Skip to main content
Erschienen in: Journal of Coatings Technology and Research 2/2018

04.01.2018 | Review Article

Superhydrophobic surfaces: a review on fundamentals, applications, and challenges

verfasst von: Jeya Jeevahan, M. Chandrasekaran, G. Britto Joseph, R. B. Durairaj, G. Mageshwaran

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 2/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Superhydrophobicity is the tendency of a surface to repel water drops. A surface is qualified as a superhydrophobic surface only if the surface possesses a high apparent contact angle (>150°), low contact angle hysteresis (<10°), low sliding angle (<5°) and high stability of Cassie model state. Efforts have been made to mimic the superhydrophobicity found in nature (for example, lotus leaf), so that artificial superhydrophobic surfaces could be prepared for a variety of applications. Due to their versatile use in many applications, such as water-resistant surfaces, antifogging surfaces, anti-icing surfaces, anticorrosion surfaces etc., many methods have been developed to fabricate them. In this article, the fundamental principles of superhydrophobicity, some of the recent works in the preparation of superhydrophobic surfaces, their potential applications, and the challenges confronted in their new applications are reviewed and discussed.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Barthlott, W, Neinhuis, C, “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces.” Planta, 202 1–8 (1997)CrossRef Barthlott, W, Neinhuis, C, “Purity of the Sacred Lotus, or Escape from Contamination in Biological Surfaces.” Planta, 202 1–8 (1997)CrossRef
2.
Zurück zum Zitat Forbes, P, “Self-Cleaning Materials.” Sci. Am., 299 89–95 (2008)CrossRef Forbes, P, “Self-Cleaning Materials.” Sci. Am., 299 89–95 (2008)CrossRef
3.
Zurück zum Zitat Bhushan, B, “Biomimetics: Lessons from Nature—An Overview.” Philos. Trans. R. Soc. A, 367 1445–1486 (2009)CrossRef Bhushan, B, “Biomimetics: Lessons from Nature—An Overview.” Philos. Trans. R. Soc. A, 367 1445–1486 (2009)CrossRef
4.
Zurück zum Zitat Boinovich, LB, “Superhydrophobic Coatings as a New Class of Polyfunctional Materials.” Herald Russ. Acad. Sci., 83 (1) 8–18 (2013)CrossRef Boinovich, LB, “Superhydrophobic Coatings as a New Class of Polyfunctional Materials.” Herald Russ. Acad. Sci., 83 (1) 8–18 (2013)CrossRef
5.
Zurück zum Zitat Cheng, YT, Rodak, DE, “Is the Lotus Leaf Superhydrophobic?” Appl. Phys. Lett., 86 (144101) 1–3 (2005) Cheng, YT, Rodak, DE, “Is the Lotus Leaf Superhydrophobic?” Appl. Phys. Lett., 86 (144101) 1–3 (2005)
6.
Zurück zum Zitat Nishimoto, S, Bhushan, B, “Bioinspired Self-Cleaning Surfaces with Superhydrophobicity, Superoleophobicity, and Superhydrophilicity.” RSC Adv., (2012). doi:10.1039/c2ra21260a Nishimoto, S, Bhushan, B, “Bioinspired Self-Cleaning Surfaces with Superhydrophobicity, Superoleophobicity, and Superhydrophilicity.” RSC Adv., (2012). doi:10.​1039/​c2ra21260a
7.
Zurück zum Zitat Wolfs, M, Darmanin, T, Guittard, F, “Superhydrophobic Fibrous Polymers.” Polym. Rev., 53 (3) 460–505 (2013)CrossRef Wolfs, M, Darmanin, T, Guittard, F, “Superhydrophobic Fibrous Polymers.” Polym. Rev., 53 (3) 460–505 (2013)CrossRef
8.
Zurück zum Zitat Koch, K, Barthlott, W, “Superhydrophobic and Superhydrophilic Plant Surfaces: An Inspiration for Biomimetic Materials.” Philos. Trans. R. Soc. A, 367 1487–1509 (2009)CrossRef Koch, K, Barthlott, W, “Superhydrophobic and Superhydrophilic Plant Surfaces: An Inspiration for Biomimetic Materials.” Philos. Trans. R. Soc. A, 367 1487–1509 (2009)CrossRef
9.
Zurück zum Zitat Otten, A, Herminghaus, S, “How Plants Keep Dry: A Physicist’s Point of View.” Langmuir, 20 2405–2408 (2004)CrossRef Otten, A, Herminghaus, S, “How Plants Keep Dry: A Physicist’s Point of View.” Langmuir, 20 2405–2408 (2004)CrossRef
10.
Zurück zum Zitat Gao, X, Jiang, L, “Water-Repellent Legs of Water Striders.” Nature, 432 36 (2004)CrossRef Gao, X, Jiang, L, “Water-Repellent Legs of Water Striders.” Nature, 432 36 (2004)CrossRef
11.
Zurück zum Zitat Gould, P, “Smart, Clean Surfaces.” Mater. Today, 6 44–48 (2003) Gould, P, “Smart, Clean Surfaces.” Mater. Today, 6 44–48 (2003)
12.
Zurück zum Zitat Liu, K, Jiang, L, “Bio-Inspired Self-Cleaning Surfaces.” Bio-Inspir. Self-Clean. Surf., 42 231–263 (2012) Liu, K, Jiang, L, “Bio-Inspired Self-Cleaning Surfaces.” Bio-Inspir. Self-Clean. Surf., 42 231–263 (2012)
13.
Zurück zum Zitat Boinovich, L, Emelyanenko, A, “Principles of Design of Superhydrophobic Coatings by Deposition from Dispersions.” Langmuir, 25 2907–2912 (2009)CrossRef Boinovich, L, Emelyanenko, A, “Principles of Design of Superhydrophobic Coatings by Deposition from Dispersions.” Langmuir, 25 2907–2912 (2009)CrossRef
14.
Zurück zum Zitat Ganesh, VA, Raut, HK, Nair, AS, Ramakrishna, S, “A Review on Self-Cleaning Coatings.” J. Mater. Chem., 21 16304–16322 (2011)CrossRef Ganesh, VA, Raut, HK, Nair, AS, Ramakrishna, S, “A Review on Self-Cleaning Coatings.” J. Mater. Chem., 21 16304–16322 (2011)CrossRef
15.
Zurück zum Zitat Crick, CR, Parkin, IP, “Preparation and Characterisation of Super-Hydrophobic Surfaces.” Chem. Eur. J., 16 3568–3588 (2010)CrossRef Crick, CR, Parkin, IP, “Preparation and Characterisation of Super-Hydrophobic Surfaces.” Chem. Eur. J., 16 3568–3588 (2010)CrossRef
16.
Zurück zum Zitat Parkin, IP, Palgrave, RG, “Self-Cleaning Coatings.” J. Mater. Chem., 15 1689–1695 (2005)CrossRef Parkin, IP, Palgrave, RG, “Self-Cleaning Coatings.” J. Mater. Chem., 15 1689–1695 (2005)CrossRef
17.
Zurück zum Zitat Wang, S, Jiang, L, “Definition of Superhydrophobic States.” Adv. Mater., 19 3423–3424 (2007)CrossRef Wang, S, Jiang, L, “Definition of Superhydrophobic States.” Adv. Mater., 19 3423–3424 (2007)CrossRef
18.
Zurück zum Zitat Roach, P, Shirtcliffe, NJ, Newton, VMI, “Progress in Superhydrophobic Surface Development.” Soft Matter, 4 224–240 (2007)CrossRef Roach, P, Shirtcliffe, NJ, Newton, VMI, “Progress in Superhydrophobic Surface Development.” Soft Matter, 4 224–240 (2007)CrossRef
19.
Zurück zum Zitat Lafuma, A, Quere, D, “Superhydrophobic States.” Nat. Mater., 2 457–460 (2003)CrossRef Lafuma, A, Quere, D, “Superhydrophobic States.” Nat. Mater., 2 457–460 (2003)CrossRef
20.
Zurück zum Zitat Quere, D, Reyssat, M, “Non-adhesive Lotus and Other Hydrophobic Materials.” Philos. Trans. R. Soc. A, 366 1539–1556 (2008)CrossRef Quere, D, Reyssat, M, “Non-adhesive Lotus and Other Hydrophobic Materials.” Philos. Trans. R. Soc. A, 366 1539–1556 (2008)CrossRef
21.
Zurück zum Zitat Kim, SH, “Fabrication of Superhydrophobic Surfaces.” J. Adhes. Sci. Technol., 22 (3–4) 235–250 (2008)CrossRef Kim, SH, “Fabrication of Superhydrophobic Surfaces.” J. Adhes. Sci. Technol., 22 (3–4) 235–250 (2008)CrossRef
22.
Zurück zum Zitat Shirtcliffe, NJ, McHale, G, Atherton, S, Newton, MI, “An Introduction to Superhydrophobicity.” Adv. Coll. Interface Sci., 161 124–138 (2010)CrossRef Shirtcliffe, NJ, McHale, G, Atherton, S, Newton, MI, “An Introduction to Superhydrophobicity.” Adv. Coll. Interface Sci., 161 124–138 (2010)CrossRef
23.
Zurück zum Zitat Young, T, “An Essay on the Cohesion of Fluids.” Philos. Trans. R. Soc. Lond., 95 65–87 (1805)CrossRef Young, T, “An Essay on the Cohesion of Fluids.” Philos. Trans. R. Soc. Lond., 95 65–87 (1805)CrossRef
24.
Zurück zum Zitat Blokbuis, EM, Shilkrot, Y, Widom, B, “Young’s Law with Gravity.” Mol. Phys., 86 (4) 891–899 (1995)CrossRef Blokbuis, EM, Shilkrot, Y, Widom, B, “Young’s Law with Gravity.” Mol. Phys., 86 (4) 891–899 (1995)CrossRef
25.
Zurück zum Zitat Shikhmurzaev, YD, “On Young’s (1805) Equation and Finn’s (2006) ‘counterexample’.” Phys. Lett. A, 372 704–707 (2008)CrossRef Shikhmurzaev, YD, “On Young’s (1805) Equation and Finn’s (2006) ‘counterexample’.” Phys. Lett. A, 372 704–707 (2008)CrossRef
26.
Zurück zum Zitat Blossey, R, “Self-Cleaning Surfaces—Virtual Realities.” Nat. Mater., 2 301–306 (2003)CrossRef Blossey, R, “Self-Cleaning Surfaces—Virtual Realities.” Nat. Mater., 2 301–306 (2003)CrossRef
27.
Zurück zum Zitat Cassie, ABD, “Contact Angles.” Discuss. Faraday Soc., 3 11–16 (1948)CrossRef Cassie, ABD, “Contact Angles.” Discuss. Faraday Soc., 3 11–16 (1948)CrossRef
28.
Zurück zum Zitat Wang, XS, Cui, SW, Zhou, L, Xu, SH, Sun, ZW, Zhu, RZ, “A Generalized Young’s Equation for Contact Angles of Droplets on Homogeneous and Rough Substrates.” J. Adhes. Sci. Technol., 28 (2) 161–170 (2014)CrossRef Wang, XS, Cui, SW, Zhou, L, Xu, SH, Sun, ZW, Zhu, RZ, “A Generalized Young’s Equation for Contact Angles of Droplets on Homogeneous and Rough Substrates.” J. Adhes. Sci. Technol., 28 (2) 161–170 (2014)CrossRef
29.
Zurück zum Zitat Song, J, Rojas, OJ, “Approaching Super-hydrophobicity from Cellulosic Materials: A Review.” Nord. Pulp Pap. Res. J., 28 (2) 216–238 (2013)CrossRef Song, J, Rojas, OJ, “Approaching Super-hydrophobicity from Cellulosic Materials: A Review.” Nord. Pulp Pap. Res. J., 28 (2) 216–238 (2013)CrossRef
30.
Zurück zum Zitat Wenzel, RN, “Resistance of Solid Surfaces to Wetting by Water.” Ind. Eng. Chem., 28 (8) 988–994 (1936)CrossRef Wenzel, RN, “Resistance of Solid Surfaces to Wetting by Water.” Ind. Eng. Chem., 28 (8) 988–994 (1936)CrossRef
31.
Zurück zum Zitat Dorrer, C, Ruhe, J, “Some Thoughts on Superhydrophobic Wetting.” Soft Matter, 5 51–61 (2009)CrossRef Dorrer, C, Ruhe, J, “Some Thoughts on Superhydrophobic Wetting.” Soft Matter, 5 51–61 (2009)CrossRef
32.
Zurück zum Zitat Cassie, ABD, Baxter, S, “Wettability of Porous Surfaces.” Trans. Faraday Soc., 40 546–551 (1944)CrossRef Cassie, ABD, Baxter, S, “Wettability of Porous Surfaces.” Trans. Faraday Soc., 40 546–551 (1944)CrossRef
33.
Zurück zum Zitat McHale, G, “Cassie and Wenzel: Were They Really So Wrong?” Langmuir, 23 8200–8205 (2007)CrossRef McHale, G, “Cassie and Wenzel: Were They Really So Wrong?” Langmuir, 23 8200–8205 (2007)CrossRef
34.
Zurück zum Zitat Bhushan, B, Jung, YC, “Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction.” Prog. Mater. Sci., 56 1–108 (2011)CrossRef Bhushan, B, Jung, YC, “Natural and Biomimetic Artificial Surfaces for Superhydrophobicity, Self-Cleaning, Low Adhesion, and Drag Reduction.” Prog. Mater. Sci., 56 1–108 (2011)CrossRef
35.
Zurück zum Zitat Kreder, MJ, Alvarenga, J, Kim, P, Aizenberg, J, “Design of Anti-icing Surfaces: Smooth, Textured or Slippery?” Nat. Rev. Mater., 1 1–15 (2016)CrossRef Kreder, MJ, Alvarenga, J, Kim, P, Aizenberg, J, “Design of Anti-icing Surfaces: Smooth, Textured or Slippery?” Nat. Rev. Mater., 1 1–15 (2016)CrossRef
36.
Zurück zum Zitat Li, S, Huang, J, Chen, Z, Chen, G, Lai, Y, “Review on Special Wettability Textiles: Theoretical Models, Fabrication Technologies and Multifunctional Applications.” J. Mater. Chem. A, (2016). doi:10.1039/C6TA07984A Li, S, Huang, J, Chen, Z, Chen, G, Lai, Y, “Review on Special Wettability Textiles: Theoretical Models, Fabrication Technologies and Multifunctional Applications.” J. Mater. Chem. A, (2016). doi:10.​1039/​C6TA07984A
37.
Zurück zum Zitat Feng, L, Zhang, Y, Xi, J, Zhu, Y, Wang, N, Xia, F, Jiang, L, “Petal Effect: A Superhydrophobic State with High Adhesive Force.” Langmuir, 24 4114–4119 (2008)CrossRef Feng, L, Zhang, Y, Xi, J, Zhu, Y, Wang, N, Xia, F, Jiang, L, “Petal Effect: A Superhydrophobic State with High Adhesive Force.” Langmuir, 24 4114–4119 (2008)CrossRef
38.
Zurück zum Zitat Miwa, M, Nakajima, A, Fujishima, A, Hashimoto, K, Watanabe, T, “Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces.” Langmuir, 16 5754–5760 (2000)CrossRef Miwa, M, Nakajima, A, Fujishima, A, Hashimoto, K, Watanabe, T, “Effects of the Surface Roughness on Sliding Angles of Water Droplets on Superhydrophobic Surfaces.” Langmuir, 16 5754–5760 (2000)CrossRef
39.
Zurück zum Zitat Lam, CNC, Wu, R, Lia, D, Hair, ML, Neumann, AW, “Study of the Advancing and Receding Contact Angles: Liquid Sorption as a Cause of Contact Angle Hysteresis.” Adv. Coll. Interface. Sci., 96 169–191 (2002)CrossRef Lam, CNC, Wu, R, Lia, D, Hair, ML, Neumann, AW, “Study of the Advancing and Receding Contact Angles: Liquid Sorption as a Cause of Contact Angle Hysteresis.” Adv. Coll. Interface. Sci., 96 169–191 (2002)CrossRef
40.
Zurück zum Zitat Eral, HB, Mannetje, DJCM, Oh, JM, “Contact Angle Hysteresis: A Review of Fundamentals and Applications.” Colloid Polym. Sci., 291 247–260 (2013)CrossRef Eral, HB, Mannetje, DJCM, Oh, JM, “Contact Angle Hysteresis: A Review of Fundamentals and Applications.” Colloid Polym. Sci., 291 247–260 (2013)CrossRef
41.
Zurück zum Zitat Gao, L, McCarthy, TJ, “Contact Angle Hysteresis Explained.” Langmuir, 22 6234–6237 (2006)CrossRef Gao, L, McCarthy, TJ, “Contact Angle Hysteresis Explained.” Langmuir, 22 6234–6237 (2006)CrossRef
42.
Zurück zum Zitat McHale, G, Shirtcliffe, NJ, Newton, MI, “Contact-Angle Hysteresis on Super-Hydrophobic Surfaces.” Langmuir, 20 10146–10149 (2004)CrossRef McHale, G, Shirtcliffe, NJ, Newton, MI, “Contact-Angle Hysteresis on Super-Hydrophobic Surfaces.” Langmuir, 20 10146–10149 (2004)CrossRef
43.
Zurück zum Zitat Gao, L, McCarthy, TJ, “A Perfectly Hydrophobic Surface (θA/θR) 180°/180°).” J. Am. Chem. Soc., 128 9052–9053 (2006)CrossRef Gao, L, McCarthy, TJ, “A Perfectly Hydrophobic Surface (θA/θR) 180°/180°).” J. Am. Chem. Soc., 128 9052–9053 (2006)CrossRef
44.
Zurück zum Zitat Extrand, CW, Kumagai, Y, “Liquid Drops on an Inclined Plane: The Relation between Contact Angles, Drop Shape and Retentive Force.” J. Colloid Interface Sci., 170 515–521 (1994)CrossRef Extrand, CW, Kumagai, Y, “Liquid Drops on an Inclined Plane: The Relation between Contact Angles, Drop Shape and Retentive Force.” J. Colloid Interface Sci., 170 515–521 (1994)CrossRef
45.
Zurück zum Zitat Pierce, E, Carmona, FJ, Amirfazli, A, “Understanding of Sliding and Contact Angle Results in Tilted Plate Experiments.” Colloids Surf. A Physicochem. Eng. Asp., 323 73–82 (2008)CrossRef Pierce, E, Carmona, FJ, Amirfazli, A, “Understanding of Sliding and Contact Angle Results in Tilted Plate Experiments.” Colloids Surf. A Physicochem. Eng. Asp., 323 73–82 (2008)CrossRef
46.
Zurück zum Zitat Darmanin, T, Givenchy, ETD, Amigoni, S, Guittard, F, “Superhydrophobic Surfaces by Electrochemical Processes.” Adv. Mater., 25 1378–1394 (2013)CrossRef Darmanin, T, Givenchy, ETD, Amigoni, S, Guittard, F, “Superhydrophobic Surfaces by Electrochemical Processes.” Adv. Mater., 25 1378–1394 (2013)CrossRef
47.
Zurück zum Zitat Herminghaus, S, “Roughness-Induced Non-wetting.” Europhys. Lett., 52 (2) 165–170 (2000)CrossRef Herminghaus, S, “Roughness-Induced Non-wetting.” Europhys. Lett., 52 (2) 165–170 (2000)CrossRef
48.
Zurück zum Zitat Cao, L, Hu, HH, Gao, D, “Design and Fabrication of Micro-textures for Inducing a Superhydrophobic Behavior on Hydrophilic Materials.” Langmuir, 23 4310–4314 (2007)CrossRef Cao, L, Hu, HH, Gao, D, “Design and Fabrication of Micro-textures for Inducing a Superhydrophobic Behavior on Hydrophilic Materials.” Langmuir, 23 4310–4314 (2007)CrossRef
49.
Zurück zum Zitat Wu, J, Xia, J, Lei, W, Wang, B, “Fabrication of Superhydrophobic Surfaces with Double-Scale Roughness.” Mater. Lett., 64 1251–1253 (2010)CrossRef Wu, J, Xia, J, Lei, W, Wang, B, “Fabrication of Superhydrophobic Surfaces with Double-Scale Roughness.” Mater. Lett., 64 1251–1253 (2010)CrossRef
50.
Zurück zum Zitat Feng, L, Li, S, Li, Y, Li, H, Zhag, L, Zhai, J, Song, Y, Liu, B, Jiang, L, Daoben, Z, “Super-Hydrophobic Surfaces: From Natural to Artificial.” Adv. Mater., 14 (24) 1857–1860 (2002)CrossRef Feng, L, Li, S, Li, Y, Li, H, Zhag, L, Zhai, J, Song, Y, Liu, B, Jiang, L, Daoben, Z, “Super-Hydrophobic Surfaces: From Natural to Artificial.” Adv. Mater., 14 (24) 1857–1860 (2002)CrossRef
51.
Zurück zum Zitat Rusanov, AI, Shchekin, AK, Tatyanenko, DV, “The Line Tension and the Generalized Young Equation: the Choice of Dividing Surface.” Colloids Surf. A Physicochem. Eng. Asp., 250 263–268 (2004)CrossRef Rusanov, AI, Shchekin, AK, Tatyanenko, DV, “The Line Tension and the Generalized Young Equation: the Choice of Dividing Surface.” Colloids Surf. A Physicochem. Eng. Asp., 250 263–268 (2004)CrossRef
52.
Zurück zum Zitat White, LR, “On Deviations from Young’s Equation.” J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condensed Phases, 73 390–398 (1974) White, LR, “On Deviations from Young’s Equation.” J. Chem. Soc. Faraday Trans. 1 Phys. Chem. Condensed Phases, 73 390–398 (1974)
53.
Zurück zum Zitat Cain, JB, Francis, DW, Venter, RD, Neumann, AW, “Dynamic Contact Angles on Smooth and Rough Surfaces.” J. Colloid Interface Sci., 94 (1) 123–130 (1983)CrossRef Cain, JB, Francis, DW, Venter, RD, Neumann, AW, “Dynamic Contact Angles on Smooth and Rough Surfaces.” J. Colloid Interface Sci., 94 (1) 123–130 (1983)CrossRef
54.
Zurück zum Zitat Bormashenko, E, “Young, Boruvka-Neumann, Wenzel and Cassie-Baxter Equations as the Transversality Conditions for the Variational Problem of Wetting.” Colloids Surf. A Physicochem. Eng. Asp., 345 163–165 (2009)CrossRef Bormashenko, E, “Young, Boruvka-Neumann, Wenzel and Cassie-Baxter Equations as the Transversality Conditions for the Variational Problem of Wetting.” Colloids Surf. A Physicochem. Eng. Asp., 345 163–165 (2009)CrossRef
55.
Zurück zum Zitat He, B, Lee, J, Patankar, NA, “Contact Angle Hysteresis on Rough Hydrophobic Surfaces.” Colloids Surf. A Physicochem. Eng. Asp., 248 101–104 (2004)CrossRef He, B, Lee, J, Patankar, NA, “Contact Angle Hysteresis on Rough Hydrophobic Surfaces.” Colloids Surf. A Physicochem. Eng. Asp., 248 101–104 (2004)CrossRef
56.
Zurück zum Zitat Tadmor, R, “Line Energy and the Relation Between Advancing, Receding, and Young Contact Angles.” Langmuir, 20 7659–7664 (2004)CrossRef Tadmor, R, “Line Energy and the Relation Between Advancing, Receding, and Young Contact Angles.” Langmuir, 20 7659–7664 (2004)CrossRef
57.
Zurück zum Zitat Joanny, JF, Gennes, PGD, “A Model for Contact Angle Hysteresis.” J. Chern. Phys., 81 (1) 552–562 (1984)CrossRef Joanny, JF, Gennes, PGD, “A Model for Contact Angle Hysteresis.” J. Chern. Phys., 81 (1) 552–562 (1984)CrossRef
58.
Zurück zum Zitat Krasovitski, B, Marmur, A, “Drops Down the Hill: Theoretical Study of Limiting Contact Angles and the Hysteresis Range on a Tilted Plate.” Langmuir, 21 3881–3885 (2005)CrossRef Krasovitski, B, Marmur, A, “Drops Down the Hill: Theoretical Study of Limiting Contact Angles and the Hysteresis Range on a Tilted Plate.” Langmuir, 21 3881–3885 (2005)CrossRef
59.
Zurück zum Zitat Li, W, Amirfazli, A, “A Thermodynamic Approach for Determining the Contact Angle Hysteresis for Superhydrophobic Surfaces.” J. Colloid Interface Sci., 292 195–201 (2005)CrossRef Li, W, Amirfazli, A, “A Thermodynamic Approach for Determining the Contact Angle Hysteresis for Superhydrophobic Surfaces.” J. Colloid Interface Sci., 292 195–201 (2005)CrossRef
60.
Zurück zum Zitat Marmur, A, “From Hygrophilic to Superhygrophobic: Theoretical Conditions for Making High-Contact-Angle Surfaces from Low-Contact-Angle Materials.” Langmuir, 24 7573–7579 (2008)CrossRef Marmur, A, “From Hygrophilic to Superhygrophobic: Theoretical Conditions for Making High-Contact-Angle Surfaces from Low-Contact-Angle Materials.” Langmuir, 24 7573–7579 (2008)CrossRef
61.
Zurück zum Zitat Shanahan, MER, “Simple Theory of ‘Stick-Slip’ Wetting Hysteresis.” Langmuir, 11 1041–1043 (1995)CrossRef Shanahan, MER, “Simple Theory of ‘Stick-Slip’ Wetting Hysteresis.” Langmuir, 11 1041–1043 (1995)CrossRef
62.
Zurück zum Zitat Yeh, KY, Chen, LJ, Chang, JY, “Contact Angle Hysteresis on Regular Pillar-like Hydrophobic Surfaces.” Langmuir, 24 245–251 (2008)CrossRef Yeh, KY, Chen, LJ, Chang, JY, “Contact Angle Hysteresis on Regular Pillar-like Hydrophobic Surfaces.” Langmuir, 24 245–251 (2008)CrossRef
63.
Zurück zum Zitat Gao, L, McCarthy, TJ, “The ‘Lotus Effect’ Explained: Two Reasons Why Two Length Scales of Topography Are Important.” Langmuir, 22 2966–2967 (2006)CrossRef Gao, L, McCarthy, TJ, “The ‘Lotus Effect’ Explained: Two Reasons Why Two Length Scales of Topography Are Important.” Langmuir, 22 2966–2967 (2006)CrossRef
64.
Zurück zum Zitat Wolansky, G, Marmur, A, “Apparent Contact Angles on Rough Surfaces: The Wenzel Equation Revisited.” Colloids Surf. A, 156 381–388 (1999)CrossRef Wolansky, G, Marmur, A, “Apparent Contact Angles on Rough Surfaces: The Wenzel Equation Revisited.” Colloids Surf. A, 156 381–388 (1999)CrossRef
65.
Zurück zum Zitat Bhushan, B, Jung, YC, “Wetting Study of Patterned Surfaces for Superhydrophobicity.” Ultramicroscopy, 107 1033–1041 (2007)CrossRef Bhushan, B, Jung, YC, “Wetting Study of Patterned Surfaces for Superhydrophobicity.” Ultramicroscopy, 107 1033–1041 (2007)CrossRef
66.
Zurück zum Zitat Jung, YC, Bharat, B, “Contact Angle, Adhesion and Friction Properties of Micro- and Nanopatterned Polymers for Superhydrophobicity.” Nanotechnology, 17 4970–4980 (2006)CrossRef Jung, YC, Bharat, B, “Contact Angle, Adhesion and Friction Properties of Micro- and Nanopatterned Polymers for Superhydrophobicity.” Nanotechnology, 17 4970–4980 (2006)CrossRef
67.
Zurück zum Zitat Pashinin, AS, Emel’yanenko, AM, Boinovich, LB, “Interaction Between Hydrophobic and Superhydrophobic Materials with Aqueous Media.” Prot. Met. Phys. Chem. Surf., 46 (6) 734–739 (2010)CrossRef Pashinin, AS, Emel’yanenko, AM, Boinovich, LB, “Interaction Between Hydrophobic and Superhydrophobic Materials with Aqueous Media.” Prot. Met. Phys. Chem. Surf., 46 (6) 734–739 (2010)CrossRef
68.
Zurück zum Zitat Quere, D, “Non-sticking Drops.” Rep. Prog. Phys., 68 2495–2532 (2005)CrossRef Quere, D, “Non-sticking Drops.” Rep. Prog. Phys., 68 2495–2532 (2005)CrossRef
69.
Zurück zum Zitat Rioboo, R, Voue, M, Vaillant, A, Coninck, JD, “Drop Impact on Porous Superhydrophobic Polymer Surfaces.” Langmuir, 24 14074–14077 (2008)CrossRef Rioboo, R, Voue, M, Vaillant, A, Coninck, JD, “Drop Impact on Porous Superhydrophobic Polymer Surfaces.” Langmuir, 24 14074–14077 (2008)CrossRef
70.
Zurück zum Zitat Erbil, HY, Cansoy, CE, “Range of Applicability of the Wenzel and Cassie–Baxter Equations for Superhydrophobic Surfaces.” Langmuir, 25 (24) 14135–14145 (2009)CrossRef Erbil, HY, Cansoy, CE, “Range of Applicability of the Wenzel and Cassie–Baxter Equations for Superhydrophobic Surfaces.” Langmuir, 25 (24) 14135–14145 (2009)CrossRef
71.
Zurück zum Zitat Jung, YC, Bhushan, B, “Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces.” Langmuir, 24 6262–6269 (2008)CrossRef Jung, YC, Bhushan, B, “Dynamic Effects of Bouncing Water Droplets on Superhydrophobic Surfaces.” Langmuir, 24 6262–6269 (2008)CrossRef
72.
Zurück zum Zitat Marmur, A, “The Lotus Effect: Superhydrophobicity and Metastability.” Langmuir, 20 3517–3519 (2004)CrossRef Marmur, A, “The Lotus Effect: Superhydrophobicity and Metastability.” Langmuir, 20 3517–3519 (2004)CrossRef
73.
Zurück zum Zitat Nosonovsky, M, Bhushan, B, “Superhydrophobic Surfaces and Emerging Applications: Non-adhesion, Energy, Green Engineering.” Curr. Opin. Colloid Interface Sci., 14 270–280 (2009)CrossRef Nosonovsky, M, Bhushan, B, “Superhydrophobic Surfaces and Emerging Applications: Non-adhesion, Energy, Green Engineering.” Curr. Opin. Colloid Interface Sci., 14 270–280 (2009)CrossRef
74.
Zurück zum Zitat Papadopoulos, P, Mammen, L, Deng, X, Vollmer, D, Butt, HJ, “How Superhydrophobicity Breaks Down.” PNAS, 110 (9) 3254–3258 (2013)CrossRef Papadopoulos, P, Mammen, L, Deng, X, Vollmer, D, Butt, HJ, “How Superhydrophobicity Breaks Down.” PNAS, 110 (9) 3254–3258 (2013)CrossRef
75.
Zurück zum Zitat Porcheron, F, Monson, PA, “Mean-Field Theory of Liquid Droplets on Roughened Solid Surfaces: Application to Superhydrophobicity.” Langmuir, 22 1595–1601 (2006)CrossRef Porcheron, F, Monson, PA, “Mean-Field Theory of Liquid Droplets on Roughened Solid Surfaces: Application to Superhydrophobicity.” Langmuir, 22 1595–1601 (2006)CrossRef
76.
Zurück zum Zitat Deng, X, Mammen, L, Butt, HJ, Vollmer, D, “Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating.” Science, 335 67–70 (2012)CrossRef Deng, X, Mammen, L, Butt, HJ, Vollmer, D, “Candle Soot as a Template for a Transparent Robust Superamphiphobic Coating.” Science, 335 67–70 (2012)CrossRef
77.
Zurück zum Zitat Sas, I, Gorga, RE, Joines, JA, Thoney, KA, “Literature Review on Superhydrophobic Self-Cleaning Surfaces Produced by Electrospinning.” J. Polym. Sci. B Polym. Phys., 50 824–845 (2012)CrossRef Sas, I, Gorga, RE, Joines, JA, Thoney, KA, “Literature Review on Superhydrophobic Self-Cleaning Surfaces Produced by Electrospinning.” J. Polym. Sci. B Polym. Phys., 50 824–845 (2012)CrossRef
78.
Zurück zum Zitat Bhushan, B, Jung, YC, Koch, K, “Micro-, Nano- and Hierarchical Structures for Superhydrophobicity, Self-Cleaning and Low Adhesion.” Philos. Trans. R. Soc. A, 367 1631–1672 (2009)CrossRef Bhushan, B, Jung, YC, Koch, K, “Micro-, Nano- and Hierarchical Structures for Superhydrophobicity, Self-Cleaning and Low Adhesion.” Philos. Trans. R. Soc. A, 367 1631–1672 (2009)CrossRef
79.
Zurück zum Zitat Tadanaga, K, Katata, N, Minami, T, “Super-Water-Repellent Al2O3 Coating Films with High Transparency.” J. Am. Ceram. Soc., 80 (4) 1040–1042 (1997)CrossRef Tadanaga, K, Katata, N, Minami, T, “Super-Water-Repellent Al2O3 Coating Films with High Transparency.” J. Am. Ceram. Soc., 80 (4) 1040–1042 (1997)CrossRef
80.
Zurück zum Zitat Nguyen, DD, Tai, NH, Lee, SB, Kuo, WS, “Superhydrophobic and Superoleophilic Properties of Graphene-Based Sponges Fabricated Using a Facile Dip Coating Method.” Energy Environ. Sci., 5 7908–7912 (2012)CrossRef Nguyen, DD, Tai, NH, Lee, SB, Kuo, WS, “Superhydrophobic and Superoleophilic Properties of Graphene-Based Sponges Fabricated Using a Facile Dip Coating Method.” Energy Environ. Sci., 5 7908–7912 (2012)CrossRef
81.
Zurück zum Zitat Hosono, E, Fujihara, S, Honma, I, Zhou, H, “Superhydrophobic Perpendicular Nanopin Film by the Bottom-Up Process.” J American Chemical Society, 127 13458–13459 (2005)CrossRef Hosono, E, Fujihara, S, Honma, I, Zhou, H, “Superhydrophobic Perpendicular Nanopin Film by the Bottom-Up Process.” J American Chemical Society, 127 13458–13459 (2005)CrossRef
82.
Zurück zum Zitat Ozaydin-Ince, G, Coclite, AM, Gleason, KK, “CVD of Polymeric Thin Films: Applications in Sensors, Biotechnology, Microelectronics/Organic Electronics, Microfluidics, MEMS, Composites and Membranes.” Rep. Prog. Phys., 75 016501-1–016501-40 (2012)CrossRef Ozaydin-Ince, G, Coclite, AM, Gleason, KK, “CVD of Polymeric Thin Films: Applications in Sensors, Biotechnology, Microelectronics/Organic Electronics, Microfluidics, MEMS, Composites and Membranes.” Rep. Prog. Phys., 75 016501-1–016501-40 (2012)CrossRef
83.
Zurück zum Zitat Li, XM, Reinhoudt, D, Calama, MC, “What Do We Need for Superhydrophobic Surface? A Review on the Recent Progress in the Preparation of Superhydrophobic Surfaces.” Chem. Soc. Rev., 36 1350–1368 (2007)CrossRef Li, XM, Reinhoudt, D, Calama, MC, “What Do We Need for Superhydrophobic Surface? A Review on the Recent Progress in the Preparation of Superhydrophobic Surfaces.” Chem. Soc. Rev., 36 1350–1368 (2007)CrossRef
84.
Zurück zum Zitat Li, Y, Chen, S, Wu, M, Sun, J, “All Spraying Processes for the Fabrication of Robust, Self-Healing, Superhydrophobic Coatings.” Adv. Mater., 26 (20) 3344–3348 (2014)CrossRef Li, Y, Chen, S, Wu, M, Sun, J, “All Spraying Processes for the Fabrication of Robust, Self-Healing, Superhydrophobic Coatings.” Adv. Mater., 26 (20) 3344–3348 (2014)CrossRef
85.
Zurück zum Zitat Li, Y, Li, L, Sun, J, “Bioinspired Self-Healing Superhydrophobic Coatings.” Angew. Chem., 122 6265–6269 (2010)CrossRef Li, Y, Li, L, Sun, J, “Bioinspired Self-Healing Superhydrophobic Coatings.” Angew. Chem., 122 6265–6269 (2010)CrossRef
86.
Zurück zum Zitat Ariga, K, Yamauchi, Y, Rydzek, G, Ji, Q, Yonamine, Y, Wu, KCW, Hill, JP, “Layer-by-Layer Nanoarchitectonics: Invention, Innovation, and Evolution.” Chem. Lett., 43 (1) 36–68 (2013)CrossRef Ariga, K, Yamauchi, Y, Rydzek, G, Ji, Q, Yonamine, Y, Wu, KCW, Hill, JP, “Layer-by-Layer Nanoarchitectonics: Invention, Innovation, and Evolution.” Chem. Lett., 43 (1) 36–68 (2013)CrossRef
87.
Zurück zum Zitat Li, Y, Wang, X, Sun, J, “Layer-by-Layer Assembly for Rapid Fabrication of Thick Polymeric Films.” Chem. Soc. Rev., 41 5998–6009 (2012)CrossRef Li, Y, Wang, X, Sun, J, “Layer-by-Layer Assembly for Rapid Fabrication of Thick Polymeric Films.” Chem. Soc. Rev., 41 5998–6009 (2012)CrossRef
88.
Zurück zum Zitat Borges, J, Mano, JF, “Molecular Interactions Driving the Layer-by-Layer Assembly of Multilayers.” Chem. Rev., 114 (18) 8883–8942 (2014)CrossRef Borges, J, Mano, JF, “Molecular Interactions Driving the Layer-by-Layer Assembly of Multilayers.” Chem. Rev., 114 (18) 8883–8942 (2014)CrossRef
89.
Zurück zum Zitat Latthe, SS, Imai, H, Ganesan, V, Rao, AV, “Superhydrophobic Silica Films by Sol–Gel Co-precursor Method.” Appl. Surf. Sci., 256 217–222 (2009)CrossRef Latthe, SS, Imai, H, Ganesan, V, Rao, AV, “Superhydrophobic Silica Films by Sol–Gel Co-precursor Method.” Appl. Surf. Sci., 256 217–222 (2009)CrossRef
90.
Zurück zum Zitat Wang, X, Ding, B, Yu, J, Wang, M, “Engineering Biomimetic Superhydrophobic Surfaces of Electrospun Nanomaterials.” Nano Today, 6 510–530 (2011)CrossRef Wang, X, Ding, B, Yu, J, Wang, M, “Engineering Biomimetic Superhydrophobic Surfaces of Electrospun Nanomaterials.” Nano Today, 6 510–530 (2011)CrossRef
91.
Zurück zum Zitat Drelich, J, Marmur, A, “Physics and Applications of Superhydrophobic and Superhydrophilic Surfaces and Coatings.” Surface Innovations, 2 (S14) 211–227 (2014)CrossRef Drelich, J, Marmur, A, “Physics and Applications of Superhydrophobic and Superhydrophilic Surfaces and Coatings.” Surface Innovations, 2 (S14) 211–227 (2014)CrossRef
92.
Zurück zum Zitat Liu, J, Huang, W, Xing, Y, Li, R, Dai, J, “Preparation of Durable Superhydrophobic Surface by sol–gel Method with Water Glass and Citric Acid.” J. Sol. Gel. Sci. Technol., 58 18–23 (2011)CrossRef Liu, J, Huang, W, Xing, Y, Li, R, Dai, J, “Preparation of Durable Superhydrophobic Surface by sol–gel Method with Water Glass and Citric Acid.” J. Sol. Gel. Sci. Technol., 58 18–23 (2011)CrossRef
93.
Zurück zum Zitat Bellanger, H, Darmanin, T, Givenchy, ETD, Guittard, F, “Chemical and Physical Pathways for the Preparation of Superoleophobic Surfaces and Related Wetting Theories.” Chem. Rev., 114 2694–2716 (2014)CrossRef Bellanger, H, Darmanin, T, Givenchy, ETD, Guittard, F, “Chemical and Physical Pathways for the Preparation of Superoleophobic Surfaces and Related Wetting Theories.” Chem. Rev., 114 2694–2716 (2014)CrossRef
94.
Zurück zum Zitat Zhao, Y, Li, M, Lu, Q, Shi, Z, “Superhydrophobic Polyimide Films with a Hierarchical Topography: Combined Replica Molding and Layer-by-Layer Assembly.” Langmuir, 24 12651–12657 (2008)CrossRef Zhao, Y, Li, M, Lu, Q, Shi, Z, “Superhydrophobic Polyimide Films with a Hierarchical Topography: Combined Replica Molding and Layer-by-Layer Assembly.” Langmuir, 24 12651–12657 (2008)CrossRef
95.
Zurück zum Zitat Xiu, Y, Liu, Y, Hess, DW, Wong, CP, “Mechanically Robust Superhydrophobicity on Hierarchically Structured Si Surfaces.” Nanotechnology, 21 155705-1–155705-5 (2010) Xiu, Y, Liu, Y, Hess, DW, Wong, CP, “Mechanically Robust Superhydrophobicity on Hierarchically Structured Si Surfaces.” Nanotechnology, 21 155705-1–155705-5 (2010)
96.
Zurück zum Zitat Cortese, B, D’Amone, S, Manca, M, Viola, I, Cingolani, R, Gigli, G, “Superhydrophobicity Due to the Hierarchical Scale Roughness of PDMS Surfaces.” Langmuir, 24 2712–2718 (2008)CrossRef Cortese, B, D’Amone, S, Manca, M, Viola, I, Cingolani, R, Gigli, G, “Superhydrophobicity Due to the Hierarchical Scale Roughness of PDMS Surfaces.” Langmuir, 24 2712–2718 (2008)CrossRef
97.
Zurück zum Zitat Celia, E, Darmanin, T, Givenchy, ETD, Amigoni, S, Guittard, F, “Recent Advances in Designing Superhydrophobic Surfaces.” J. Colloid Interface Sci., 402 1–18 (2013)CrossRef Celia, E, Darmanin, T, Givenchy, ETD, Amigoni, S, Guittard, F, “Recent Advances in Designing Superhydrophobic Surfaces.” J. Colloid Interface Sci., 402 1–18 (2013)CrossRef
98.
Zurück zum Zitat Shirtcliffe, NJ, McHale, G, Newton, MI, “The Superhydrophobicity of Polymer Surfaces: Recent Developments.” J. Polym. Sci. B Polym. Phys., 49 1203–1217 (2011)CrossRef Shirtcliffe, NJ, McHale, G, Newton, MI, “The Superhydrophobicity of Polymer Surfaces: Recent Developments.” J. Polym. Sci. B Polym. Phys., 49 1203–1217 (2011)CrossRef
99.
Zurück zum Zitat Ariga, K, Hill, JP, Ji, Q, “Layer-by-Layer Assembly as a Versatile Bottom-Up Nanofabrication Technique for Exploratory Research and Realistic Application.” Phys. Chem. Chem. Phys., 9 2319–2340 (2007)CrossRef Ariga, K, Hill, JP, Ji, Q, “Layer-by-Layer Assembly as a Versatile Bottom-Up Nanofabrication Technique for Exploratory Research and Realistic Application.” Phys. Chem. Chem. Phys., 9 2319–2340 (2007)CrossRef
100.
Zurück zum Zitat Ma, M, Hill, RM, “Superhydrophobic Surfaces.” Curr. Opin. Colloid Interface Sci., 11 193–202 (2006)CrossRef Ma, M, Hill, RM, “Superhydrophobic Surfaces.” Curr. Opin. Colloid Interface Sci., 11 193–202 (2006)CrossRef
101.
Zurück zum Zitat Guo, LJ, “Recent Progress in Nanoimprint Technology and Its Applications.” J. Phys. D Appl. Phys., 37 R123–R141 (2004)CrossRef Guo, LJ, “Recent Progress in Nanoimprint Technology and Its Applications.” J. Phys. D Appl. Phys., 37 R123–R141 (2004)CrossRef
102.
Zurück zum Zitat Jafari, R, Asadollahi, S, Farzaneh, M, “Applications of Plasma Technology in Development of Superhydrophobic Surfaces.” Plasma Chem. Plasma Process., 33 177–200 (2013)CrossRef Jafari, R, Asadollahi, S, Farzaneh, M, “Applications of Plasma Technology in Development of Superhydrophobic Surfaces.” Plasma Chem. Plasma Process., 33 177–200 (2013)CrossRef
103.
Zurück zum Zitat Xue, CH, Jia, ST, Zhang, J, Ma, JZ, “Large-Area Fabrication of Superhydrophobic Surfaces for Practical Applications: An Overview.” Sci. Technol. Adv. Mater., 11 (3) 033002 (2010)CrossRef Xue, CH, Jia, ST, Zhang, J, Ma, JZ, “Large-Area Fabrication of Superhydrophobic Surfaces for Practical Applications: An Overview.” Sci. Technol. Adv. Mater., 11 (3) 033002 (2010)CrossRef
104.
Zurück zum Zitat Feng, L, Song, Y, Zhai, J, Liu, B, Xu, J, Jiang, L, Zhu, D, “Creation of a Superhydrophobic Surface from an Amphiphilic Polymer.” Angew. Chem., 115 (7) 824–826 (2003)CrossRef Feng, L, Song, Y, Zhai, J, Liu, B, Xu, J, Jiang, L, Zhu, D, “Creation of a Superhydrophobic Surface from an Amphiphilic Polymer.” Angew. Chem., 115 (7) 824–826 (2003)CrossRef
105.
Zurück zum Zitat Artus, GRJ, Jung, S, Zimmermann, J, Gautschi, HP, Marquardt, K, Seeger, S, “Silicone Nanofilaments and Their Application as Superhydrophobic Coatings.” Adv. Mater., 18 2758–2762 (2006)CrossRef Artus, GRJ, Jung, S, Zimmermann, J, Gautschi, HP, Marquardt, K, Seeger, S, “Silicone Nanofilaments and Their Application as Superhydrophobic Coatings.” Adv. Mater., 18 2758–2762 (2006)CrossRef
106.
Zurück zum Zitat Bayer, IS, Caramia, V, Fragouli, D, Spano, F, Cingolanic, R, Athanassiou, A, “Electrically Conductive and High Temperature Resistant Superhydrophobic Composite Films from Colloidal Graphite.” J. Mater. Chem., 22 2057–2062 (2012)CrossRef Bayer, IS, Caramia, V, Fragouli, D, Spano, F, Cingolanic, R, Athanassiou, A, “Electrically Conductive and High Temperature Resistant Superhydrophobic Composite Films from Colloidal Graphite.” J. Mater. Chem., 22 2057–2062 (2012)CrossRef
107.
Zurück zum Zitat Dorrer, C, Ruhe, J, “Wetting of Silicon Nanograss: From Superhydrophilic to Superhydrophobic Surfaces.” Adv. Mater., 20 159–163 (2008)CrossRef Dorrer, C, Ruhe, J, “Wetting of Silicon Nanograss: From Superhydrophilic to Superhydrophobic Surfaces.” Adv. Mater., 20 159–163 (2008)CrossRef
108.
Zurück zum Zitat Erbil, HY, Demirel, AL, Avci, Y, Mert, O, “Transformation of a Simple Plastic into a Superhydrophobic Surface.” Science, 2999 1377–1380 (2003)CrossRef Erbil, HY, Demirel, AL, Avci, Y, Mert, O, “Transformation of a Simple Plastic into a Superhydrophobic Surface.” Science, 2999 1377–1380 (2003)CrossRef
109.
Zurück zum Zitat Qu, M, Zhang, B, Song, S, Chen, L, Zhang, J, Cao, X, “Fabrication of Superhydrophobic Surfaces on Engineering Materials by a Solution-Immersion Process.” Adv. Funct. Mater., 17 593–596 (2007)CrossRef Qu, M, Zhang, B, Song, S, Chen, L, Zhang, J, Cao, X, “Fabrication of Superhydrophobic Surfaces on Engineering Materials by a Solution-Immersion Process.” Adv. Funct. Mater., 17 593–596 (2007)CrossRef
110.
Zurück zum Zitat Fresnais, J, Chapel, JP, Epaillard, FP, “Synthesis of Transparent Superhydrophobic Polyethylene Surfaces.” Surf. Coat. Technol., 200 5296–5305 (2006)CrossRef Fresnais, J, Chapel, JP, Epaillard, FP, “Synthesis of Transparent Superhydrophobic Polyethylene Surfaces.” Surf. Coat. Technol., 200 5296–5305 (2006)CrossRef
111.
Zurück zum Zitat Guo, Z, Zhou, F, Hao, J, Liu, W, “Stable Biomimetic Super-Hydrophobic Engineering Materials.” J. Am. Chem. Soc., 127 15670–15671 (2005)CrossRef Guo, Z, Zhou, F, Hao, J, Liu, W, “Stable Biomimetic Super-Hydrophobic Engineering Materials.” J. Am. Chem. Soc., 127 15670–15671 (2005)CrossRef
112.
Zurück zum Zitat Jiang, L, Zhao, Y, Zhai, J, “A Lotus-Leaf-Like superhydrophobic Surface: A Porous Microsphere/Nanofiber Composite Film Prepared by Electrohydrodynamics.” Angew. Chem., 116 4438–4441 (2004)CrossRef Jiang, L, Zhao, Y, Zhai, J, “A Lotus-Leaf-Like superhydrophobic Surface: A Porous Microsphere/Nanofiber Composite Film Prepared by Electrohydrodynamics.” Angew. Chem., 116 4438–4441 (2004)CrossRef
113.
Zurück zum Zitat Kamegawa, T, Shimizu, Y, Yamashita, H, “Superhydrophobic Surfaces with Photocatalytic SelfCleaning Properties by Nanocomposite Coating of TiO2 and Polytetrafluoroethylene.” Adv. Mater., 24 (27) 3697–3700 (2012)CrossRef Kamegawa, T, Shimizu, Y, Yamashita, H, “Superhydrophobic Surfaces with Photocatalytic SelfCleaning Properties by Nanocomposite Coating of TiO2 and Polytetrafluoroethylene.” Adv. Mater., 24 (27) 3697–3700 (2012)CrossRef
114.
Zurück zum Zitat Kang, M, Jung, R, Kim, HS, Jin, HJ, “Preparation of Superhydrophobic Polystyrene Membranes by Electrospinning.” Colloids Surf. A Physicochem. Eng. Asp., 313–314 411–414 (2008)CrossRef Kang, M, Jung, R, Kim, HS, Jin, HJ, “Preparation of Superhydrophobic Polystyrene Membranes by Electrospinning.” Colloids Surf. A Physicochem. Eng. Asp., 313–314 411–414 (2008)CrossRef
115.
Zurück zum Zitat Karunakaran, RG, Lu, CH, Zhang, Z, Yang, S, “Highly Transparent Superhydrophobic Surfaces from the Coassembly of Nanoparticles (<=100 nm).” Langmuir, 27 4594–4602 (2011)CrossRef Karunakaran, RG, Lu, CH, Zhang, Z, Yang, S, “Highly Transparent Superhydrophobic Surfaces from the Coassembly of Nanoparticles (<=100 nm).” Langmuir, 27 4594–4602 (2011)CrossRef
116.
Zurück zum Zitat Kwon, Y, Patankar, N, Choi, J, Lee, J, “Design of Surface Hierarchy for Extreme Hydrophobicity.” Langmuir, 25 (11) 6129–6136 (2009)CrossRef Kwon, Y, Patankar, N, Choi, J, Lee, J, “Design of Surface Hierarchy for Extreme Hydrophobicity.” Langmuir, 25 (11) 6129–6136 (2009)CrossRef
117.
Zurück zum Zitat Larmour, IA, Bell, SEJ, Saunders, GC, “Remarkably Simple Fabrication of Superhydrophobic Surfaces Using Electroless Galvanic Deposition.” Angew. Chem., 119 1740–1742 (2007)CrossRef Larmour, IA, Bell, SEJ, Saunders, GC, “Remarkably Simple Fabrication of Superhydrophobic Surfaces Using Electroless Galvanic Deposition.” Angew. Chem., 119 1740–1742 (2007)CrossRef
118.
Zurück zum Zitat Li, H, Liao, J, Du, Y, You, T, Liao, W, Wen, L, “Magnetic-Field-Induced Deposition to Fabricate Multifunctional Nanostructured Co, Ni, and CoNi Alloy Films as Catalysts, Ferromagnetic and Superhydrophobic Materials.” Chem. Commun., 49 1768–1770 (2013)CrossRef Li, H, Liao, J, Du, Y, You, T, Liao, W, Wen, L, “Magnetic-Field-Induced Deposition to Fabricate Multifunctional Nanostructured Co, Ni, and CoNi Alloy Films as Catalysts, Ferromagnetic and Superhydrophobic Materials.” Chem. Commun., 49 1768–1770 (2013)CrossRef
119.
Zurück zum Zitat Liu, J, Huang, X, Li, Y, Li, Z, Chi, Q, Li, G, “Formation of Hierarchical CuO Microcabbages as Stable Bionic Superhydrophobic Materials via a Room-Temperature Solution-Immersion Process.” Solid State Sci., 10 1568–1576 (2008)CrossRef Liu, J, Huang, X, Li, Y, Li, Z, Chi, Q, Li, G, “Formation of Hierarchical CuO Microcabbages as Stable Bionic Superhydrophobic Materials via a Room-Temperature Solution-Immersion Process.” Solid State Sci., 10 1568–1576 (2008)CrossRef
120.
Zurück zum Zitat Nakajima, A, Hashimoto, K, Watanabe, T, “Transparent Superhydrophobic Thin Films with Self-Cleaning Properties.” Langmuir, 16 7044–7047 (2000)CrossRef Nakajima, A, Hashimoto, K, Watanabe, T, “Transparent Superhydrophobic Thin Films with Self-Cleaning Properties.” Langmuir, 16 7044–7047 (2000)CrossRef
121.
Zurück zum Zitat Ou, J, Hu, W, Xue, M, Wang, F, Li, W, “Superhydrophobic Surfaces on Light Alloy Substrates Fabricated by a Versatile Process and Their Corrosion Protection.” ACS Appl. Mater. Interfaces, 5 3101–3107 (2013)CrossRef Ou, J, Hu, W, Xue, M, Wang, F, Li, W, “Superhydrophobic Surfaces on Light Alloy Substrates Fabricated by a Versatile Process and Their Corrosion Protection.” ACS Appl. Mater. Interfaces, 5 3101–3107 (2013)CrossRef
123.
Zurück zum Zitat Yuan, Z, Chen, H, Tang, J, Gong, H, Liu, Y, Wang, Z, Shi, P, Jide Zhang, J, Chen, X, “A Novel Preparation of Polystyrene Film with a Superhydrophobic Surface using a Template Method.” J. Phys. D Appl. Phys., 40 3485–3489 (2007)CrossRef Yuan, Z, Chen, H, Tang, J, Gong, H, Liu, Y, Wang, Z, Shi, P, Jide Zhang, J, Chen, X, “A Novel Preparation of Polystyrene Film with a Superhydrophobic Surface using a Template Method.” J. Phys. D Appl. Phys., 40 3485–3489 (2007)CrossRef
124.
Zurück zum Zitat Zhang, L, Zhou, Z, Cheng, B, DeSimone, JM, Samulski, ET, “Superhydrophobic Behavior of a Perfluoropolyether Lotus-Leaf-Like Topography.” Langmuir, 22 8576–8580 (2006)CrossRef Zhang, L, Zhou, Z, Cheng, B, DeSimone, JM, Samulski, ET, “Superhydrophobic Behavior of a Perfluoropolyether Lotus-Leaf-Like Topography.” Langmuir, 22 8576–8580 (2006)CrossRef
125.
Zurück zum Zitat Lee, Y, Ju, KY, Lee, JK, “Stable Biomimetic Superhydrophobic Surfaces Fabricated by Polymer Replication Method from Hierarchically Structured Surfaces of Al Templates.” Langmuir, 26 (17) 14103–14110 (2010)CrossRef Lee, Y, Ju, KY, Lee, JK, “Stable Biomimetic Superhydrophobic Surfaces Fabricated by Polymer Replication Method from Hierarchically Structured Surfaces of Al Templates.” Langmuir, 26 (17) 14103–14110 (2010)CrossRef
126.
Zurück zum Zitat Pozzato, A, Zilio, SD, Fois, G, Vendramin, D, Mistura, G, Belotti, M, Chen, Y, Natali, M, “Superhydrophobic Surfaces Fabricated by Nanoimprint Lithography.” Microelectron. Eng., 83 884–888 (2006)CrossRef Pozzato, A, Zilio, SD, Fois, G, Vendramin, D, Mistura, G, Belotti, M, Chen, Y, Natali, M, “Superhydrophobic Surfaces Fabricated by Nanoimprint Lithography.” Microelectron. Eng., 83 884–888 (2006)CrossRef
127.
Zurück zum Zitat Ruan, M, Li, W, Wanga, B, Luo, Q, Ma, F, Yu, Z, “Optimal Conditions for the Preparation of Superhydrophobic Surfaces on Al Substrates Using a Simple Etching Approach.” Appl. Surf. Sci., 258 7031–7035 (2012)CrossRef Ruan, M, Li, W, Wanga, B, Luo, Q, Ma, F, Yu, Z, “Optimal Conditions for the Preparation of Superhydrophobic Surfaces on Al Substrates Using a Simple Etching Approach.” Appl. Surf. Sci., 258 7031–7035 (2012)CrossRef
128.
Zurück zum Zitat Qian, B, Shen, Z, “Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates.” Langmuir, 21 9007–9009 (2005)CrossRef Qian, B, Shen, Z, “Fabrication of Superhydrophobic Surfaces by Dislocation-Selective Chemical Etching on Aluminum, Copper, and Zinc Substrates.” Langmuir, 21 9007–9009 (2005)CrossRef
129.
Zurück zum Zitat Barshilia, HC, Gupta, N, “Superhydrophobic Polytetrafluoroethylene Surfaces with Leaf-Like Micro-Protrusions Through Ar + O2 Plasma Etching Process.” Vacuum, 99 42–48 (2014)CrossRef Barshilia, HC, Gupta, N, “Superhydrophobic Polytetrafluoroethylene Surfaces with Leaf-Like Micro-Protrusions Through Ar + O2 Plasma Etching Process.” Vacuum, 99 42–48 (2014)CrossRef
130.
Zurück zum Zitat Yin, B, Fang, L, Hu, J, Tang, AQ, He, J, Mao, JH, “A Facile Method for Fabrication of Superhydrophobic Coating on Aluminum Alloy.” Surf. Interface Anal., 44 439–444 (2012)CrossRef Yin, B, Fang, L, Hu, J, Tang, AQ, He, J, Mao, JH, “A Facile Method for Fabrication of Superhydrophobic Coating on Aluminum Alloy.” Surf. Interface Anal., 44 439–444 (2012)CrossRef
131.
Zurück zum Zitat Lu, Y, Xu, W, Song, J, Liu, X, Xing, Y, Sun, J, “Preparation of Superhydrophobic Titanium Surfaces via Electrochemical Etching and Fluorosilane Modification.” Appl. Surf. Sci., 263 297–301 (2012)CrossRef Lu, Y, Xu, W, Song, J, Liu, X, Xing, Y, Sun, J, “Preparation of Superhydrophobic Titanium Surfaces via Electrochemical Etching and Fluorosilane Modification.” Appl. Surf. Sci., 263 297–301 (2012)CrossRef
132.
Zurück zum Zitat Saleema, N, Sarkar, DK, Paynter, RW, Chen, XG, “Superhydrophobic Aluminum Alloy Surfaces by a Novel One-Step Process.” Appl. Mater. Interfaces, 2 (9) 2500–2502 (2010)CrossRef Saleema, N, Sarkar, DK, Paynter, RW, Chen, XG, “Superhydrophobic Aluminum Alloy Surfaces by a Novel One-Step Process.” Appl. Mater. Interfaces, 2 (9) 2500–2502 (2010)CrossRef
133.
Zurück zum Zitat Ji, H, Chen, G, Yang, J, Hu, J, Song, H, Zhao, Y, “A Simple Approach to Fabricate Stable Superhydrophobic Glass Surfaces.” Appl. Surf. Sci., 266 105–109 (2013)CrossRef Ji, H, Chen, G, Yang, J, Hu, J, Song, H, Zhao, Y, “A Simple Approach to Fabricate Stable Superhydrophobic Glass Surfaces.” Appl. Surf. Sci., 266 105–109 (2013)CrossRef
134.
Zurück zum Zitat Xue, CH, Zhang, P, Ma, JZ, Ji, PT, Ya-Ru Li, YR, Jia, ST, “Long-Lived Superhydrophobic Colorful Surfaces.” Chem. Commun., 49 3588–3590 (2013)CrossRef Xue, CH, Zhang, P, Ma, JZ, Ji, PT, Ya-Ru Li, YR, Jia, ST, “Long-Lived Superhydrophobic Colorful Surfaces.” Chem. Commun., 49 3588–3590 (2013)CrossRef
135.
Zurück zum Zitat Boinovich, LB, Emelyanenko, AM, Ivanov, VK, Pashinin, AS, “Durable Icephobic Coating for Stainless Steel.” ACS Appl. Mater. Interfaces, 5 2549–2554 (2013)CrossRef Boinovich, LB, Emelyanenko, AM, Ivanov, VK, Pashinin, AS, “Durable Icephobic Coating for Stainless Steel.” ACS Appl. Mater. Interfaces, 5 2549–2554 (2013)CrossRef
136.
Zurück zum Zitat Hejazi, V, Sobolev, K, Nosonovsky, M, “From Superhydrophobicity to Icephobicity: Forces and Interaction Analysis.” Sci. Rep., 3 (2194) 1–6 (2013) Hejazi, V, Sobolev, K, Nosonovsky, M, “From Superhydrophobicity to Icephobicity: Forces and Interaction Analysis.” Sci. Rep., 3 (2194) 1–6 (2013)
137.
Zurück zum Zitat Sarkar, DK, Farzaneh, M, “Superhydrophobic Coatings with Reduced Ice Adhesion.” J. Adhes. Sci. Technol., 23 (9) 1215–1237 (2009)CrossRef Sarkar, DK, Farzaneh, M, “Superhydrophobic Coatings with Reduced Ice Adhesion.” J. Adhes. Sci. Technol., 23 (9) 1215–1237 (2009)CrossRef
138.
Zurück zum Zitat He, M, Li, H, Wang, J, Song, Y, “Superhydrophobic Surface at Low Surface Temperature.” Appl. Phys. Lett., 98 093118-1–093118-3 (2011) He, M, Li, H, Wang, J, Song, Y, “Superhydrophobic Surface at Low Surface Temperature.” Appl. Phys. Lett., 98 093118-1–093118-3 (2011)
139.
Zurück zum Zitat Kulinich, SA, Farhadi, S, Nose, K, Du, XW, “Superhydrophobic Surfaces: Are They Really Ice-Repellent?” Langmuir, 27 (1) 25–29 (2011)CrossRef Kulinich, SA, Farhadi, S, Nose, K, Du, XW, “Superhydrophobic Surfaces: Are They Really Ice-Repellent?” Langmuir, 27 (1) 25–29 (2011)CrossRef
140.
Zurück zum Zitat Cao, L, Jones, AK, Sikka, VK, Wu, J, Gao, D, “Anti-icing Superhydrophobic Coatings.” Langmuir, 25 (21) 12444–12448 (2009)CrossRef Cao, L, Jones, AK, Sikka, VK, Wu, J, Gao, D, “Anti-icing Superhydrophobic Coatings.” Langmuir, 25 (21) 12444–12448 (2009)CrossRef
141.
Zurück zum Zitat Farhadi, S, Farzaneh, M, Kulinich, SA, “Anti-icing Performance of Superhydrophobic Surfaces.” Appl. Surf. Sci., 257 6264–6269 (2011)CrossRef Farhadi, S, Farzaneh, M, Kulinich, SA, “Anti-icing Performance of Superhydrophobic Surfaces.” Appl. Surf. Sci., 257 6264–6269 (2011)CrossRef
142.
Zurück zum Zitat Park, YB, Im, H, Im, M, Choi, YK, “Self-Cleaning Effect of Highly Water-Repellent Microshell Structures for Solar Cell Applications.” J. Mater. Chem., 21 633–636 (2011)CrossRef Park, YB, Im, H, Im, M, Choi, YK, “Self-Cleaning Effect of Highly Water-Repellent Microshell Structures for Solar Cell Applications.” J. Mater. Chem., 21 633–636 (2011)CrossRef
143.
Zurück zum Zitat Darmanin, T, Guittard, F, “Recent Advances in the Potential Applications of Bioinspired Superhydrophobic Materials.” J. Mater. Chem. A, 2 16319–16359 (2014)CrossRef Darmanin, T, Guittard, F, “Recent Advances in the Potential Applications of Bioinspired Superhydrophobic Materials.” J. Mater. Chem. A, 2 16319–16359 (2014)CrossRef
144.
Zurück zum Zitat Liu, K, Jiang, L, “Metallic Surfaces with Special Wettability.” Nanoscale, 3 825–838 (2011)CrossRef Liu, K, Jiang, L, “Metallic Surfaces with Special Wettability.” Nanoscale, 3 825–838 (2011)CrossRef
145.
Zurück zum Zitat Nosonovsky, M, “Slippery When Wetted.” Nature, 477 412–413 (2011)CrossRef Nosonovsky, M, “Slippery When Wetted.” Nature, 477 412–413 (2011)CrossRef
146.
Zurück zum Zitat Joly, L, Biben, T, “Wetting and Friction on Superoleophobic Surfaces.” Soft Matter, 5 2549–2557 (2009) Joly, L, Biben, T, “Wetting and Friction on Superoleophobic Surfaces.” Soft Matter, 5 2549–2557 (2009)
147.
Zurück zum Zitat Xue, Z, Liu, M, Jiang, L, “Recent Developments in Polymeric Superoleophobic Surfaces.” J. Polym. Sci. B Polym. Phys., 50 (17) 1209–1224 (2012)CrossRef Xue, Z, Liu, M, Jiang, L, “Recent Developments in Polymeric Superoleophobic Surfaces.” J. Polym. Sci. B Polym. Phys., 50 (17) 1209–1224 (2012)CrossRef
148.
Zurück zum Zitat Tuteja, A, Choi, W, Ma, M, Mabry, JM, Mazzella, SA, Rutledge, GC, McKinley, GH, Cohen, RE, “Designing Superoleophobic Surfaces.” Science, 318 1618–1622 (2007)CrossRef Tuteja, A, Choi, W, Ma, M, Mabry, JM, Mazzella, SA, Rutledge, GC, McKinley, GH, Cohen, RE, “Designing Superoleophobic Surfaces.” Science, 318 1618–1622 (2007)CrossRef
149.
Zurück zum Zitat Liu, X, Liang, Y, Zhou, F, Liu, W, “Extreme Wettability and Tunable Adhesion: Biomimicking Beyond Nature?” Soft Matter, 8 2070–2086 (2012)CrossRef Liu, X, Liang, Y, Zhou, F, Liu, W, “Extreme Wettability and Tunable Adhesion: Biomimicking Beyond Nature?” Soft Matter, 8 2070–2086 (2012)CrossRef
150.
Zurück zum Zitat Verho, T, Bower, C, Andrew, P, Franssila, S, Ikkala, O, Ras, RHA, “Mechanically Durable Superhydrophobic Surfaces.” Adv. Mater., 23 673–678 (2011)CrossRef Verho, T, Bower, C, Andrew, P, Franssila, S, Ikkala, O, Ras, RHA, “Mechanically Durable Superhydrophobic Surfaces.” Adv. Mater., 23 673–678 (2011)CrossRef
151.
Zurück zum Zitat Ishizaki, T, Masuda, Y, Sakamoto, M, “Corrosion Resistance and Durability of Superhydrophobic Surface Formed on Magnesium Alloy Coated with Nanostructured Cerium Oxide Film and Fluoroalkylsilane Molecules in Corrosive NaCl Aqueous Solution.” Langmuir, 27 4780–4788 (2011)CrossRef Ishizaki, T, Masuda, Y, Sakamoto, M, “Corrosion Resistance and Durability of Superhydrophobic Surface Formed on Magnesium Alloy Coated with Nanostructured Cerium Oxide Film and Fluoroalkylsilane Molecules in Corrosive NaCl Aqueous Solution.” Langmuir, 27 4780–4788 (2011)CrossRef
152.
Zurück zum Zitat Liu, H, Szunerits, S, Xu, W, Boukherroub, R, “Preparation of Superhydrophobic Coatings on Zinc as Effective Corrosion Barriers.” ACS Appl. Mater. Interfaces., 1 (6) 1150–1153 (2009)CrossRef Liu, H, Szunerits, S, Xu, W, Boukherroub, R, “Preparation of Superhydrophobic Coatings on Zinc as Effective Corrosion Barriers.” ACS Appl. Mater. Interfaces., 1 (6) 1150–1153 (2009)CrossRef
153.
Zurück zum Zitat Ma, J, Zhang, XY, Wang, DP, Zhao, DQ, Ding, DW, Liu, K, Wang, WH, “Superhydrophobic Metallic Glass Surface with Superior Mechanical Stability and Corrosion Resistance.” Appl. Phys. Lett., 104 173701-1–173701-4 (2014) Ma, J, Zhang, XY, Wang, DP, Zhao, DQ, Ding, DW, Liu, K, Wang, WH, “Superhydrophobic Metallic Glass Surface with Superior Mechanical Stability and Corrosion Resistance.” Appl. Phys. Lett., 104 173701-1–173701-4 (2014)
154.
Zurück zum Zitat Samaha, MA, Tafreshi, HV, Hak, MG, “Superhydrophobic Surfaces: From the Lotus Leaf to the Submarine.” C. R. Mec., 340 18–34 (2012)CrossRef Samaha, MA, Tafreshi, HV, Hak, MG, “Superhydrophobic Surfaces: From the Lotus Leaf to the Submarine.” C. R. Mec., 340 18–34 (2012)CrossRef
155.
Zurück zum Zitat Bixler, GD, Bhushan, B, “Biofouling: Lessons from Nature.” Philos. Trans. R. Soc. A, 370 2381–2417 (2012)CrossRef Bixler, GD, Bhushan, B, “Biofouling: Lessons from Nature.” Philos. Trans. R. Soc. A, 370 2381–2417 (2012)CrossRef
156.
Zurück zum Zitat Genzer, J, Efimenko, K, “Recent Developments in Superhydrophobic Surfaces and Their Relevance to Marine Fouling: A Review.” J. Bioadhes. Biofilm Res., 22 (5) 339–360 (2006)CrossRef Genzer, J, Efimenko, K, “Recent Developments in Superhydrophobic Surfaces and Their Relevance to Marine Fouling: A Review.” J. Bioadhes. Biofilm Res., 22 (5) 339–360 (2006)CrossRef
157.
Zurück zum Zitat Marmur, A, “Super-Hydrophobicity Fundamentals: Implications to Biofouling Prevention.” Biofouling, 22 (2) 107–115 (2006)CrossRef Marmur, A, “Super-Hydrophobicity Fundamentals: Implications to Biofouling Prevention.” Biofouling, 22 (2) 107–115 (2006)CrossRef
158.
Zurück zum Zitat Banerjee, I, Pangule, RC, Kane, RS, “Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms.” Adv. Mater., 23 690–718 (2011)CrossRef Banerjee, I, Pangule, RC, Kane, RS, “Antifouling Coatings: Recent Developments in the Design of Surfaces That Prevent Fouling by Proteins, Bacteria, and Marine Organisms.” Adv. Mater., 23 690–718 (2011)CrossRef
159.
Zurück zum Zitat Howarter, JA, Youngblood, JP, “Self-Cleaning and Next Generation Anti-fog Surfaces and Coatings.” Macromol. Rapid Commun., 29 455–466 (2008)CrossRef Howarter, JA, Youngblood, JP, “Self-Cleaning and Next Generation Anti-fog Surfaces and Coatings.” Macromol. Rapid Commun., 29 455–466 (2008)CrossRef
160.
Zurück zum Zitat Lai, Y, Tang, Y, Gong, J, Gong, D, Chi, L, Lin, C, Chen, Z, “Transparent Superhydrophobic/Superhydrophilic TiO2-Based Coatings for Self-Cleaning and Anti-fogging.” J. Mater. Chem., 22 7420–7426 (2012)CrossRef Lai, Y, Tang, Y, Gong, J, Gong, D, Chi, L, Lin, C, Chen, Z, “Transparent Superhydrophobic/Superhydrophilic TiO2-Based Coatings for Self-Cleaning and Anti-fogging.” J. Mater. Chem., 22 7420–7426 (2012)CrossRef
161.
Zurück zum Zitat Chen, Y, Zhang, Y, Shi, L, Li, J, Xin, Y, Yang, T, Guo, Z, “Transparent Superhydrophobic/Superhydrophilic Coatings for Self-Cleaning and Anti-fogging.” Appl. Phys. Lett., 101 033701 (2012)CrossRef Chen, Y, Zhang, Y, Shi, L, Li, J, Xin, Y, Yang, T, Guo, Z, “Transparent Superhydrophobic/Superhydrophilic Coatings for Self-Cleaning and Anti-fogging.” Appl. Phys. Lett., 101 033701 (2012)CrossRef
162.
Zurück zum Zitat Wang, T, Hu, X, Dong, S, “A General Route to Transform Normal Hydrophilic Cloths into Superhydrophobic Surfaces.” Chem. Commun., 18 1849–1851 (2007)CrossRef Wang, T, Hu, X, Dong, S, “A General Route to Transform Normal Hydrophilic Cloths into Superhydrophobic Surfaces.” Chem. Commun., 18 1849–1851 (2007)CrossRef
163.
Zurück zum Zitat Zimmermann, J, Reifler, FA, Fortunato, G, Gerhardt, LC, Seeger, S, “A Simple, One-Step Approach to Durable and Robust Superhydrophobic Textiles.” Adv. Funct. Mater., 18 3662–3669 (2008)CrossRef Zimmermann, J, Reifler, FA, Fortunato, G, Gerhardt, LC, Seeger, S, “A Simple, One-Step Approach to Durable and Robust Superhydrophobic Textiles.” Adv. Funct. Mater., 18 3662–3669 (2008)CrossRef
164.
Zurück zum Zitat Wang, H, Xue, Y, Ding, J, Feng, L, Wang, X, Lin, T, “Durable, Self-Healing Superhydrophobic and Superoleophobic Surfaces from Fluorinated-Decyl Polyhedral Oligomeric Silsesquioxane and Hydrolyzed Fluorinated Alkyl Silane.” Angew. Chem. Int. Ed., 50 11433–11436 (2011)CrossRef Wang, H, Xue, Y, Ding, J, Feng, L, Wang, X, Lin, T, “Durable, Self-Healing Superhydrophobic and Superoleophobic Surfaces from Fluorinated-Decyl Polyhedral Oligomeric Silsesquioxane and Hydrolyzed Fluorinated Alkyl Silane.” Angew. Chem. Int. Ed., 50 11433–11436 (2011)CrossRef
165.
Zurück zum Zitat Chen, C, Xu, J, Zhang, Q, Ma, Y, Zhou, L, Wang, M, “Superhydrophobic Materials as Efficient Catalysts for Hydrocarbon Selective Oxidation.” Chem. Commun., 47 1336–1338 (2011)CrossRef Chen, C, Xu, J, Zhang, Q, Ma, Y, Zhou, L, Wang, M, “Superhydrophobic Materials as Efficient Catalysts for Hydrocarbon Selective Oxidation.” Chem. Commun., 47 1336–1338 (2011)CrossRef
166.
Zurück zum Zitat Zhang, YL, Xia, H, Kim, E, Sun, HB, “Recent Developments in Superhydrophobic Surfaces with Unique Structural and Functional Properties.” Soft Matter, 8 11217–11231 (2012)CrossRef Zhang, YL, Xia, H, Kim, E, Sun, HB, “Recent Developments in Superhydrophobic Surfaces with Unique Structural and Functional Properties.” Soft Matter, 8 11217–11231 (2012)CrossRef
167.
Zurück zum Zitat Xiu, Y, Zhang, S, Yelundur, V, Rohatgi, A, Hess, DW, Wong, CP, “Superhydrophobic and Low Light Reflectivity Silicon Surfaces Fabricated by Hierarchical Etching.” Langmuir, 24 10421–10426 (2008)CrossRef Xiu, Y, Zhang, S, Yelundur, V, Rohatgi, A, Hess, DW, Wong, CP, “Superhydrophobic and Low Light Reflectivity Silicon Surfaces Fabricated by Hierarchical Etching.” Langmuir, 24 10421–10426 (2008)CrossRef
168.
Zurück zum Zitat Li, B, Li, L, Wu, L, Zhang, J, Wang, A, “Durable Superhydrophobic/Superoleophilic Polyurethane Sponges Inspired by Mussel and Lotus Leaf for the Selective Removal of Organic Pollutants from Water.” ChemPlusChem, 79 850–856 (2014)CrossRef Li, B, Li, L, Wu, L, Zhang, J, Wang, A, “Durable Superhydrophobic/Superoleophilic Polyurethane Sponges Inspired by Mussel and Lotus Leaf for the Selective Removal of Organic Pollutants from Water.” ChemPlusChem, 79 850–856 (2014)CrossRef
169.
Zurück zum Zitat Su, C, Li, Y, Dai, Y, Gao, F, Tang, K, Cao, H, “Fabrication of Three-Dimensional Superhydrophobic Membranes with High Porosity via Simultaneous Electrospraying and Electrospinning.” Mater. Lett., 170 67–71 (2016)CrossRef Su, C, Li, Y, Dai, Y, Gao, F, Tang, K, Cao, H, “Fabrication of Three-Dimensional Superhydrophobic Membranes with High Porosity via Simultaneous Electrospraying and Electrospinning.” Mater. Lett., 170 67–71 (2016)CrossRef
170.
Zurück zum Zitat Simpson, JT, Hunter, SR, Aytug, T, “Superhydrophobic Materials and Coatings: A Review.” Rep. Prog. Phys., 78 086501-1–086501-14 (2015)CrossRef Simpson, JT, Hunter, SR, Aytug, T, “Superhydrophobic Materials and Coatings: A Review.” Rep. Prog. Phys., 78 086501-1–086501-14 (2015)CrossRef
171.
Zurück zum Zitat Sun, T, Tan, H, Han, D, Fu, Q, Jiang, L, “No Platelet Can Adhere—Largely Improved Blood Compatibility on Nanostructured Superhydrophobic Surfaces.” Small, 1 (10) 959–963 (2005)CrossRef Sun, T, Tan, H, Han, D, Fu, Q, Jiang, L, “No Platelet Can Adhere—Largely Improved Blood Compatibility on Nanostructured Superhydrophobic Surfaces.” Small, 1 (10) 959–963 (2005)CrossRef
172.
Zurück zum Zitat Ueda, E, Levkin, PA, “Emerging Applications of Superhydrophilic Superhydrophobic Micropatterns.” Adv. Mater., 25 (9) 1234–1247 (2013)CrossRef Ueda, E, Levkin, PA, “Emerging Applications of Superhydrophilic Superhydrophobic Micropatterns.” Adv. Mater., 25 (9) 1234–1247 (2013)CrossRef
173.
Zurück zum Zitat Tadanaga, K, Morinaga, J, Matsuda, A, Minami, T, “Superhydrophobic-Superhydrophilic Micropatterning on Flower like Alumina Coating Film by the Sol–Gel Method.” Chem. Mater., 12 590–592 (2000)CrossRef Tadanaga, K, Morinaga, J, Matsuda, A, Minami, T, “Superhydrophobic-Superhydrophilic Micropatterning on Flower like Alumina Coating Film by the Sol–Gel Method.” Chem. Mater., 12 590–592 (2000)CrossRef
174.
Zurück zum Zitat Bocquet, L, Lauga, E, “A Smooth Future?” Nat. Mater., 10 334–337 (2011)CrossRef Bocquet, L, Lauga, E, “A Smooth Future?” Nat. Mater., 10 334–337 (2011)CrossRef
175.
Zurück zum Zitat Wang, X, Liu, X, Zhou, F, Liu, W, “Self-Healing Superamphiphobicity.” Chem. Commun., 47 2324–2326 (2011)CrossRef Wang, X, Liu, X, Zhou, F, Liu, W, “Self-Healing Superamphiphobicity.” Chem. Commun., 47 2324–2326 (2011)CrossRef
176.
Zurück zum Zitat Ma, M, Hill, RM, Rutledge, GC, “A Review of Recent Results on Superhydrophobic Materials Based on Micro- and Nanofibers.” J. Adhes. Sci. Technol., 22 (15) 1799–1817 (2008)CrossRef Ma, M, Hill, RM, Rutledge, GC, “A Review of Recent Results on Superhydrophobic Materials Based on Micro- and Nanofibers.” J. Adhes. Sci. Technol., 22 (15) 1799–1817 (2008)CrossRef
177.
Zurück zum Zitat Nakajima, A, Hashimoto, K, Watanabe, T, “Recent Studies on Super-Hydrophobic Films.” Mon. Chem., 132 31–41 (2001)CrossRef Nakajima, A, Hashimoto, K, Watanabe, T, “Recent Studies on Super-Hydrophobic Films.” Mon. Chem., 132 31–41 (2001)CrossRef
178.
Zurück zum Zitat Nakajima, A, Abe, K, Hashimoto, K, Watanabe, T, “Preparation of Hard Super-Hydrophobic Films with Visible Light Transmission.” Thin Solid Films, 376 140–143 (2000)CrossRef Nakajima, A, Abe, K, Hashimoto, K, Watanabe, T, “Preparation of Hard Super-Hydrophobic Films with Visible Light Transmission.” Thin Solid Films, 376 140–143 (2000)CrossRef
179.
Zurück zum Zitat Solga, A, Cerman, Z, Striffler, BF, Spaeth, M, Barthlott, W, “The Dream of Staying Clean: Lotus and Biomimetic Surfaces.” Bioinspir. Biomim., 2 S126–S134 (2007)CrossRef Solga, A, Cerman, Z, Striffler, BF, Spaeth, M, Barthlott, W, “The Dream of Staying Clean: Lotus and Biomimetic Surfaces.” Bioinspir. Biomim., 2 S126–S134 (2007)CrossRef
180.
Zurück zum Zitat Tian, X, Verho, T, Ras, RHA, “Moving Superhydrophobic Surfaces Toward Real-World Applications.” Science, 352 (6282) 142–143 (2016)CrossRef Tian, X, Verho, T, Ras, RHA, “Moving Superhydrophobic Surfaces Toward Real-World Applications.” Science, 352 (6282) 142–143 (2016)CrossRef
181.
Zurück zum Zitat Nakajima, A, Fujishima, A, Hashimoto, K, Watanabe, T, “Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate.” Adv. Mater., 11 (16) 1365–1368 (1999)CrossRef Nakajima, A, Fujishima, A, Hashimoto, K, Watanabe, T, “Preparation of Transparent Superhydrophobic Boehmite and Silica Films by Sublimation of Aluminum Acetylacetonate.” Adv. Mater., 11 (16) 1365–1368 (1999)CrossRef
Metadaten
Titel
Superhydrophobic surfaces: a review on fundamentals, applications, and challenges
verfasst von
Jeya Jeevahan
M. Chandrasekaran
G. Britto Joseph
R. B. Durairaj
G. Mageshwaran
Publikationsdatum
04.01.2018
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 2/2018
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-017-0011-x

Weitere Artikel der Ausgabe 2/2018

Journal of Coatings Technology and Research 2/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.