates the scaling of SC NW JLFET, leading to a remarkable ION/IOFF ratio of ~ 107 even at a scaled gate length of 7 nm. The Schottky junction results in a vertical electric field that hinders the lateral electrostatic coupling of the drain field lines with the channel, leading to reduced detrimental short-channel effects in the sub-10-nm regime. This immunity against short-channel effects is further boosted by using high-k spacers. Thus, the excellent OFF-state behavior along with the reduced short-channel effects provides an incentive for realizing the proposed SC NW JLFET at sub-10-nm technology nodes.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J.-P. Collinge, C.-W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R. Murphy, Nat. Nanotechnol. 5, 225 (2010).CrossRef J.-P. Collinge, C.-W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, P. Razavi, B. O’Neill, A. Blake, M. White, A.-M. Kelleher, B. McCarthy, and R. Murphy, Nat. Nanotechnol. 5, 225 (2010).CrossRef
2.
3.
Zurück zum Zitat C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, and J.-P. Colinge, Appl. Phys. Lett. 94, 053511 (2009).CrossRef C.W. Lee, A. Afzalian, N.D. Akhavan, R. Yan, I. Ferain, and J.-P. Colinge, Appl. Phys. Lett. 94, 053511 (2009).CrossRef
4.
Zurück zum Zitat N. Singh, A. Agarwal, L.K. Bera, T.Y. Liow, R. Yang, S.C. Rustagi, C.H. Tung, R. Kumar, G.Q. Lo, N. Balasubramanian, and D.-L. Kwong, IEEE Electron Device Lett. 27, 383 (2006).CrossRef N. Singh, A. Agarwal, L.K. Bera, T.Y. Liow, R. Yang, S.C. Rustagi, C.H. Tung, R. Kumar, G.Q. Lo, N. Balasubramanian, and D.-L. Kwong, IEEE Electron Device Lett. 27, 383 (2006).CrossRef
5.
Zurück zum Zitat C.-H. Park, M.-D. Ko, K.-H. Kim, R.-H. Baek, C.-W. Sohn, C.K. Baek, S. Park, M.J. Deen, Y.-H. Daeng, and J.-S. Lee, Solid-State Electron. 73, 7 (2012).CrossRef C.-H. Park, M.-D. Ko, K.-H. Kim, R.-H. Baek, C.-W. Sohn, C.K. Baek, S. Park, M.J. Deen, Y.-H. Daeng, and J.-S. Lee, Solid-State Electron. 73, 7 (2012).CrossRef
6.
Zurück zum Zitat D. Ghosh, M.S. Parihar, G. Armstrong, and A. Kranti, IEEE Electron Device Lett. 33, 1477 (2012).CrossRef D. Ghosh, M.S. Parihar, G. Armstrong, and A. Kranti, IEEE Electron Device Lett. 33, 1477 (2012).CrossRef
8.
Zurück zum Zitat B.-H. Lee, M.-H. Kang, D.-C. Ahn, J.-Y. Park, T. Bang, S.-B. Jeon, J. Hur, D. Lee, and Y.-K. Choi, Nano Lett. 15, 8056 (2015).CrossRef B.-H. Lee, M.-H. Kang, D.-C. Ahn, J.-Y. Park, T. Bang, S.-B. Jeon, J. Hur, D. Lee, and Y.-K. Choi, Nano Lett. 15, 8056 (2015).CrossRef
9.
Zurück zum Zitat J. Hur, B.-H. Lee, M.-H. Kang, D.-C. Ahn, T. Bang, S.-B. Jeon, and Y.-K. Choi, IEEE Electron Device Lett. 37, 541 (2016).CrossRef J. Hur, B.-H. Lee, M.-H. Kang, D.-C. Ahn, T. Bang, S.-B. Jeon, and Y.-K. Choi, IEEE Electron Device Lett. 37, 541 (2016).CrossRef
10.
Zurück zum Zitat J. Fan, M. Li, X. Xu, Y. Yang, H. Xuan, and R. Huang, IEEE Trans. Electron Devices 62, 213 (2015).CrossRef J. Fan, M. Li, X. Xu, Y. Yang, H. Xuan, and R. Huang, IEEE Trans. Electron Devices 62, 213 (2015).CrossRef
11.
Zurück zum Zitat Sentaurus Device User Guide, Synopsys 2010 Inc. Mountain View CA USA Sentaurus Device User Guide, Synopsys 2010 Inc. Mountain View CA USA
12.
Zurück zum Zitat E.H. Rhoderick and R.H. William, Metal-Semiconductor Contacts, Vol. 19, 2nd ed. (Oxford: Oxford University Press, 1988). E.H. Rhoderick and R.H. William, Metal-Semiconductor Contacts, Vol. 19, 2nd ed. (Oxford: Oxford University Press, 1988).
13.
Zurück zum Zitat S.-J. Choi, D.-I. Moon, S. Kim, J.P. Duarte, and Y.-K. Choi, IEEE Electron Device Lett. 32, 125 (2011).CrossRef S.-J. Choi, D.-I. Moon, S. Kim, J.P. Duarte, and Y.-K. Choi, IEEE Electron Device Lett. 32, 125 (2011).CrossRef
Metadaten
Titel
Sub-10-nm Scalability of Emerging Nanowire Junctionless FETs Using a Schottky Metallic Core
verfasst von
Aakash Kumar Jain
Aniket Singha
Publikationsdatum
02.01.2021
Verlag
Springer US
Erschienen in
Journal of Electronic Materials / Ausgabe 3/2021
Print ISSN: 0361-5235
Elektronische ISSN: 1543-186X
DOI
https://doi.org/10.1007/s11664-020-08638-1

Weitere Artikel der Ausgabe 3/2021

Journal of Electronic Materials 3/2021 Zur Ausgabe

TMS2020 Microelectronic Packaging, Interconnect, and Pb-free Solder

Whisker Growth in Sn Coatings: A Review of Current Status and Future Prospects

TMS2020 Microelectronic Packaging, Interconnect, and Pb-free Solder

Effect of Trace Addition of In on Sn-Cu Solder Joint Microstructure Under Electromigration

Neuer Inhalt