Skip to main content

2016 | OriginalPaper | Buchkapitel

16. Superheated Atomization

verfasst von : Astrid Günther, Karl-Ernst Wirth

Erschienen in: Process-Spray

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The project “Superheated atomization”, located at the Institute of Particle Technology (University of Erlangen-Nuremberg), focused on the characterization and evaluation of flash—or superheated—atomization. Flash atomization is based on a phase transition within or outside a nozzle, induced by a superheating prior to spraying. A multiphase flow can exists in the atomizer, containing bubbles with a higher inner pressure (corresponding to the vapor pressure of the sprayed fluid p v) than the ambient pressure p . These bubbles burst at the nozzle outlet, thereby disintegrating the fluid and generating a dispersed spray. Dependent on process conditions (e.g., fluid temperature T 0), nozzle geometry (e.g., L/D-ratio) and fluid material properties (e.g. shear viscosity η) different spray morphologies occur. Furthermore spray properties like the characteristic mean droplet size (Sauter mean diameter x 32) or spray temperature (T m) are influenced by the flow conditions inside the nozzle. In order to characterize the resulting spray, the flow behavior inside the nozzle has to be analyzed. Therefore, measurements like mass flux determination are conducted. For the general characterization of the superheated atomization, plain water is used. Furthermore, more complex media like polyvinylpyrrolidone solutions are sprayed and differences are monitored. The results are combined with measurement data of the spray itself, like droplet velocities, determined with Particle Image Velocimetry (PIV), allowing a dimensionless description of the whole atomization process. The superheated atomization enables the generation of a finely dispersed spray with a variety of atomizer geometries. Due to the fact that the shear viscosity is lowered with increasing fluid temperature, comparably fine droplets size distributions are formed, even for rather high subcooled shear viscosity values. In respect to particle formation, it its advantageous that 2–10 % of the fluid is evaporated as a side effect of the spraying process. Therefore, less liquid has to be removed in a downstream drying step for particle formation.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Brown, R., & York, J. L. (1962). Sprays formed by flashing liquid jets. AIChE Journal, 8(2), 149–153.CrossRef Brown, R., & York, J. L. (1962). Sprays formed by flashing liquid jets. AIChE Journal, 8(2), 149–153.CrossRef
2.
Zurück zum Zitat Park, B. S., & Lee, S. Y. (1994). An experimental investigation of the flash atomization mechanism. Atomization and Sprays, 4, 159–179.CrossRef Park, B. S., & Lee, S. Y. (1994). An experimental investigation of the flash atomization mechanism. Atomization and Sprays, 4, 159–179.CrossRef
3.
Zurück zum Zitat Sher, E., Bar-Kohany, T., & Rashkovan, A. (2008). Flash-boiling atomization. Progress in Energy and Combustion Science, 34, 417–439.CrossRef Sher, E., Bar-Kohany, T., & Rashkovan, A. (2008). Flash-boiling atomization. Progress in Energy and Combustion Science, 34, 417–439.CrossRef
4.
Zurück zum Zitat Yildiz, D., Rambaud, P., van Beeck, J. P. A. J., & Buchlin, J.-M. (2003). Thermal characterization of a R134A two-phase flashing jet. In 9th International Conference on Liquid Atomization and Spray Systems ICLASS, July 13–17, 2003, Sorreno, Italy. Yildiz, D., Rambaud, P., van Beeck, J. P. A. J., & Buchlin, J.-M. (2003). Thermal characterization of a R134A two-phase flashing jet. In 9th International Conference on Liquid Atomization and Spray Systems ICLASS, July 13–17, 2003, Sorreno, Italy.
5.
Zurück zum Zitat Kitamura, Y., Morimitsu, H., & Takahashi, T. (1986). Critical superheat for flashing liquid jets. Industrial and Engineering Chemistry Fundamentals, 25, 206–211.CrossRef Kitamura, Y., Morimitsu, H., & Takahashi, T. (1986). Critical superheat for flashing liquid jets. Industrial and Engineering Chemistry Fundamentals, 25, 206–211.CrossRef
6.
Zurück zum Zitat Günther, A., & Wirth, K. E. (2013). Evaporation phenomena in superheated atomization and its impact on the generated spray. International Journal of Heat and Mass Transfer, 64, 952–965.CrossRef Günther, A., & Wirth, K. E. (2013). Evaporation phenomena in superheated atomization and its impact on the generated spray. International Journal of Heat and Mass Transfer, 64, 952–965.CrossRef
7.
Zurück zum Zitat Zeng, Y., & Lee, C.-F. F. (2001). An atomization model for flash boiling sprays. Combustion Science and Technology, 169, 45–67.CrossRef Zeng, Y., & Lee, C.-F. F. (2001). An atomization model for flash boiling sprays. Combustion Science and Technology, 169, 45–67.CrossRef
8.
Zurück zum Zitat Neroorkar, K. D., Gopalakrishnan, S., & Schmidt, D. P. (2009). Simulation of flash-boiling in pressure swirl injectors. In 11th ICLASS—International Conference on Liquid Atomization and Spray Systems ICLASS July 26–23, 2009, Vail, CO. Neroorkar, K. D., Gopalakrishnan, S., & Schmidt, D. P. (2009). Simulation of flash-boiling in pressure swirl injectors. In 11th ICLASS—International Conference on Liquid Atomization and Spray Systems ICLASS July 26–23, 2009, Vail, CO.
9.
Zurück zum Zitat Günther, A., & Wirth, K. E. (2012). Einfluss der Düsengeometrie auf Massenstrom und Spraycharakteristik bei überhitzter Zerstäubung. Chemieingenieurtechnik, 84(1–2), 149–153. Günther, A., & Wirth, K. E. (2012). Einfluss der Düsengeometrie auf Massenstrom und Spraycharakteristik bei überhitzter Zerstäubung. Chemieingenieurtechnik, 84(1–2), 149–153.
10.
Zurück zum Zitat Oza, R. D., & Sinnamon, J. F. (1983). An experimental and analytical study of flash-boiling fuel injection. In International Congress & Exposition—SAE Technical Paper Series, Michigan. Oza, R. D., & Sinnamon, J. F. (1983). An experimental and analytical study of flash-boiling fuel injection. In International Congress & Exposition—SAE Technical Paper Series, Michigan.
11.
Zurück zum Zitat Aleiferis, P. G., Serras-Pereira, J., Augoye, A., Davies, T. J., Cracknell, R. F., & Richardson, D. (2010). Effect of fuel temperature on in-nozzle cavitation and spray formation of liquid hydrocarbons and alcohols from a real-size optical injector for direct-injection spark-ignition engines. International Journal of Heat and Mass Transfer, 53, 4588–4606.CrossRef Aleiferis, P. G., Serras-Pereira, J., Augoye, A., Davies, T. J., Cracknell, R. F., & Richardson, D. (2010). Effect of fuel temperature on in-nozzle cavitation and spray formation of liquid hydrocarbons and alcohols from a real-size optical injector for direct-injection spark-ignition engines. International Journal of Heat and Mass Transfer, 53, 4588–4606.CrossRef
12.
Zurück zum Zitat Witlox, H. W. M., & Bowen, P. J. (2002). Flashing liquid jets and two-phase dispersion—A review (Contract Research Report 403/2002). HSE Books, ISBN 0 7176 2250 9. Witlox, H. W. M., & Bowen, P. J. (2002). Flashing liquid jets and two-phase dispersion—A review (Contract Research Report 403/2002). HSE Books, ISBN 0 7176 2250 9.
13.
Zurück zum Zitat Kurschat, T., Chaves, H., & Meier, E. A. (1992). Complete adiabatic evaporation of highly superheated liquid jets. Journal of Fluid Mechanics, 236, 43–59.CrossRef Kurschat, T., Chaves, H., & Meier, E. A. (1992). Complete adiabatic evaporation of highly superheated liquid jets. Journal of Fluid Mechanics, 236, 43–59.CrossRef
14.
Zurück zum Zitat Attou, A., Bolle, L., & Seynhaeve, J. M. (2000). Experimental study of the critical flashing flow through a relief line: Evidence of the double-choked flow phenomenon. International Journal of Multiphase Flow, 26, 921–947.CrossRef Attou, A., Bolle, L., & Seynhaeve, J. M. (2000). Experimental study of the critical flashing flow through a relief line: Evidence of the double-choked flow phenomenon. International Journal of Multiphase Flow, 26, 921–947.CrossRef
15.
Zurück zum Zitat von Böckh, P. (1975). Ausbreitungsgeschwindigkeit einer Druckstörung und kritischer Durchfluss in Flüssigkeits-/Gasgemischen. Ph.D. Thesis, Universität Karlsruhe. von Böckh, P. (1975). Ausbreitungsgeschwindigkeit einer Druckstörung und kritischer Durchfluss in Flüssigkeits-/Gasgemischen. Ph.D. Thesis, Universität Karlsruhe.
16.
Zurück zum Zitat Chawla, J. B. (1985). Atomization of liquids employing the low sonic velocity of liquid/gas mixtures. In Proceedings of the Third International Conference on Liquid Atomization and Spray Systems, ICLASS 1985. Chawla, J. B. (1985). Atomization of liquids employing the low sonic velocity of liquid/gas mixtures. In Proceedings of the Third International Conference on Liquid Atomization and Spray Systems, ICLASS 1985.
17.
Zurück zum Zitat Yoon, H. J., Ishii, M., & Revankar, S. T. (2006). Choking flow modeling with mechanical and thermal non-equilibrium. International Journal of Heat and Mass Transfer, 49, 171–186.CrossRef Yoon, H. J., Ishii, M., & Revankar, S. T. (2006). Choking flow modeling with mechanical and thermal non-equilibrium. International Journal of Heat and Mass Transfer, 49, 171–186.CrossRef
18.
Zurück zum Zitat Nagai, N., Sato, K., & Lee, C. W. (1985). Atomization characteristics of superheated liquid jets. In 3rd International Conference on Liquid Atomization and Spray Systems ICLASS, July 8–10, 1985, London, England. Nagai, N., Sato, K., & Lee, C. W. (1985). Atomization characteristics of superheated liquid jets. In 3rd International Conference on Liquid Atomization and Spray Systems ICLASS, July 8–10, 1985, London, England.
19.
Zurück zum Zitat Zhifu, Z., Weitao, W., Bin, C., Guoxiang, W., & Liejin, G. (2012). An experimental study on the spray and thermal characteristics of R134a two-phase flashing spray. International Journal of Heat and Mass Transfer, 55, 4460–4468.CrossRef Zhifu, Z., Weitao, W., Bin, C., Guoxiang, W., & Liejin, G. (2012). An experimental study on the spray and thermal characteristics of R134a two-phase flashing spray. International Journal of Heat and Mass Transfer, 55, 4460–4468.CrossRef
20.
Zurück zum Zitat Kamoun, H., Lamanna, G., Weigand, B., Saengkaew, S., Grehan, G., & Steelant, J. (2013). Temperature and droplet size measurements in a flashing ethanol jet using the global rainbow thermometry. In 25th International Conference on Liquid Atomization and Spray Systems ILASS, September 1–4, 2013, Chania, Greece. Kamoun, H., Lamanna, G., Weigand, B., Saengkaew, S., Grehan, G., & Steelant, J. (2013). Temperature and droplet size measurements in a flashing ethanol jet using the global rainbow thermometry. In 25th International Conference on Liquid Atomization and Spray Systems ILASS, September 1–4, 2013, Chania, Greece.
21.
Zurück zum Zitat Lavieille, P., Lemoine, F., Lavergne, G., & Levouché, M. (2001). Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence. Experiments in Fluids, 31, 45–55.CrossRef Lavieille, P., Lemoine, F., Lavergne, G., & Levouché, M. (2001). Evaporating and combusting droplet temperature measurements using two-color laser-induced fluorescence. Experiments in Fluids, 31, 45–55.CrossRef
22.
Zurück zum Zitat Kamoun, H., Lamanna, G., Weigand, B., & Steelant, J. (2011). Thermal characterization of an ethanol flashing jet using differential infrared thermography. In Proceedings of the European Conference for Aeronautics and Space Sciences. Kamoun, H., Lamanna, G., Weigand, B., & Steelant, J. (2011). Thermal characterization of an ethanol flashing jet using differential infrared thermography. In Proceedings of the European Conference for Aeronautics and Space Sciences.
23.
Zurück zum Zitat Paucksch, E., Holstein, S., Linß, M., & Tikal, F. (2008). Zerspantechnik: Prozesse, Werkzeuge, Technologien (12. Auflage). Wiesbaden: Vieweg + Teubner Verlag. Paucksch, E., Holstein, S., Linß, M., & Tikal, F. (2008). Zerspantechnik: Prozesse, Werkzeuge, Technologien (12. Auflage). Wiesbaden: Vieweg + Teubner Verlag.
24.
Zurück zum Zitat Hankel, R. F., Günther, A., Wirth, K.-E., Leipertz, A., & Braeuer, A. (2014). Liquid phase temperature determination in dense water sprays using linear Raman scattering. Optics Express, 22(7), 7962–7971.CrossRef Hankel, R. F., Günther, A., Wirth, K.-E., Leipertz, A., & Braeuer, A. (2014). Liquid phase temperature determination in dense water sprays using linear Raman scattering. Optics Express, 22(7), 7962–7971.CrossRef
25.
Zurück zum Zitat Schlinge, B., Schröder, J., Gaukel, V., Schuchmann, H. P., & Walzel, P. (2013). Vergleich von Methoden zur Pulsationsmessung an innenmischenden Zweistoffdüsen. Chemie Ingenieur Technik, 85(10), 1568–1574. Schlinge, B., Schröder, J., Gaukel, V., Schuchmann, H. P., & Walzel, P. (2013). Vergleich von Methoden zur Pulsationsmessung an innenmischenden Zweistoffdüsen. Chemie Ingenieur Technik, 85(10), 1568–1574.
26.
Zurück zum Zitat Mun, R. P., Byars, J. A., & Boger, D. V. (1998). The effects of polymer concentration and molecular weight on the breakup of laminar capillary jets. Journal of Non-Newtonian Fluid Mechanics, 74, 285–297.CrossRef Mun, R. P., Byars, J. A., & Boger, D. V. (1998). The effects of polymer concentration and molecular weight on the breakup of laminar capillary jets. Journal of Non-Newtonian Fluid Mechanics, 74, 285–297.CrossRef
27.
Zurück zum Zitat Kaufmann, W. (1954). Technische Hydro- und Aeromechanik. Berlin: Springer.CrossRef Kaufmann, W. (1954). Technische Hydro- und Aeromechanik. Berlin: Springer.CrossRef
28.
Zurück zum Zitat (2006). VDI—Wärmeatlas (10. Auflage). Düsseldorf: VDI Verlag GmbH. ISBN 978-3-642-19980-6. (2006). VDI—Wärmeatlas (10. Auflage). Düsseldorf: VDI Verlag GmbH. ISBN 978-3-642-19980-6.
Metadaten
Titel
Superheated Atomization
verfasst von
Astrid Günther
Karl-Ernst Wirth
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-32370-1_16

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.