Skip to main content

2020 | OriginalPaper | Buchkapitel

Supersolvus Hot Workability and Dynamic Recrystallization in Wrought Co–Al–W-Base Alloys

verfasst von : Katelun Wertz, Donald Weaver, Dongsheng Wen, Michael S. Titus, Rajiv Shivpuri, Stephen R. Niezgoda, Michael J. Mills, S. Lee Semiatin

Erschienen in: Superalloys 2020

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Gamma-prime strengthened Co–Al–W-based superalloys offer a unique combination of weldability, mechanical strength, creep resistance, and environmental resistance at temperature—leading many to consider the system as an alternative to nickel-base superalloys for future generation turbine engine hardware. However, little information exists regarding the deformation processing required to turn these novel alloys into useable product forms with appropriate microstructure refinement. Supersolvus thermomechanical processing sequences were successfully demonstrated using right-cylindrical upset specimens for two wrought γ′-strengthened cobalt-base superalloys at industrially relevant temperatures and deformation rates. Hot flow behavior and microstructure evolution were quantitatively characterized and compared to available information on a legacy nickel-base system, Waspaloy. Further, density functional theory was used to explore the compositional dependency of the intrinsic material properties influencing single-phase hot working behavior of model Ni–Al binary and Co–Al–W ternary systems. The apparent similarity in the supersolvus thermomechanical processing behavior of Co–Al–W-base systems and their two-phase γγ′ Ni-base counterparts suggests conventional pathways, models, and equipment may be leveraged to speed transition and implementation of wrought Co–Al–W-base alloys for components where their properties may be advantageous.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, “Cobalt-base high-temperature alloys,” Science, vol. 312, no. 2006, pp. 90–91, 2006. J. Sato, T. Omori, K. Oikawa, I. Ohnuma, R. Kainuma, and K. Ishida, “Cobalt-base high-temperature alloys,” Science, vol. 312, no. 2006, pp. 90–91, 2006.
2.
Zurück zum Zitat T. M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu, and A. Suzuki, “New Co-based y-y’ High-temperature alloys,” JOM, vol. 62, no. 1, pp. 58–63, 2010. T. M. Pollock, J. Dibbern, M. Tsunekane, J. Zhu, and A. Suzuki, “New Co-based y-y’ High-temperature alloys,” JOM, vol. 62, no. 1, pp. 58–63, 2010.
3.
Zurück zum Zitat A. Suzuki, H. Inui, and T. M. Pollock, “L12-Strengthened Cobalt-Base Superalloys,” Annu. Rev. Mater. Res., no. 45, pp. 345–68, 2015. A. Suzuki, H. Inui, and T. M. Pollock, “L12-Strengthened Cobalt-Base Superalloys,” Annu. Rev. Mater. Res., no. 45, pp. 345–68, 2015.
4.
Zurück zum Zitat E. T. McDevitt, “Vacuum induction melting and vacuum arc remelting of Co-Al-W-X gamma-prime superalloys,” MATEC Web Conf., vol. 14, p. 02001, 2014. E. T. McDevitt, “Vacuum induction melting and vacuum arc remelting of Co-Al-W-X gamma-prime superalloys,” MATEC Web Conf., vol. 14, p. 02001, 2014.
5.
Zurück zum Zitat E. T. McDevitt, “Feasibility of Cast and Wrought Co-Al-W-X Gamma-Prime Superalloys,” Mater. Sci. Forum, vol. 783–786, pp. 1159–1164, 2014. E. T. McDevitt, “Feasibility of Cast and Wrought Co-Al-W-X Gamma-Prime Superalloys,” Mater. Sci. Forum, vol. 783–786, pp. 1159–1164, 2014.
6.
Zurück zum Zitat S. Neumeier, L. P. Freund, and M. Göken, “Novel wrought y/y’ cobalt base superalloys with high strength and improved oxidation resistance,” Scr. Mater., vol. 109, pp. 104–107, 2015. S. Neumeier, L. P. Freund, and M. Göken, “Novel wrought y/y’ cobalt base superalloys with high strength and improved oxidation resistance,” Scr. Mater., vol. 109, pp. 104–107, 2015.
7.
Zurück zum Zitat L. P. Freund, S. Giese, D. Schwimmer, H. W. Höppel, S. Neumeier, and M. Göken, “High temperature properties and fatigue strength of novel wrought γ-γ’ Co-base superalloys,” J. Mater. Res., vol. 32, no. 24, pp. 4475–4482, 2017. L. P. Freund, S. Giese, D. Schwimmer, H. W. Höppel, S. Neumeier, and M. Göken, “High temperature properties and fatigue strength of novel wrought γ-γ’ Co-base superalloys,” J. Mater. Res., vol. 32, no. 24, pp. 4475–4482, 2017.
8.
Zurück zum Zitat D. Weaver, “Thermomechanical Processing of a Gamma-Prime Strengthened Cobalt-Base Superalloy,” PhD Thesis. The Ohio State University, 2018. D. Weaver, “Thermomechanical Processing of a Gamma-Prime Strengthened Cobalt-Base Superalloy,” PhD Thesis. The Ohio State University, 2018.
9.
Zurück zum Zitat K. Wertz, “Exploration of Phase Stability and Hot Workability of Polycrystalline Co-Al-W-Base Superalloys,” PhD Thesis. The Ohio State University, 2019. K. Wertz, “Exploration of Phase Stability and Hot Workability of Polycrystalline Co-Al-W-Base Superalloys,” PhD Thesis. The Ohio State University, 2019.
10.
Zurück zum Zitat P. Denteneer and W. Van Haeringen, “Stacking-fault energies in semiconductors from first-principles calculations,” J. Phys. C Solid State Phys., vol. 20, no. 32, p. L883, 1987. P. Denteneer and W. Van Haeringen, “Stacking-fault energies in semiconductors from first-principles calculations,” J. Phys. C Solid State Phys., vol. 20, no. 32, p. L883, 1987.
11.
Zurück zum Zitat M. Chandran and S. K. K. Sondhi, “First-Principle calculation of stacking fault energies in Ni- and Ni-Co Alloys,” J. Appl. Phys., vol. 109, no. 10, p. 103525, May 2011. M. Chandran and S. K. K. Sondhi, “First-Principle calculation of stacking fault energies in Ni- and Ni-Co Alloys,” J. Appl. Phys., vol. 109, no. 10, p. 103525, May 2011.
12.
Zurück zum Zitat M. S. Titus, Y. M. Eggeler, A. Suzuki, and T. M. Pollock, “Creep-induced planar defects in L12-containing Co- and CoNi-base single-crystal superalloys,” Acta Mater., vol. 82, pp. 530–539, 2015. M. S. Titus, Y. M. Eggeler, A. Suzuki, and T. M. Pollock, “Creep-induced planar defects in L12-containing Co- and CoNi-base single-crystal superalloys,” Acta Mater., vol. 82, pp. 530–539, 2015.
13.
Zurück zum Zitat A. Breidi, J. Allen, and A. Mottura, “First-principles calculations of thermodynamic properties and planar fault energies in Co 3 X and Ni 3 X L1 2 compounds: Thermodynamic properties and planar fault energies in Co3X and Ni3X,” Phys. status solidi, vol. 254, no. 9, Sep. 2017. A. Breidi, J. Allen, and A. Mottura, “First-principles calculations of thermodynamic properties and planar fault energies in Co 3 X and Ni 3 X L1 2 compounds: Thermodynamic properties and planar fault energies in Co3X and Ni3X,” Phys. status solidi, vol. 254, no. 9, Sep. 2017.
14.
Zurück zum Zitat A. Breidi, J. Allen, and A. Mottura, “First-principles modeling of superlattice intrinsic stacking fault energies in Ni3Al based alloys,” Acta Mater., vol. 145, pp. 97–108, Feb. 2018. A. Breidi, J. Allen, and A. Mottura, “First-principles modeling of superlattice intrinsic stacking fault energies in Ni3Al based alloys,” Acta Mater., vol. 145, pp. 97–108, Feb. 2018.
15.
Zurück zum Zitat X. Zhang et al., “Temperature dependence of the stacking-fault Gibbs energy for Al, Cu, and Ni,” Phys. Rev. B, vol. 98, no. 22, p. 224106, Dec. 2018. X. Zhang et al., “Temperature dependence of the stacking-fault Gibbs energy for Al, Cu, and Ni,” Phys. Rev. B, vol. 98, no. 22, p. 224106, Dec. 2018.
16.
Zurück zum Zitat A. Zunger, S. H. Wei, L. G. Ferreira, and J. E. Bernard, “Special quasirandom structures,” Phys. Rev. Lett., vol. 65, no. 3, p. 353, 1990. A. Zunger, S. H. Wei, L. G. Ferreira, and J. E. Bernard, “Special quasirandom structures,” Phys. Rev. Lett., vol. 65, no. 3, p. 353, 1990.
17.
Zurück zum Zitat A. Van de Walle et al., “Efficient stochastic generation of special quasirandom structures,” Calphad Comput. Coupling Phase Diagrams Thermochem., vol. 42, pp. 13–18, 2013. A. Van de Walle et al., “Efficient stochastic generation of special quasirandom structures,” Calphad Comput. Coupling Phase Diagrams Thermochem., vol. 42, pp. 13–18, 2013.
18.
Zurück zum Zitat G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B, vol. 54, no. 16, p. 11169, 1996. G. Kresse and J. Furthmüller, “Efficient iterative schemes for ab initio total-energy calculations using a plane-wave basis set,” Phys. Rev. B, vol. 54, no. 16, p. 11169, 1996.
19.
Zurück zum Zitat J. Hafner, “Materials simulations using VASP—a quantum perspective to materials science,” Comput. Phys. Commun., vol. 177, no. 1–2, pp. 6–13, 2007. J. Hafner, “Materials simulations using VASP—a quantum perspective to materials science,” Comput. Phys. Commun., vol. 177, no. 1–2, pp. 6–13, 2007.
20.
Zurück zum Zitat P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, vol. 50, no. 24, p. 17953, 1994. P. E. Blöchl, “Projector augmented-wave method,” Phys. Rev. B, vol. 50, no. 24, p. 17953, 1994.
21.
Zurück zum Zitat J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, no. 18, p. 3865, 1996. J. P. Perdew, K. Burke, and M. Ernzerhof, “Generalized gradient approximation made simple,” Phys. Rev. Lett., vol. 77, no. 18, p. 3865, 1996.
22.
Zurück zum Zitat H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, vol. 13, no. 12, p. 5188, 1976. H. J. Monkhorst and J. D. Pack, “Special points for Brillouin-zone integrations,” Phys. Rev. B, vol. 13, no. 12, p. 5188, 1976.
23.
Zurück zum Zitat M. Methfessel and A. Paxton, “High-precision sampling for Brillouin-zone integration in metals,” Phys. Rev. B, vol. 40, no. 6, p. 3616, 1989. M. Methfessel and A. Paxton, “High-precision sampling for Brillouin-zone integration in metals,” Phys. Rev. B, vol. 40, no. 6, p. 3616, 1989.
24.
Zurück zum Zitat L. Chaput, A. Togo, I. Tanaka, and G. Hug, “Phonon-phonon interactions in transition metals,” Phys. Rev. B, vol. 84, p. 094302, 2011. L. Chaput, A. Togo, I. Tanaka, and G. Hug, “Phonon-phonon interactions in transition metals,” Phys. Rev. B, vol. 84, p. 094302, 2011.
25.
Zurück zum Zitat A. Togo and I. Tanaka, “First principles phonon calculations in materials science,” Scr. Mater., vol. 108, pp. 1–5, 2015. A. Togo and I. Tanaka, “First principles phonon calculations in materials science,” Scr. Mater., vol. 108, pp. 1–5, 2015.
26.
Zurück zum Zitat A. Nicolay, G. Fiorucci, J. M. Franchet, J. Cormier, and N. Bozzolo, “Influence of strain rate on subsolvus dynamic and post-dynamic recrystallization kinetics of Inconel 718,” Acta Mater., vol. 174, pp. 406–417, 2019. A. Nicolay, G. Fiorucci, J. M. Franchet, J. Cormier, and N. Bozzolo, “Influence of strain rate on subsolvus dynamic and post-dynamic recrystallization kinetics of Inconel 718,” Acta Mater., vol. 174, pp. 406–417, 2019.
27.
Zurück zum Zitat G. Shen, S. L. Semiatin, and R. Shivpuri, “Modeling microstructural development during the forging of Waspaloy,” Metall. Mater. Trans. A, vol. 26, no. 7, pp. 1795–1803, 1995. G. Shen, S. L. Semiatin, and R. Shivpuri, “Modeling microstructural development during the forging of Waspaloy,” Metall. Mater. Trans. A, vol. 26, no. 7, pp. 1795–1803, 1995.
28.
Zurück zum Zitat R. L. Goetz and V. Seetharaman, “Modeling Dynamic Recrystallization Using Cellular Automata,” Scr. Mater., vol. 38, no. 3, pp. 405–413, 1998. R. L. Goetz and V. Seetharaman, “Modeling Dynamic Recrystallization Using Cellular Automata,” Scr. Mater., vol. 38, no. 3, pp. 405–413, 1998.
29.
Zurück zum Zitat A. Laasraoui and J. J. Jonas, “Prediction of Steel Flow Stresses at High Temperatures and Strain Rates,” Metall. Trans. A, vol. 22, no. July, pp. 1545–1558, 1991. A. Laasraoui and J. J. Jonas, “Prediction of Steel Flow Stresses at High Temperatures and Strain Rates,” Metall. Trans. A, vol. 22, no. July, pp. 1545–1558, 1991.
30.
Zurück zum Zitat G. Dieter, H. Kuhn, and S. L. Semiatin, Handbook of Workability and Process Design. 2003. G. Dieter, H. Kuhn, and S. L. Semiatin, Handbook of Workability and Process Design. 2003.
31.
Zurück zum Zitat F. Montheillet and J. J. Jonas, “Models of Recrystallization,” in ASM Handbook, Vol. 22A: Fundamentals of Modeling for Metals Processing, D. U. Furrer and S. L. Semiatin, Eds. 2009. F. Montheillet and J. J. Jonas, “Models of Recrystallization,” in ASM Handbook, Vol. 22A: Fundamentals of Modeling for Metals Processing, D. U. Furrer and S. L. Semiatin, Eds. 2009.
32.
Zurück zum Zitat F. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Second. Pergamon, 2002. F. Humphreys and M. Hatherly, Recrystallization and Related Annealing Phenomena, Second. Pergamon, 2002.
33.
Zurück zum Zitat D. S. Weaver and S. L. Semiatin, “Recrystallization and grain-growth behavior of a nickel-base superalloy during multi-hit deformation,” Scr. Mater., vol. 57, no. 11, pp. 1044–1047, 2007. D. S. Weaver and S. L. Semiatin, “Recrystallization and grain-growth behavior of a nickel-base superalloy during multi-hit deformation,” Scr. Mater., vol. 57, no. 11, pp. 1044–1047, 2007.
34.
Zurück zum Zitat S. L. Semiatin et al., “Deformation and recrystallization behavior during hot working of a coarse-grain, nickel-base superalloy ingot material,” Metall. Mater. Trans. A, vol. 35, no. 2, pp. 679–693, 2004. S. L. Semiatin et al., “Deformation and recrystallization behavior during hot working of a coarse-grain, nickel-base superalloy ingot material,” Metall. Mater. Trans. A, vol. 35, no. 2, pp. 679–693, 2004.
35.
Zurück zum Zitat L. Briottet, J. J. JONAS, and F. Montheillet, “A Mechanical Interpretation of the Activation Energy of High Temperature Deformation in Two Phase Materials,” Acta Mater., vol. 44, no. 4, pp. 1665–1672, 1996. L. Briottet, J. J. JONAS, and F. Montheillet, “A Mechanical Interpretation of the Activation Energy of High Temperature Deformation in Two Phase Materials,” Acta Mater., vol. 44, no. 4, pp. 1665–1672, 1996.
36.
Zurück zum Zitat K. I. Hirano, R. P. Agarwala, B. L. Averbach, and M. Cohen, “Diffusion in cobalt-nickel alloys,” J. Appl. Phys., vol. 33, no. 10, pp. 3049–3054, 1962. K. I. Hirano, R. P. Agarwala, B. L. Averbach, and M. Cohen, “Diffusion in cobalt-nickel alloys,” J. Appl. Phys., vol. 33, no. 10, pp. 3049–3054, 1962.
37.
Zurück zum Zitat S. Neumeier et al., “Diffusion of solutes in fcc Cobalt investigated by diffusion couples and first principles kinetic Monte Carlo,” Acta Mater., vol. 106, pp. 304–312, 2016. S. Neumeier et al., “Diffusion of solutes in fcc Cobalt investigated by diffusion couples and first principles kinetic Monte Carlo,” Acta Mater., vol. 106, pp. 304–312, 2016.
38.
Zurück zum Zitat J. Favre, Y. Koizumi, A. Chiba, D. Fabregue, and E. Maire, “Recrystallization of L-605 cobalt superalloy during hot-working process,” TMS Annu. Meet., pp. 257–264, 2012. J. Favre, Y. Koizumi, A. Chiba, D. Fabregue, and E. Maire, “Recrystallization of L-605 cobalt superalloy during hot-working process,” TMS Annu. Meet., pp. 257–264, 2012.
39.
Zurück zum Zitat A. Momeni, “The physical interpretation of the activation energy for hot deformation of Ni and Ni-30Cu alloys,” J. Mater. Res., pp. 1–8, 2016. A. Momeni, “The physical interpretation of the activation energy for hot deformation of Ni and Ni-30Cu alloys,” J. Mater. Res., pp. 1–8, 2016.
40.
Zurück zum Zitat T. Matsui, “Dynamic Recrystallization Behavior of Waspaloy during Hot Working,” Mater. Trans., vol. 55, no. 2, pp. 255–263, 2014. T. Matsui, “Dynamic Recrystallization Behavior of Waspaloy during Hot Working,” Mater. Trans., vol. 55, no. 2, pp. 255–263, 2014.
41.
Zurück zum Zitat R. L. Goetz, “Particle stimulated nucleation during dynamic recrystallization using a cellular automata model,” Scr. Mater., vol. 52, no. 9, pp. 851–856, 2005. R. L. Goetz, “Particle stimulated nucleation during dynamic recrystallization using a cellular automata model,” Scr. Mater., vol. 52, no. 9, pp. 851–856, 2005.
42.
Zurück zum Zitat S. Gourdet and F. Montheillet, “Materials Science and Engineering : A An experimental study of the recrystallization mechanism during hot deformation of aluminium,” vol. 283, pp. 1–33, 2014. S. Gourdet and F. Montheillet, “Materials Science and Engineering : A An experimental study of the recrystallization mechanism during hot deformation of aluminium,” vol. 283, pp. 1–33, 2014.
43.
Zurück zum Zitat H. Hu, “Texture of Metals,” Texture, vol. 1, no. 4, pp. 233–258, 1974. H. Hu, “Texture of Metals,” Texture, vol. 1, no. 4, pp. 233–258, 1974.
44.
Zurück zum Zitat B. Bacroix and J. J. Jonas, “The Influence of Non-Octahedral Slip on Texture Development in FCC Metals,” Textures Microstruct., vol. 8,9, pp. 267–311, 1988. B. Bacroix and J. J. Jonas, “The Influence of Non-Octahedral Slip on Texture Development in FCC Metals,” Textures Microstruct., vol. 8,9, pp. 267–311, 1988.
45.
Zurück zum Zitat D. Caillard and J. L. Martin, “Glide of dislocations in non-octahedral planes of fcc metals: A review,” Int. J. Mater. Res., vol. 100, no. 10, pp. 1403–1410, 2009. D. Caillard and J. L. Martin, “Glide of dislocations in non-octahedral planes of fcc metals: A review,” Int. J. Mater. Res., vol. 100, no. 10, pp. 1403–1410, 2009.
46.
Zurück zum Zitat P. C. J. Gallagher, “The influence of alloying, temperature, and related effects on the stacking fault energy,” Metall. Trans., vol. 1, no. 9, pp. 2429–2461, Sep. 1970. P. C. J. Gallagher, “The influence of alloying, temperature, and related effects on the stacking fault energy,” Metall. Trans., vol. 1, no. 9, pp. 2429–2461, Sep. 1970.
47.
Zurück zum Zitat P. J. . Denteneer and W. Van Haeringen, “Stacking-fault energies in semiconductors from first-principles calculations,” J. Phys. C Solid State Phys., vol. 20, no. 32, p. L883, 1987. P. J. . Denteneer and W. Van Haeringen, “Stacking-fault energies in semiconductors from first-principles calculations,” J. Phys. C Solid State Phys., vol. 20, no. 32, p. L883, 1987.
48.
Zurück zum Zitat L. Y. Tian, R. Lizárraga, H. Larsson, E. Holmström, and L. Vitos, “A first principles study of the stacking fault energies for fcc Co-based binary alloys,” Acta Mater., vol. 136, pp. 215–223, 2017. L. Y. Tian, R. Lizárraga, H. Larsson, E. Holmström, and L. Vitos, “A first principles study of the stacking fault energies for fcc Co-based binary alloys,” Acta Mater., vol. 136, pp. 215–223, 2017.
49.
Zurück zum Zitat M. Chandran and S. K. Sondhi, “First-Principle calculation of stacking fault energies in Ni- and Ni-Co Alloys,” J. Appl. Phys., vol. 109, 2011. M. Chandran and S. K. Sondhi, “First-Principle calculation of stacking fault energies in Ni- and Ni-Co Alloys,” J. Appl. Phys., vol. 109, 2011.
50.
Zurück zum Zitat T. Ericsson, “The temperature and concentration dependence of the stacking fault energy in the Co-Ni system,” Acta Metall., vol. 14, no. 7, pp. 853–865, Jul. 1966. T. Ericsson, “The temperature and concentration dependence of the stacking fault energy in the Co-Ni system,” Acta Metall., vol. 14, no. 7, pp. 853–865, Jul. 1966.
51.
Zurück zum Zitat S. L. Shang, W. Wang, Y. Du, J. X. Zhang, A. . Patel, and Z. K. Liu, “Temperature-dependent ideal strength and stacking fault energy of FCC Ni: A first-principles study of shear deformation,” J Phys Condens Matter, vol. 24, no. 15, 2012. S. L. Shang, W. Wang, Y. Du, J. X. Zhang, A. . Patel, and Z. K. Liu, “Temperature-dependent ideal strength and stacking fault energy of FCC Ni: A first-principles study of shear deformation,” J Phys Condens Matter, vol. 24, no. 15, 2012.
Metadaten
Titel
Supersolvus Hot Workability and Dynamic Recrystallization in Wrought Co–Al–W-Base Alloys
verfasst von
Katelun Wertz
Donald Weaver
Dongsheng Wen
Michael S. Titus
Rajiv Shivpuri
Stephen R. Niezgoda
Michael J. Mills
S. Lee Semiatin
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-51834-9_84

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.