Skip to main content
Erschienen in: Optical and Quantum Electronics 10/2023

01.10.2023

Suppression of chaos in the periodically perturbed generalized complex Ginzburg–Landau equation by means of parametric excitation

verfasst von: Sofia Lavrova, Nikolai Kudryashov

Erschienen in: Optical and Quantum Electronics | Ausgabe 10/2023

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The generalized complex Ginzburg–Landau equation is considered. An analytical condition for the existence of horseshoe chaos is obtained for the traveling wave reduction of the investigated equation by using the Melnikov method. A way to control chaos in the dynamical system is proposed. An analytical prediction is tested numerically by plotting attraction basins of attraction of the Poincare section of the studied system.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Akram, G., Sadaf, M., Khan, M.A.U.: Abundant optical solitons for Lakshmanan–Porsezian–Daniel model by the modified auxiliary equation method. Optik 251, 168163 (2022)ADS Akram, G., Sadaf, M., Khan, M.A.U.: Abundant optical solitons for Lakshmanan–Porsezian–Daniel model by the modified auxiliary equation method. Optik 251, 168163 (2022)ADS
Zurück zum Zitat Aljohani, A., El-Zahar, E., Ebaid, A., et al.: Optical soliton perturbation with Fokas–Lenells model by Riccati equation approach. Optik 172, 741–745 (2018)ADS Aljohani, A., El-Zahar, E., Ebaid, A., et al.: Optical soliton perturbation with Fokas–Lenells model by Riccati equation approach. Optik 172, 741–745 (2018)ADS
Zurück zum Zitat Arshed, S., Biswas, A., Guggilla, P., et al.: Optical solitons for Radhakrishnan–Kundu–Lakshmanan equation with full nonlinearity. Phys. Lett. A 384(26), 126191 (2020)MathSciNetMATH Arshed, S., Biswas, A., Guggilla, P., et al.: Optical solitons for Radhakrishnan–Kundu–Lakshmanan equation with full nonlinearity. Phys. Lett. A 384(26), 126191 (2020)MathSciNetMATH
Zurück zum Zitat Battelli, F., Fečkan, M.: Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems. Physica D 241(22), 1962–1975 (2012)ADSMathSciNet Battelli, F., Fečkan, M.: Nonsmooth homoclinic orbits, Melnikov functions and chaos in discontinuous systems. Physica D 241(22), 1962–1975 (2012)ADSMathSciNet
Zurück zum Zitat Bekir, A., Zahran, E.H.: Bright and dark soliton solutions for the complex Kundu–Eckhaus equation. Optik 223, 165233 (2020)ADS Bekir, A., Zahran, E.H.: Bright and dark soliton solutions for the complex Kundu–Eckhaus equation. Optik 223, 165233 (2020)ADS
Zurück zum Zitat Biswas, A., Ekici, M., Sonmezoglu, A., et al.: Optical soliton perturbation with full nonlinearity for Fokas–Lenells equation. Optik 165, 29–34 (2018)ADS Biswas, A., Ekici, M., Sonmezoglu, A., et al.: Optical soliton perturbation with full nonlinearity for Fokas–Lenells equation. Optik 165, 29–34 (2018)ADS
Zurück zum Zitat Biswas, A., Yıldırım, Y., Yaşar, E., et al.: Optical soliton solutions to Fokas–Lenells equation using some different methods. Optik 173, 21–31 (2018)ADS Biswas, A., Yıldırım, Y., Yaşar, E., et al.: Optical soliton solutions to Fokas–Lenells equation using some different methods. Optik 173, 21–31 (2018)ADS
Zurück zum Zitat Braiman, Y., Goldhirsch, I.: Taming chaotic dynamics with weak periodic perturbations. Phys. Rev. Lett. 66(20), 2545 (1991)ADSMathSciNetMATH Braiman, Y., Goldhirsch, I.: Taming chaotic dynamics with weak periodic perturbations. Phys. Rev. Lett. 66(20), 2545 (1991)ADSMathSciNetMATH
Zurück zum Zitat Chacón, R.: Suppression of chaos by selective resonant parametric perturbations. Phys. Rev. E 51(1), 761 (1995)ADS Chacón, R.: Suppression of chaos by selective resonant parametric perturbations. Phys. Rev. E 51(1), 761 (1995)ADS
Zurück zum Zitat Chacón, R.: Melnikov method approach to control of homoclinic/heteroclinic chaos by weak harmonic excitations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1846), 2335–2351 (2006)ADSMathSciNetMATH Chacón, R.: Melnikov method approach to control of homoclinic/heteroclinic chaos by weak harmonic excitations. Philos. Trans. R. Soc. A Math. Phys. Eng. Sci. 364(1846), 2335–2351 (2006)ADSMathSciNetMATH
Zurück zum Zitat Chacón, R., Palmero, F., Balibrea, F.: Taming chaos in a driven Josephson junction. Int. J. Bifurc. Chaos 11(07), 1897–1909 (2001) Chacón, R., Palmero, F., Balibrea, F.: Taming chaos in a driven Josephson junction. Int. J. Bifurc. Chaos 11(07), 1897–1909 (2001)
Zurück zum Zitat Chacón, R., et al.: Control of Homoclinic Chaos by Weak Periodic Perturbations. World Scientific (2005)MATH Chacón, R., et al.: Control of Homoclinic Chaos by Weak Periodic Perturbations. World Scientific (2005)MATH
Zurück zum Zitat Farshidianfar, A., Saghafi, A.: Identification and control of chaos in nonlinear gear dynamic systems using Melnikov analysis. Phys. Lett. A 378(46), 3457–3463 (2014)ADSMathSciNet Farshidianfar, A., Saghafi, A.: Identification and control of chaos in nonlinear gear dynamic systems using Melnikov analysis. Phys. Lett. A 378(46), 3457–3463 (2014)ADSMathSciNet
Zurück zum Zitat Gepreel, K.A., Zayed, E., Alngar, M.: New optical solitons perturbation in the birefringent fibers for the CGL equation with Kerr law nonlinearity using two integral schemes methods. Optik 227, 166099 (2021)ADS Gepreel, K.A., Zayed, E., Alngar, M.: New optical solitons perturbation in the birefringent fibers for the CGL equation with Kerr law nonlinearity using two integral schemes methods. Optik 227, 166099 (2021)ADS
Zurück zum Zitat Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42. Springer (2013)MATH Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcations of Vector Fields, vol. 42. Springer (2013)MATH
Zurück zum Zitat Haller, G., Wiggins, S.: Orbits homoclinic to resonances: the Hamiltonian case. Physica D 66(3–4), 298–346 (1993)ADSMathSciNetMATH Haller, G., Wiggins, S.: Orbits homoclinic to resonances: the Hamiltonian case. Physica D 66(3–4), 298–346 (1993)ADSMathSciNetMATH
Zurück zum Zitat Haller, G., Wiggins, S.: Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schrödinger equation. Physica D 85(3), 311–347 (1995)ADSMathSciNetMATH Haller, G., Wiggins, S.: Multi-pulse jumping orbits and homoclinic trees in a modal truncation of the damped-forced nonlinear Schrödinger equation. Physica D 85(3), 311–347 (1995)ADSMathSciNetMATH
Zurück zum Zitat Haller, G., Wiggins, S.: Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems. Physica D 90(4), 319–365 (1996)ADSMathSciNetMATH Haller, G., Wiggins, S.: Geometry and chaos near resonant equilibria of 3-DOF Hamiltonian systems. Physica D 90(4), 319–365 (1996)ADSMathSciNetMATH
Zurück zum Zitat Just, W., Bernard, T., Ostheimer, M., et al.: Mechanism of time-delayed feedback control. Phys. Rev. Lett. 78(2), 203 (1997)ADS Just, W., Bernard, T., Ostheimer, M., et al.: Mechanism of time-delayed feedback control. Phys. Rev. Lett. 78(2), 203 (1997)ADS
Zurück zum Zitat Kudryashov, N.A.: First integrals and general solution of the Fokas–Lenells equation. Optik 195, 163135 (2019)ADS Kudryashov, N.A.: First integrals and general solution of the Fokas–Lenells equation. Optik 195, 163135 (2019)ADS
Zurück zum Zitat Kudryashov, N.A.: First integrals and general solution of the complex Ginzburg–Landau equation. Appl. Math. Comput. 386, 125407 (2020)MathSciNetMATH Kudryashov, N.A.: First integrals and general solution of the complex Ginzburg–Landau equation. Appl. Math. Comput. 386, 125407 (2020)MathSciNetMATH
Zurück zum Zitat Kudryashov, N.A., Lavrova, S.F.: Dynamical properties of the generalized model for description of propagation pulses in optical fiber with arbitrary refractive index. Optik 245, 167679 (2021)ADS Kudryashov, N.A., Lavrova, S.F.: Dynamical properties of the generalized model for description of propagation pulses in optical fiber with arbitrary refractive index. Optik 245, 167679 (2021)ADS
Zurück zum Zitat Kudryashov, N., Lavrova, S.: Complex dynamics of perturbed solitary waves in a nonlinear saturable medium: a Melnikov approach. Optik 265, 169454 (2022)ADS Kudryashov, N., Lavrova, S.: Complex dynamics of perturbed solitary waves in a nonlinear saturable medium: a Melnikov approach. Optik 265, 169454 (2022)ADS
Zurück zum Zitat Lai, Y.C., Grebogi, C.: Synchronization of chaotic trajectories using control. Phys. Rev. E 47(4), 2357 (1993)ADS Lai, Y.C., Grebogi, C.: Synchronization of chaotic trajectories using control. Phys. Rev. E 47(4), 2357 (1993)ADS
Zurück zum Zitat Lai, Y.C., Grebogi, C.: Converting transient chaos into sustained chaos by feedback control. Phys. Rev. E 49(2), 1094 (1994)ADS Lai, Y.C., Grebogi, C.: Converting transient chaos into sustained chaos by feedback control. Phys. Rev. E 49(2), 1094 (1994)ADS
Zurück zum Zitat Leonov, G.A.: Pyragas stabilizability via delayed feedback with periodic control gain. Syst. Control Lett. 69, 34–37 (2014)MathSciNetMATH Leonov, G.A.: Pyragas stabilizability via delayed feedback with periodic control gain. Syst. Control Lett. 69, 34–37 (2014)MathSciNetMATH
Zurück zum Zitat Lima, R., Pettini, M.: Suppression of chaos by resonant parametric perturbations. Phys. Rev. A 41(2), 726 (1990)ADSMathSciNet Lima, R., Pettini, M.: Suppression of chaos by resonant parametric perturbations. Phys. Rev. A 41(2), 726 (1990)ADSMathSciNet
Zurück zum Zitat Ling, L., Feng, B.F., Zhu, Z.: General soliton solutions to a coupled Fokas–Lenells equation. Nonlinear Anal. Real World Appl. 40, 185–214 (2018)MathSciNetMATH Ling, L., Feng, B.F., Zhu, Z.: General soliton solutions to a coupled Fokas–Lenells equation. Nonlinear Anal. Real World Appl. 40, 185–214 (2018)MathSciNetMATH
Zurück zum Zitat Miwadinou, C., Monwanou, A.V., Hinvi, L.A., et al.: Melnikov chaos in a modified Rayleigh–Duffing oscillator with \(\phi ^6\) potential. Int. J. Bifurc. Chaos 26(05), 1650085 (2016)MathSciNetMATH Miwadinou, C., Monwanou, A.V., Hinvi, L.A., et al.: Melnikov chaos in a modified Rayleigh–Duffing oscillator with \(\phi ^6\) potential. Int. J. Bifurc. Chaos 26(05), 1650085 (2016)MathSciNetMATH
Zurück zum Zitat Miwadinou, C., Monwanou, A., Hinvi, L., et al.: Effect of amplitude modulated signal on chaotic motions in a mixed Rayleigh–Liénard oscillator. Chaos Solitons Fractals 113, 89–101 (2018)ADSMathSciNetMATH Miwadinou, C., Monwanou, A., Hinvi, L., et al.: Effect of amplitude modulated signal on chaotic motions in a mixed Rayleigh–Liénard oscillator. Chaos Solitons Fractals 113, 89–101 (2018)ADSMathSciNetMATH
Zurück zum Zitat Miwadinou, C., Monwanou, A., Koukpemedji, A., et al.: Chaotic motions in forced mixed Rayleigh–Liénard oscillator with external and parametric periodic-excitations. Int. J. Bifurc. Chaos 28(03), 1830005 (2018)MATH Miwadinou, C., Monwanou, A., Koukpemedji, A., et al.: Chaotic motions in forced mixed Rayleigh–Liénard oscillator with external and parametric periodic-excitations. Int. J. Bifurc. Chaos 28(03), 1830005 (2018)MATH
Zurück zum Zitat Nagai, Y., Lai, Y.C.: Selection of a desirable chaotic phase using small feedback control. Phys. Rev. E 51(5), 3842 (1995)ADS Nagai, Y., Lai, Y.C.: Selection of a desirable chaotic phase using small feedback control. Phys. Rev. E 51(5), 3842 (1995)ADS
Zurück zum Zitat Olabodé, D., Miwadinou, C., Monwanou, A., et al.: Horseshoes chaos and its passive control in dissipative nonlinear chemical dynamics. Phys. Scr. 93(8), 085203 (2018)ADS Olabodé, D., Miwadinou, C., Monwanou, A., et al.: Horseshoes chaos and its passive control in dissipative nonlinear chemical dynamics. Phys. Scr. 93(8), 085203 (2018)ADS
Zurück zum Zitat Olabodé, D., Miwadinou, C., Monwanou, V., et al.: Effects of passive hydrodynamics force on harmonic and chaotic oscillations in nonlinear chemical dynamics. Physica D 386, 49–59 (2019)ADSMathSciNetMATH Olabodé, D., Miwadinou, C., Monwanou, V., et al.: Effects of passive hydrodynamics force on harmonic and chaotic oscillations in nonlinear chemical dynamics. Physica D 386, 49–59 (2019)ADSMathSciNetMATH
Zurück zum Zitat Osman, M., Ghanbari, B.: New optical solitary wave solutions of Fokas–Lenells equation in presence of perturbation terms by a novel approach. Optik 175, 328–333 (2018)ADS Osman, M., Ghanbari, B.: New optical solitary wave solutions of Fokas–Lenells equation in presence of perturbation terms by a novel approach. Optik 175, 328–333 (2018)ADS
Zurück zum Zitat Palmero, F., Chacón, R.: Suppressing chaos in damped driven systems by non-harmonic excitations: experimental robustness against potential’s mismatches. Nonlinear Dyn. 108(3), 2643–2654 (2022) Palmero, F., Chacón, R.: Suppressing chaos in damped driven systems by non-harmonic excitations: experimental robustness against potential’s mismatches. Nonlinear Dyn. 108(3), 2643–2654 (2022)
Zurück zum Zitat Peng, C., Li, Z., Zhao, H.: New exact solutions to the Lakshmanan–Porsezian–Daniel equation with Kerr law of nonlinearity. Math. Probl. Eng. 2022 (2022) Peng, C., Li, Z., Zhao, H.: New exact solutions to the Lakshmanan–Porsezian–Daniel equation with Kerr law of nonlinearity. Math. Probl. Eng. 2022 (2022)
Zurück zum Zitat Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170(6), 421–428 (1992)ADS Pyragas, K.: Continuous control of chaos by self-controlling feedback. Phys. Lett. A 170(6), 421–428 (1992)ADS
Zurück zum Zitat Pyragas, V., Pyragas, K.: Act-and-wait time-delayed feedback control of nonautonomous systems. Phys. Rev. E 94(1), 012201 (2016)ADSMathSciNetMATH Pyragas, V., Pyragas, K.: Act-and-wait time-delayed feedback control of nonautonomous systems. Phys. Rev. E 94(1), 012201 (2016)ADSMathSciNetMATH
Zurück zum Zitat Pyragas, V., Pyragas, K.: Act-and-wait time-delayed feedback control of autonomous systems. Phys. Lett. A 382(8), 574–580 (2018)ADSMathSciNetMATH Pyragas, V., Pyragas, K.: Act-and-wait time-delayed feedback control of autonomous systems. Phys. Lett. A 382(8), 574–580 (2018)ADSMathSciNetMATH
Zurück zum Zitat Pyragas, V., Pyragas, K.: State-dependent act-and-wait time-delayed feedback control algorithm. Commun. Nonlinear Sci. Numer. Simul. 73, 338–350 (2019)ADSMathSciNetMATH Pyragas, V., Pyragas, K.: State-dependent act-and-wait time-delayed feedback control algorithm. Commun. Nonlinear Sci. Numer. Simul. 73, 338–350 (2019)ADSMathSciNetMATH
Zurück zum Zitat Ramesh, M., Narayanan, S.: Chaos control by nonfeedback methods in the presence of noise. Chaos Solitons Fractals 10(9), 1473–1489 (1999)ADSMATH Ramesh, M., Narayanan, S.: Chaos control by nonfeedback methods in the presence of noise. Chaos Solitons Fractals 10(9), 1473–1489 (1999)ADSMATH
Zurück zum Zitat Rezazadeh, H., Korkmaz, A., Eslami, M., et al.: A large family of optical solutions to Kundu–Eckhaus model by a new auxiliary equation method. Opt. Quant. Electron. 51, 1–12 (2019) Rezazadeh, H., Korkmaz, A., Eslami, M., et al.: A large family of optical solutions to Kundu–Eckhaus model by a new auxiliary equation method. Opt. Quant. Electron. 51, 1–12 (2019)
Zurück zum Zitat Sadaf, M., Akram, G., Arshed, S., et al.: Optical solitons and other solitary wave solutions of (1+ 1)-dimensional Kudryashov’s equation with generalized anti-cubic nonlinearity. Opt. Quant. Electron. 55(6), 529 (2023) Sadaf, M., Akram, G., Arshed, S., et al.: Optical solitons and other solitary wave solutions of (1+ 1)-dimensional Kudryashov’s equation with generalized anti-cubic nonlinearity. Opt. Quant. Electron. 55(6), 529 (2023)
Zurück zum Zitat Shinbrot, T., Ott, E., Grebogi, C., et al.: Using chaos to direct trajectories to targets. Phys. Rev. Lett. 65(26), 3215 (1990)ADS Shinbrot, T., Ott, E., Grebogi, C., et al.: Using chaos to direct trajectories to targets. Phys. Rev. Lett. 65(26), 3215 (1990)ADS
Zurück zum Zitat Tchatchueng, S., Siewe Siewe, M., Moukam Kakmeni, F., et al.: Bifurcation response and Melnikov chaos in the dynamic of a Bose–Einstein condensate loaded into a moving optical lattice. Nonlinear Dyn. 75, 461–474 (2014)MathSciNet Tchatchueng, S., Siewe Siewe, M., Moukam Kakmeni, F., et al.: Bifurcation response and Melnikov chaos in the dynamic of a Bose–Einstein condensate loaded into a moving optical lattice. Nonlinear Dyn. 75, 461–474 (2014)MathSciNet
Zurück zum Zitat Ye, Y., Hou, C., Cheng, D., et al.: Rogue wave solutions of the vector Lakshmanan–Porsezian–Daniel equation. Phys. Lett. A 384(11), 126226 (2020)MathSciNetMATH Ye, Y., Hou, C., Cheng, D., et al.: Rogue wave solutions of the vector Lakshmanan–Porsezian–Daniel equation. Phys. Lett. A 384(11), 126226 (2020)MathSciNetMATH
Zurück zum Zitat Yin, J., Tang, W.K.: Perturbation-induced chaos in nonlinear Schrödinger equation with single source and its characterization. Nonlinear Dyn. 90, 1481–1490 (2017)MATH Yin, J., Tang, W.K.: Perturbation-induced chaos in nonlinear Schrödinger equation with single source and its characterization. Nonlinear Dyn. 90, 1481–1490 (2017)MATH
Zurück zum Zitat Yin, J., Zhao, L.: Dynamical behaviors of the shock compacton in the nonlinearly Schrödinger equation with a source term. Phys. Lett. A 378(47), 3516–3522 (2014)ADSMathSciNetMATH Yin, J., Zhao, L.: Dynamical behaviors of the shock compacton in the nonlinearly Schrödinger equation with a source term. Phys. Lett. A 378(47), 3516–3522 (2014)ADSMathSciNetMATH
Zurück zum Zitat Yin, J., Duan, X., Tian, L.: Optical secure communication modeled by the perturbed nonlinear Schrödinger equation. Opt. Quant. Electron. 49, 1–11 (2017) Yin, J., Duan, X., Tian, L.: Optical secure communication modeled by the perturbed nonlinear Schrödinger equation. Opt. Quant. Electron. 49, 1–11 (2017)
Zurück zum Zitat Zayed, E.M., Alngar, M.E., Biswas, A., et al.: Pure-cubic optical soliton perturbation with complex Ginzburg-Landau equation having a dozen nonlinear refractive index structures. J. Commun. Technol. Electron. 66(5), 481–544 (2021) Zayed, E.M., Alngar, M.E., Biswas, A., et al.: Pure-cubic optical soliton perturbation with complex Ginzburg-Landau equation having a dozen nonlinear refractive index structures. J. Commun. Technol. Electron. 66(5), 481–544 (2021)
Zurück zum Zitat Zayed, E.M., Nofal, T.A., Alngar, M.E., et al.: Cubic-quartic optical soliton perturbation in polarization-preserving fibers with complex Ginzburg–Landau equation having five nonlinear refractive index structures. Optik 231, 166381 (2021)ADS Zayed, E.M., Nofal, T.A., Alngar, M.E., et al.: Cubic-quartic optical soliton perturbation in polarization-preserving fibers with complex Ginzburg–Landau equation having five nonlinear refractive index structures. Optik 231, 166381 (2021)ADS
Zurück zum Zitat Zhao, L., Yin, J.: Chaotic behaviour from smooth and non-smooth optical solitons under external perturbation. Pramana 87, 1–8 (2016) Zhao, L., Yin, J.: Chaotic behaviour from smooth and non-smooth optical solitons under external perturbation. Pramana 87, 1–8 (2016)
Metadaten
Titel
Suppression of chaos in the periodically perturbed generalized complex Ginzburg–Landau equation by means of parametric excitation
verfasst von
Sofia Lavrova
Nikolai Kudryashov
Publikationsdatum
01.10.2023
Verlag
Springer US
Erschienen in
Optical and Quantum Electronics / Ausgabe 10/2023
Print ISSN: 0306-8919
Elektronische ISSN: 1572-817X
DOI
https://doi.org/10.1007/s11082-023-05194-w

Weitere Artikel der Ausgabe 10/2023

Optical and Quantum Electronics 10/2023 Zur Ausgabe

Neuer Inhalt