Skip to main content
Erschienen in: Neuroinformatics 4/2022

19.07.2022 | Original Article

Super-resolution Segmentation Network for Reconstruction of Packed Neurites

verfasst von: Hang Zhou, Tingting Cao, Tian Liu, Shijie Liu, Lu Chen, Yijun Chen, Qing Huang, Wei Ye, Shaoqun Zeng, Tingwei Quan

Erschienen in: Neuroinformatics | Ausgabe 4/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Neuron reconstruction can provide the quantitative data required for measuring the neuronal morphology and is crucial in brain research. However, the difficulty in reconstructing dense neurites, wherein massive labor is required for accurate reconstruction in most cases, has not been well resolved. In this work, we provide a new pathway for solving this challenge by proposing the super-resolution segmentation network (SRSNet), which builds the mapping of the neurites in the original neuronal images and their segmentation in a higher-resolution (HR) space. During the segmentation process, the distances between the boundaries of the packed neurites are enlarged, and only the central parts of the neurites are segmented. Owing to this strategy, the super-resolution segmented images are produced for subsequent reconstruction. We carried out experiments on neuronal images with a voxel size of 0.2 μm × 0.2 μm × 1 μm produced by fMOST. SRSNet achieves an average F1 score of 0.88 for automatic packed neurites reconstruction, which takes both the precision and recall values into account, while the average F1 scores of other state-of-the-art automatic tracing methods are less than 0.70.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Bohland, J. W., Wu, C., Barbas, H., Bokil, H., Bota, M., Breiter, H. C., et al. (2009). A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLoS Computational Biology, 5(3), e1000334.CrossRef Bohland, J. W., Wu, C., Barbas, H., Bokil, H., Bota, M., Breiter, H. C., et al. (2009). A proposal for a coordinated effort for the determination of brainwide neuroanatomical connectivity in model organisms at a mesoscopic scale. PLoS Computational Biology, 5(3), e1000334.CrossRef
Zurück zum Zitat Chen, H., Dou, Q., Yu, L., Qin, J., & Heng, P.-A. (2018). VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage, 170, 446–455.CrossRef Chen, H., Dou, Q., Yu, L., Qin, J., & Heng, P.-A. (2018). VoxResNet: Deep voxelwise residual networks for brain segmentation from 3D MR images. NeuroImage, 170, 446–455.CrossRef
Zurück zum Zitat Cuntz, H., Forstner, F., Borst, A., & Häusser, M. (2010). One rule to grow them all: A general theory of neuronal branching and its practical application. PLoS Computational Biology, 6(8), e1000877.CrossRef Cuntz, H., Forstner, F., Borst, A., & Häusser, M. (2010). One rule to grow them all: A general theory of neuronal branching and its practical application. PLoS Computational Biology, 6(8), e1000877.CrossRef
Zurück zum Zitat DeFelipe, J. (2010). From the connectome to the synaptome: An epic love story. Science, 330(6008), 1198–1201.CrossRef DeFelipe, J. (2010). From the connectome to the synaptome: An epic love story. Science, 330(6008), 1198–1201.CrossRef
Zurück zum Zitat Friedmann, D., Pun, A., Adams, E. L., Lui, J. H., Kebschull, J. M., Grutzner, S. M., et al. (2020). Mapping mesoscale axonal projections in the mouse brain using a 3D convolutional network. Proceedings of the National Academy of Sciences, 117(20), 11068–11075.CrossRef Friedmann, D., Pun, A., Adams, E. L., Lui, J. H., Kebschull, J. M., Grutzner, S. M., et al. (2020). Mapping mesoscale axonal projections in the mouse brain using a 3D convolutional network. Proceedings of the National Academy of Sciences, 117(20), 11068–11075.CrossRef
Zurück zum Zitat Gillette, T. A., Brown, K. M., & Ascoli, G. A. (2011). The DIADEM Metric: Comparing Multiple Reconstructions of the Same Neuron. Neuroinformatics, 9(2–3), 233–245.CrossRef Gillette, T. A., Brown, K. M., & Ascoli, G. A. (2011). The DIADEM Metric: Comparing Multiple Reconstructions of the Same Neuron. Neuroinformatics, 9(2–3), 233–245.CrossRef
Zurück zum Zitat Gong, H., Xu, D., Yuan, J., Li, X., Guo, C., Peng, J., et al. (2016). High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level. Nature Communications, 7, 12142.CrossRef Gong, H., Xu, D., Yuan, J., Li, X., Guo, C., Peng, J., et al. (2016). High-throughput dual-colour precision imaging for brain-wide connectome with cytoarchitectonic landmarks at the cellular level. Nature Communications, 7, 12142.CrossRef
Zurück zum Zitat Gong, H., Zeng, S., Yan, C., Lv, X., Yang, Z., Xu, T., et al. (2013). Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution. NeuroImage, 74(7), 87–98.CrossRef Gong, H., Zeng, S., Yan, C., Lv, X., Yang, Z., Xu, T., et al. (2013). Continuously tracing brain-wide long-distance axonal projections in mice at a one-micron voxel resolution. NeuroImage, 74(7), 87–98.CrossRef
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In IEEE International Conference on Computer Vision. He, K., Zhang, X., Ren, S., & Sun, J. (2015). Delving Deep into Rectifiers: Surpassing Human-Level Performance on ImageNet Classification. In IEEE International Conference on Computer Vision.
Zurück zum Zitat He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778). He, K., Zhang, X., Ren, S., & Sun, J. (2016). Deep residual learning for image recognition. In Proceedings of the IEEE conference on computer vision and pattern recognition (pp. 770–778).
Zurück zum Zitat Jiang, Y., Chen, W., Liu, M., Wang, Y., & Meijering, E. (2020). 3D Neuron Microscopy Image Segmentation via the Ray-Shooting Model and a DC-BLSTM Network. IEEE Transactions on Medical Imaging, 40, 26–37.CrossRef Jiang, Y., Chen, W., Liu, M., Wang, Y., & Meijering, E. (2020). 3D Neuron Microscopy Image Segmentation via the Ray-Shooting Model and a DC-BLSTM Network. IEEE Transactions on Medical Imaging, 40, 26–37.CrossRef
Zurück zum Zitat Li, R., Zeng, T., Peng, H., & Ji, S. (2017). Deep learning segmentation of optical microscopy images improves 3-D neuron reconstruction. IEEE Transactions on Medical Imaging, 36(7), 1533–1541.CrossRef Li, R., Zeng, T., Peng, H., & Ji, S. (2017). Deep learning segmentation of optical microscopy images improves 3-D neuron reconstruction. IEEE Transactions on Medical Imaging, 36(7), 1533–1541.CrossRef
Zurück zum Zitat Li, R., Zhu, M., Li, J., Bienkowski, M. S., Foster, N. N., Xu, H., et al. (2019a). Precise segmentation of densely interweaving neuron clusters using G-Cut. Nature Communications, 10(1), 1–12. Li, R., Zhu, M., Li, J., Bienkowski, M. S., Foster, N. N., Xu, H., et al. (2019a). Precise segmentation of densely interweaving neuron clusters using G-Cut. Nature Communications, 10(1), 1–12.
Zurück zum Zitat Li, S., Quan, T., Zhou, H., Huang, Q., Guan, T., Chen, Y., et al. (2020). Brain-wide shape reconstruction of a traced neuron using the convex image segmentation method. Neuroinformatics, 18(2), 199–218.CrossRef Li, S., Quan, T., Zhou, H., Huang, Q., Guan, T., Chen, Y., et al. (2020). Brain-wide shape reconstruction of a traced neuron using the convex image segmentation method. Neuroinformatics, 18(2), 199–218.CrossRef
Zurück zum Zitat Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision, 2017 (pp. 2980–2988). Lin, T.-Y., Goyal, P., Girshick, R., He, K., & Dollár, P. (2017). Focal loss for dense object detection. In Proceedings of the IEEE international conference on computer vision, 2017 (pp. 2980–2988).
Zurück zum Zitat Liu, M., Luo, H., Tan, Y., Wang, X., & Chen, W. Improved V-net based image segmentation for 3D neuron reconstruction. In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 443–448). Liu, M., Luo, H., Tan, Y., Wang, X., & Chen, W. Improved V-net based image segmentation for 3D neuron reconstruction. In 2018 IEEE International Conference on Bioinformatics and Biomedicine (BIBM) (pp. 443–448).
Zurück zum Zitat Meijering, E. (2020). A bird’s-eye view of deep learning in bioimage analysis. Computational and Structural Biotechnology Journal, 18, 2312.CrossRef Meijering, E. (2020). A bird’s-eye view of deep learning in bioimage analysis. Computational and Structural Biotechnology Journal, 18, 2312.CrossRef
Zurück zum Zitat Milletari, F., Navab, N., & Ahmadi, S. A. (2016). V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In Fourth International Conference on 3d Vision. Milletari, F., Navab, N., & Ahmadi, S. A. (2016). V-Net: Fully Convolutional Neural Networks for Volumetric Medical Image Segmentation. In Fourth International Conference on 3d Vision.
Zurück zum Zitat Pan, C., Cai, R., Quacquarelli, F. P., Ghasemigharagoz, A., Lourbopoulos, A., Matryba, P., et al. (2016). Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nature Methods, 13(10), 859–867.CrossRef Pan, C., Cai, R., Quacquarelli, F. P., Ghasemigharagoz, A., Lourbopoulos, A., Matryba, P., et al. (2016). Shrinkage-mediated imaging of entire organs and organisms using uDISCO. Nature Methods, 13(10), 859–867.CrossRef
Zurück zum Zitat Peng, H., Long, F., & Myers, G. (2011). Automatic 3D neuron tracing using all-path pruning. Bioinformatics, 27(13), i239–i247.CrossRef Peng, H., Long, F., & Myers, G. (2011). Automatic 3D neuron tracing using all-path pruning. Bioinformatics, 27(13), i239–i247.CrossRef
Zurück zum Zitat Quan, T., Zhou, H., Li, J., Li, S., Li, A., Li, Y., et al. (2016). NeuroGPS-Tree: Automatic reconstruction of large-scale neuronal populations with dense neurites. Nature Methods, 13(1), 51.CrossRef Quan, T., Zhou, H., Li, J., Li, S., Li, A., Li, Y., et al. (2016). NeuroGPS-Tree: Automatic reconstruction of large-scale neuronal populations with dense neurites. Nature Methods, 13(1), 51.CrossRef
Zurück zum Zitat Radojević, M., & Meijering, E. (2017). Automated neuron tracing using probability hypothesis density filtering. Bioinformatics, 33(7), 1073–1080.PubMed Radojević, M., & Meijering, E. (2017). Automated neuron tracing using probability hypothesis density filtering. Bioinformatics, 33(7), 1073–1080.PubMed
Zurück zum Zitat Salimans, T., & Kingma, D. P. (2016). Weight normalization: A simple reparameterization to accelerate training of deep neural networks. Advances in Neural Information Processing Systems, 29, 901–909. Salimans, T., & Kingma, D. P. (2016). Weight normalization: A simple reparameterization to accelerate training of deep neural networks. Advances in Neural Information Processing Systems, 29, 901–909.
Zurück zum Zitat Skibbe, H., Reisert, M., Nakae, K., Watakabe, A., Hata, J., Mizukami, H., et al. (2018). Pat–probabilistic axon tracking for densely labeled neurons in large 3-d micrographs. IEEE Transactions on Medical Imaging, 38(1), 69–78.CrossRef Skibbe, H., Reisert, M., Nakae, K., Watakabe, A., Hata, J., Mizukami, H., et al. (2018). Pat–probabilistic axon tracking for densely labeled neurons in large 3-d micrographs. IEEE Transactions on Medical Imaging, 38(1), 69–78.CrossRef
Zurück zum Zitat Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society, 58(1), 267–288. Tibshirani, R. (1996). Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical Society, 58(1), 267–288.
Zurück zum Zitat Türetken, E., González, G., Blum, C., & Fua, P. (2011). Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors. Neuroinformatics, 9(2–3), 279–302.CrossRef Türetken, E., González, G., Blum, C., & Fua, P. (2011). Automated reconstruction of dendritic and axonal trees by global optimization with geometric priors. Neuroinformatics, 9(2–3), 279–302.CrossRef
Zurück zum Zitat Wang, Y., Li, Q., Liu, L., Zhou, Z., Ruan, Z., Kong, L., et al. (2019b). TeraVR empowers precise reconstruction of complete 3-D neuronal morphology in the whole brain. Nature Communications, 10(1), 1–9. Wang, Y., Li, Q., Liu, L., Zhou, Z., Ruan, Z., Kong, L., et al. (2019b). TeraVR empowers precise reconstruction of complete 3-D neuronal morphology in the whole brain. Nature Communications, 10(1), 1–9.
Zurück zum Zitat Zhao, J., Chen, X., Xiong, Z., Liu, D., Zeng, J., Xie, C., et al. (2020). Neuronal Population Reconstruction From Ultra-Scale Optical Microscopy Images via Progressive Learning. IEEE Transactions on Medical Imaging, 39(12), 4034–4046.CrossRef Zhao, J., Chen, X., Xiong, Z., Liu, D., Zeng, J., Xie, C., et al. (2020). Neuronal Population Reconstruction From Ultra-Scale Optical Microscopy Images via Progressive Learning. IEEE Transactions on Medical Imaging, 39(12), 4034–4046.CrossRef
Zurück zum Zitat Zhou, H., Cai, R., Quan, T., Liu, S., Li, S., Huang, Q., et al. (2020). 3D high resolution generative deep-learning network for fluorescence microscopy imaging. Optics Letters, 45(7), 1695–1698.CrossRef Zhou, H., Cai, R., Quan, T., Liu, S., Li, S., Huang, Q., et al. (2020). 3D high resolution generative deep-learning network for fluorescence microscopy imaging. Optics Letters, 45(7), 1695–1698.CrossRef
Zurück zum Zitat Zhou, H., Li, S., Li, A., Huang, Q., Xiong, F., Li, N., et al. (2021). GTree: An open-source tool for dense reconstruction of brain-wide neuronal population. Neuroinformatics, 19(2), 305–317.CrossRef Zhou, H., Li, S., Li, A., Huang, Q., Xiong, F., Li, N., et al. (2021). GTree: An open-source tool for dense reconstruction of brain-wide neuronal population. Neuroinformatics, 19(2), 305–317.CrossRef
Zurück zum Zitat Zhou, Z., Kuo, H.-C., Peng, H., & Long, F. (2018). DeepNeuron: An open deep learning toolbox for neuron tracing. Brain Informatics, 5(2), 1–9.CrossRef Zhou, Z., Kuo, H.-C., Peng, H., & Long, F. (2018). DeepNeuron: An open deep learning toolbox for neuron tracing. Brain Informatics, 5(2), 1–9.CrossRef
Zurück zum Zitat Zhu, W., Huang, Y., Zeng, L., Chen, X., Liu, Y., Qian, Z., et al. (2019). AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Medical Physics, 46(2), 576–589.CrossRef Zhu, W., Huang, Y., Zeng, L., Chen, X., Liu, Y., Qian, Z., et al. (2019). AnatomyNet: Deep learning for fast and fully automated whole-volume segmentation of head and neck anatomy. Medical Physics, 46(2), 576–589.CrossRef
Metadaten
Titel
Super-resolution Segmentation Network for Reconstruction of Packed Neurites
verfasst von
Hang Zhou
Tingting Cao
Tian Liu
Shijie Liu
Lu Chen
Yijun Chen
Qing Huang
Wei Ye
Shaoqun Zeng
Tingwei Quan
Publikationsdatum
19.07.2022
Verlag
Springer US
Erschienen in
Neuroinformatics / Ausgabe 4/2022
Print ISSN: 1539-2791
Elektronische ISSN: 1559-0089
DOI
https://doi.org/10.1007/s12021-022-09594-3

Weitere Artikel der Ausgabe 4/2022

Neuroinformatics 4/2022 Zur Ausgabe

Premium Partner