Skip to main content

2018 | OriginalPaper | Buchkapitel

4. Surface-Enhanced Raman Spectroscopy: Principles, Substrates, and Applications

verfasst von : Roberto Pilot, Raffaella Signorini, Laura Fabris

Erschienen in: Metal Nanoparticles and Clusters

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Surface-enhanced Raman spectroscopy (SERS) is a spectroscopic technique that simultaneously combines fingerprint recognition capabilities, typical of vibrational spectroscopies, and very high sensitivity (down to single molecule), owing to the enhancement provided by plasmonic effects. Its discovery dates back to the 1970s, and since then, SERS has gained a lot of interest in the scientific community, as witnessed by the quick raise in the percentage of publications involving SERS, especially in the last two decades. In this book chapter, we would like to provide the reader with an overview of SERS, going from the illustration of its basic principles to the description of a wide selection of its applications. At first, the physical phenomena responsible for the electromagnetic and chemical SERS enhancements are described; thereafter, two key features of SERS, namely, its distance dependence and the concept of hot spot, are discussed, as well as the near- vs. far-field properties in plasmonic systems. Two sections are then dedicated to the materials that are more often used in SERS and to the strategies adopted to fabricate efficient SERS substrates. The last section illustrates the applications of SERS in several fields of sensing, like the detection of chemical warfare agents, environmental pollutants, food contaminants, and illicit drugs; the use of SERS in art preservation, forensic science, and medical diagnosis is also described, with specific and relevant examples from the most recent literature.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat C.L. Haynes, C.R. Yonzon, X. Zhang, R.P. Van Duyne, Surface-enhanced Raman sensors: Early history and the development of sensors for quantitative biowarfare agent and glucose detection. J. Raman Spectrosc. 36, 471–484 (2005). https://doi.org/10.1002/jrs.1376CrossRef C.L. Haynes, C.R. Yonzon, X. Zhang, R.P. Van Duyne, Surface-enhanced Raman sensors: Early history and the development of sensors for quantitative biowarfare agent and glucose detection. J. Raman Spectrosc. 36, 471–484 (2005). https://​doi.​org/​10.​1002/​jrs.​1376CrossRef
2.
Zurück zum Zitat M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974). https://doi.org/10.1016/0009-2614(74)85388-1CrossRef M. Fleischmann, P.J. Hendra, A.J. McQuillan, Raman spectra of pyridine adsorbed at a silver electrode. Chem. Phys. Lett. 26, 163–166 (1974). https://​doi.​org/​10.​1016/​0009-2614(74)85388-1CrossRef
3.
Zurück zum Zitat D.L. Jeanmaire, R.P. Van Duyne, Surface Raman spectroelectrochemistry. J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977). https://doi.org/10.1016/S0022-0728(77)80224-6CrossRef D.L. Jeanmaire, R.P. Van Duyne, Surface Raman spectroelectrochemistry. J. Electroanal. Chem. Interfacial Electrochem. 84, 1–20 (1977). https://​doi.​org/​10.​1016/​S0022-0728(77)80224-6CrossRef
4.
Zurück zum Zitat Albrecht et al., Anomalously intense Raman spectra of pyridine at a silver electrode. JACS 99, 5215–5217 (1977). https://doi.org/10.1021/ja00457a071 Albrecht et al., Anomalously intense Raman spectra of pyridine at a silver electrode. JACS 99, 5215–5217 (1977). https://​doi.​org/​10.​1021/​ja00457a071
5.
Zurück zum Zitat P. Hendra, M. Fleischmann, P. Hendra, J. McQuillan, A.J. Mcquillan, THE DISCOVERY OF SERS: An idiosyncratic account from a vibrational spectroscopist. Analyst 141, 4996–4999 (2016). https://doi.org/10.1039/C6AN90055KCrossRef P. Hendra, M. Fleischmann, P. Hendra, J. McQuillan, A.J. Mcquillan, THE DISCOVERY OF SERS: An idiosyncratic account from a vibrational spectroscopist. Analyst 141, 4996–4999 (2016). https://​doi.​org/​10.​1039/​C6AN90055KCrossRef
6.
Zurück zum Zitat J.R. Lakowicz, Radiative decay engineering: Biophysical and biomedical applications. Anal. Biochem. 298, 1–24 (2001). https://doi.org/10.1006/abio.2001.5377CrossRef J.R. Lakowicz, Radiative decay engineering: Biophysical and biomedical applications. Anal. Biochem. 298, 1–24 (2001). https://​doi.​org/​10.​1006/​abio.​2001.​5377CrossRef
7.
Zurück zum Zitat F. Neubrech, C. Huck, et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chem. Rev. 117(7), 5110–5145 (2017) F. Neubrech, C. Huck, et al. Surface-enhanced infrared spectroscopy using resonant nanoantennas. Chem. Rev. 117(7), 5110–5145 (2017)
8.
Zurück zum Zitat M. Gühlke, Z. Heiner, J. Kneipp, Surface-enhanced Raman and surface-enhanced hyper-Raman scattering of thiol-functionalized carotene. J. Phys. Chem. C (2016). https://doi.org/10.1021/acs.jpcc.6b01895 M. Gühlke, Z. Heiner, J. Kneipp, Surface-enhanced Raman and surface-enhanced hyper-Raman scattering of thiol-functionalized carotene. J. Phys. Chem. C (2016). https://​doi.​org/​10.​1021/​acs.​jpcc.​6b01895
9.
Zurück zum Zitat C. Steuwe, C.F. Kaminski, J.J. Baumberg, S. Mahajan, Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces. Nano Lett. 11, 5339–5343 (2011). https://doi.org/10.1021/nl202875wCrossRef C. Steuwe, C.F. Kaminski, J.J. Baumberg, S. Mahajan, Surface enhanced coherent anti-Stokes Raman scattering on nanostructured gold surfaces. Nano Lett. 11, 5339–5343 (2011). https://​doi.​org/​10.​1021/​nl202875wCrossRef
10.
Zurück zum Zitat T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, S. Kawata, Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles. J. Raman Spectrosc. 34, 651–654 (2003). https://doi.org/10.1002/jrs.1047CrossRef T. Ichimura, N. Hayazawa, M. Hashimoto, Y. Inouye, S. Kawata, Local enhancement of coherent anti-Stokes Raman scattering by isolated gold nanoparticles. J. Raman Spectrosc. 34, 651–654 (2003). https://​doi.​org/​10.​1002/​jrs.​1047CrossRef
11.
Zurück zum Zitat G.F. Walsh, L. Dal Negro, Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays. Nano Lett. 13, 3111–3117 (2013). https://doi.org/10.1021/nl401037nCrossRef G.F. Walsh, L. Dal Negro, Enhanced second harmonic generation by photonic-plasmonic Fano-type coupling in nanoplasmonic arrays. Nano Lett. 13, 3111–3117 (2013). https://​doi.​org/​10.​1021/​nl401037nCrossRef
12.
Zurück zum Zitat E.C. Le Ru, P.G. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy (Elsevier, Amsterdam, 2009) E.C. Le Ru, P.G. Etchegoin, Principles of Surface Enhanced Raman Spectroscopy (Elsevier, Amsterdam, 2009)
13.
Zurück zum Zitat J.R. Lombardi, R.L. Birke, A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 42, 734–742 (2009). https://doi.org/10.1021/ar800249yCrossRef J.R. Lombardi, R.L. Birke, A unified view of surface-enhanced Raman scattering. Acc. Chem. Res. 42, 734–742 (2009). https://​doi.​org/​10.​1021/​ar800249yCrossRef
14.
Zurück zum Zitat M. Moskovits, Persistent misconceptions regarding SERS. Phys. Chem. Chem. Phys. 15, 5301 (2013). https://doi.org/10.1039/c2cp44030jCrossRef M. Moskovits, Persistent misconceptions regarding SERS. Phys. Chem. Chem. Phys. 15, 5301 (2013). https://​doi.​org/​10.​1039/​c2cp44030jCrossRef
15.
Zurück zum Zitat A. Otto, The “chemical” (electronic) contribution to surface-enhanced Raman scattering. J. Raman Spectrosc. 36, 497–509 (2005). https://doi.org/10.1002/jrs.1355CrossRef A. Otto, The “chemical” (electronic) contribution to surface-enhanced Raman scattering. J. Raman Spectrosc. 36, 497–509 (2005). https://​doi.​org/​10.​1002/​jrs.​1355CrossRef
16.
Zurück zum Zitat M. Moskovits, Surface-enhanced Raman spectroscopy: A brief retrospective. J. Raman Spectrosc. 36, 485–496 (2005). https://doi.org/10.1002/jrs.1362CrossRef M. Moskovits, Surface-enhanced Raman spectroscopy: A brief retrospective. J. Raman Spectrosc. 36, 485–496 (2005). https://​doi.​org/​10.​1002/​jrs.​1362CrossRef
17.
Zurück zum Zitat S.L. Kleinman, B. Sharma, M.G. Blaber, A.I. Henry, N. Valley, R.G. Freeman, M.J. Natan, G.C. Schatz, R.P. Van Duyne, Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. J. Am. Chem. Soc. 135, 301–308 (2013). https://doi.org/10.1021/ja309300dCrossRef S.L. Kleinman, B. Sharma, M.G. Blaber, A.I. Henry, N. Valley, R.G. Freeman, M.J. Natan, G.C. Schatz, R.P. Van Duyne, Structure enhancement factor relationships in single gold nanoantennas by surface-enhanced Raman excitation spectroscopy. J. Am. Chem. Soc. 135, 301–308 (2013). https://​doi.​org/​10.​1021/​ja309300dCrossRef
18.
Zurück zum Zitat E.C. Le Ru, M. Meyer, E. Blackie, P.G. Etchegoin, Advanced aspects of electromagnetic SERS enhancement factors at a hot spot. J. Raman Spectrosc. 39, 1127–1134 (2008). https://doi.org/10.1002/jrsCrossRef E.C. Le Ru, M. Meyer, E. Blackie, P.G. Etchegoin, Advanced aspects of electromagnetic SERS enhancement factors at a hot spot. J. Raman Spectrosc. 39, 1127–1134 (2008). https://​doi.​org/​10.​1002/​jrsCrossRef
19.
Zurück zum Zitat S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997). https://doi.org/10.1126/science.275.5303.1102CrossRef S. Nie, S.R. Emory, Probing single molecules and single nanoparticles by surface-enhanced Raman scattering. Science 275, 1102–1106 (1997). https://​doi.​org/​10.​1126/​science.​275.​5303.​1102CrossRef
20.
Zurück zum Zitat P.G. Etchegoin, E.C. Le Ru, A perspective on single molecule SERS: Current status and future challenges. Phys. Chem. Chem. Phys. 10, 6079 (2008). https://doi.org/10.1039/b809196j P.G. Etchegoin, E.C. Le Ru, A perspective on single molecule SERS: Current status and future challenges. Phys. Chem. Chem. Phys. 10, 6079 (2008). https://​doi.​org/​10.​1039/​b809196j
28.
Zurück zum Zitat X. Qian, X.-H. Peng, D.O. Ansari, Q. Yin-Goen, G.Z. Chen, D.M. Shin, L. Yang, A.N. Young, M.D. Wang, S. Nie, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008). https://doi.org/10.1038/nbt1377 CrossRef X. Qian, X.-H. Peng, D.O. Ansari, Q. Yin-Goen, G.Z. Chen, D.M. Shin, L. Yang, A.N. Young, M.D. Wang, S. Nie, In vivo tumor targeting and spectroscopic detection with surface-enhanced Raman nanoparticle tags. Nat. Biotechnol. 26, 83–90 (2008). https://​doi.​org/​10.​1038/​nbt1377 CrossRef
30.
31.
Zurück zum Zitat I. Ros, T. Placido, V. Amendola, C. Marinzi, N. Manfredi, R. Comparelli, M. Striccoli, A. Agostiano, A. Abbotto, D. Pedron, R. Pilot, R. Bozio, SERS properties of gold Nanorods at resonance with molecular, transverse, and longitudinal plasmon excitations. Plasmonics, 1–13 (2014). https://doi.org/10.1007/s11468-014-9669-4 I. Ros, T. Placido, V. Amendola, C. Marinzi, N. Manfredi, R. Comparelli, M. Striccoli, A. Agostiano, A. Abbotto, D. Pedron, R. Pilot, R. Bozio, SERS properties of gold Nanorods at resonance with molecular, transverse, and longitudinal plasmon excitations. Plasmonics, 1–13 (2014). https://​doi.​org/​10.​1007/​s11468-014-9669-4
38.
Zurück zum Zitat J. Kubackova, G. Fabriciova, P. Miskovsky, D. Jancura, S. Sanchez-Cortes, Sensitive surface-enhanced Raman spectroscopy (SERS) detection of organochlorine pesticides by alkyl dithiol-functionalized metal nanoparticles-induced plasmonic hot spots. Anal. Chem. 87, 663–669 (2015). https://doi.org/10.1021/ac503672f CrossRef J. Kubackova, G. Fabriciova, P. Miskovsky, D. Jancura, S. Sanchez-Cortes, Sensitive surface-enhanced Raman spectroscopy (SERS) detection of organochlorine pesticides by alkyl dithiol-functionalized metal nanoparticles-induced plasmonic hot spots. Anal. Chem. 87, 663–669 (2015). https://​doi.​org/​10.​1021/​ac503672f CrossRef
45.
Zurück zum Zitat Y. Yang, Z.-Y. Li, K. Yamaguchi, M. Tanemura, Z. Huang, D. Jiang, Y. Chen, F. Zhou, M. Nogami, Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics. Nanoscale 4, 2663–2669 (2012). https://doi.org/10.1039/c2nr12110g CrossRef Y. Yang, Z.-Y. Li, K. Yamaguchi, M. Tanemura, Z. Huang, D. Jiang, Y. Chen, F. Zhou, M. Nogami, Controlled fabrication of silver nanoneedles array for SERS and their application in rapid detection of narcotics. Nanoscale 4, 2663–2669 (2012). https://​doi.​org/​10.​1039/​c2nr12110g CrossRef
46.
Zurück zum Zitat B. Sägmüller, B. Schwarze, G. Brehm, S. Schneider, Application of SERS spectroscopy to the identification of (3,4-methylenedioxy) amphetamine in forensic samples utilizing matrix stabilized silver halides. Analyst 126, 2066–2071 (2001). https://doi.org/10.1039/b105321n CrossRef B. Sägmüller, B. Schwarze, G. Brehm, S. Schneider, Application of SERS spectroscopy to the identification of (3,4-methylenedioxy) amphetamine in forensic samples utilizing matrix stabilized silver halides. Analyst 126, 2066–2071 (2001). https://​doi.​org/​10.​1039/​b105321n CrossRef
49.
Zurück zum Zitat Y.F. Huang, D.Y. Wu, A. Wang, B. Ren, S. Rondinini, Z.Q. Tian, C. Amatore, Bridging the gap between electrochemical and organometallic activation: Benzyl chloride reduction at silver cathodes. J. Am. Chem. Soc. 132, 17199–17210 (2010). https://doi.org/10.1021/ja106049c CrossRef Y.F. Huang, D.Y. Wu, A. Wang, B. Ren, S. Rondinini, Z.Q. Tian, C. Amatore, Bridging the gap between electrochemical and organometallic activation: Benzyl chloride reduction at silver cathodes. J. Am. Chem. Soc. 132, 17199–17210 (2010). https://​doi.​org/​10.​1021/​ja106049c CrossRef
52.
Zurück zum Zitat D.A. Long, The Raman Effect a Unified Treatment of the Theory of Raman Scattering by Molecules (Wiley, Chichester, 2002) D.A. Long, The Raman Effect a Unified Treatment of the Theory of Raman Scattering by Molecules (Wiley, Chichester, 2002)
53.
Zurück zum Zitat R. Aroca, Surface-Enhanced Vibrational Spectroscopy (Wiley, Hoboken, 2006)CrossRef R. Aroca, Surface-Enhanced Vibrational Spectroscopy (Wiley, Hoboken, 2006)CrossRef
54.
Zurück zum Zitat R.L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, New York, 2000)CrossRef R.L. McCreery, Raman Spectroscopy for Chemical Analysis (Wiley, New York, 2000)CrossRef
55.
Zurück zum Zitat S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007) S.A. Maier, Plasmonics: Fundamentals and Applications (Springer, New York, 2007)
58.
Zurück zum Zitat S. Eustis, M.A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209–217 (2006). https://doi.org/10.1039/b514191e CrossRef S. Eustis, M.A. El-Sayed, Why gold nanoparticles are more precious than pretty gold: Noble metal surface plasmon resonance and its enhancement of the radiative and nonradiative properties of nanocrystals of different shapes. Chem. Soc. Rev. 35, 209–217 (2006). https://​doi.​org/​10.​1039/​b514191e CrossRef
60.
Zurück zum Zitat L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2007) L. Novotny, B. Hecht, Principles of Nano-Optics (Cambridge University Press, Cambridge, 2007)
62.
Zurück zum Zitat E.M. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681 E.M. Purcell, Spontaneous emission probabilities at radio frequencies. Phys. Rev. 69, 681
63.
Zurück zum Zitat K.H. Drexhage, H. Kuhn, F.P. Schafer, W. Sperling, Variation of the fluorescence decay time of a molecule in front of a mirror. Ber. Bunsenges. Phys. Chem. 20, 1179 (1966) K.H. Drexhage, H. Kuhn, F.P. Schafer, W. Sperling, Variation of the fluorescence decay time of a molecule in front of a mirror. Ber. Bunsenges. Phys. Chem. 20, 1179 (1966)
64.
Zurück zum Zitat K.H. Drexhage, Progress in Optics XII, Edited (North-Holland, Amsterdam, 1974) K.H. Drexhage, Progress in Optics XII, Edited (North-Holland, Amsterdam, 1974)
65.
Zurück zum Zitat K.H. Drexhage, Influence of a dielectric interface on fluorescence decay time. J. Lumin. 1(2), 693–701 (1970)CrossRef K.H. Drexhage, Influence of a dielectric interface on fluorescence decay time. J. Lumin. 1(2), 693–701 (1970)CrossRef
68.
Zurück zum Zitat J.D. Jackson, Classical Electrodynamics (Wiley, Estados Unidos, 1998) J.D. Jackson, Classical Electrodynamics (Wiley, Estados Unidos, 1998)
69.
Zurück zum Zitat E.C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J.R. Krenn, E. Blackie, P.G. Etchegoin, Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: Polarization effects. J. Phys. Chem. C. Lett. 112, 8117–8121 (2008). https://doi.org/10.1021/jp802219c E.C. Le Ru, J. Grand, N. Félidj, J. Aubard, G. Lévi, A. Hohenau, J.R. Krenn, E. Blackie, P.G. Etchegoin, Experimental verification of the SERS electromagnetic model beyond the |E|4 approximation: Polarization effects. J. Phys. Chem. C. Lett. 112, 8117–8121 (2008). https://​doi.​org/​10.​1021/​jp802219c
70.
Zurück zum Zitat B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P.G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, F. Buatier De Mongeot, Re-radiation enhancement in polarized surface-enhanced resonant raman scattering of randomly oriented molecules on self-organized gold nanowires. ACS Nano 5, 5945–5956 (2011). https://doi.org/10.1021/nn201730k CrossRef B. Fazio, C. D’Andrea, F. Bonaccorso, A. Irrera, G. Calogero, C. Vasi, P.G. Gucciardi, M. Allegrini, A. Toma, D. Chiappe, C. Martella, F. Buatier De Mongeot, Re-radiation enhancement in polarized surface-enhanced resonant raman scattering of randomly oriented molecules on self-organized gold nanowires. ACS Nano 5, 5945–5956 (2011). https://​doi.​org/​10.​1021/​nn201730k CrossRef
72.
Zurück zum Zitat P.W. Atkins, Physical Chemistry (Oxford Univeristy Press, Oxford, 1994) P.W. Atkins, Physical Chemistry (Oxford Univeristy Press, Oxford, 1994)
77.
Zurück zum Zitat J.D. Jiang, E. Burstein, H. Kobayashi, Resonant Raman scattering by crystal-violet molecules adsorbed on a smooth gold surface: Evidence for a charge transfer excitation. Phys. Rev. Lett. 57, 1793–1796 (1986)CrossRef J.D. Jiang, E. Burstein, H. Kobayashi, Resonant Raman scattering by crystal-violet molecules adsorbed on a smooth gold surface: Evidence for a charge transfer excitation. Phys. Rev. Lett. 57, 1793–1796 (1986)CrossRef
78.
Zurück zum Zitat J.R. Lombardi, R.L. Birke, A unified approach to surface-enhanced Raman spectroscopy. J. Phys. Chem. C 112, 5605–5617 (2008)CrossRef J.R. Lombardi, R.L. Birke, A unified approach to surface-enhanced Raman spectroscopy. J. Phys. Chem. C 112, 5605–5617 (2008)CrossRef
80.
Zurück zum Zitat L.A. Dick, A.D. McFarland, C.L. Haynes, R.P. Van Duyne, Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss. J. Phys. Chem. B 106, 853–860 (2002). https://doi.org/10.1021/jp013638l CrossRef L.A. Dick, A.D. McFarland, C.L. Haynes, R.P. Van Duyne, Metal film over nanosphere (MFON) electrodes for surface-enhanced Raman spectroscopy (SERS): Improvements in surface nanostructure stability and suppression of irreversible loss. J. Phys. Chem. B 106, 853–860 (2002). https://​doi.​org/​10.​1021/​jp013638l CrossRef
84.
Zurück zum Zitat B.J. Kennedy, S. Spaeth, M. Dickey, K.T. Carron, Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using Alkanethiols. J. Phys. Chem. B 103, 3640–3646 (1999). https://doi.org/10.1021/jp984454i CrossRef B.J. Kennedy, S. Spaeth, M. Dickey, K.T. Carron, Determination of the distance dependence and experimental effects for modified SERS substrates based on self-assembled monolayers formed using Alkanethiols. J. Phys. Chem. B 103, 3640–3646 (1999). https://​doi.​org/​10.​1021/​jp984454i CrossRef
85.
Zurück zum Zitat G.J. Kovacs, R.O. Loutfy, P.S. Vincett, C. Jennings, R. Aroca, Distance dependence of SERS enhancement factor from Langmuir-Blodgett monolayers on metal island films: Evidence for the electromagnetic mechanism. Langmuir 2, 689–694 (1986). https://doi.org/10.1021/la00072a001 CrossRef G.J. Kovacs, R.O. Loutfy, P.S. Vincett, C. Jennings, R. Aroca, Distance dependence of SERS enhancement factor from Langmuir-Blodgett monolayers on metal island films: Evidence for the electromagnetic mechanism. Langmuir 2, 689–694 (1986). https://​doi.​org/​10.​1021/​la00072a001 CrossRef
87.
Zurück zum Zitat N.E. Marotta, K.R. Beavers, L.A. Bottomley, Limitations of surface enhanced Raman scattering in sensing DNA hybridization demonstrated by label-free DNA oligos as molecular rulers of distance-dependent enhancement. Anal. Chem. 85, 1440–1446 (2013). https://doi.org/10.1021/ac302454j CrossRef N.E. Marotta, K.R. Beavers, L.A. Bottomley, Limitations of surface enhanced Raman scattering in sensing DNA hybridization demonstrated by label-free DNA oligos as molecular rulers of distance-dependent enhancement. Anal. Chem. 85, 1440–1446 (2013). https://​doi.​org/​10.​1021/​ac302454j CrossRef
90.
Zurück zum Zitat E.C. Le Ru, J. Grand, I. Sow, W.R.C. Somerville, P.G. Etchegoin, M. Treguer-Delapierre, G. Charron, N. Félidj, G. Lévi, J. Aubard, A scheme for detecting every single target molecule with surface-enhanced raman spectroscopy. Nano Lett. 11, 5013–5019 (2011). https://doi.org/10.1021/nl2030344 CrossRef E.C. Le Ru, J. Grand, I. Sow, W.R.C. Somerville, P.G. Etchegoin, M. Treguer-Delapierre, G. Charron, N. Félidj, G. Lévi, J. Aubard, A scheme for detecting every single target molecule with surface-enhanced raman spectroscopy. Nano Lett. 11, 5013–5019 (2011). https://​doi.​org/​10.​1021/​nl2030344 CrossRef
96.
Zurück zum Zitat N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, M.L. de la Chapelle, Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength. Appl. Phys. Lett. 97, 23113 (2010). https://doi.org/10.1063/1.3462068 CrossRef N. Guillot, H. Shen, B. Frémaux, O. Péron, E. Rinnert, T. Toury, M.L. de la Chapelle, Surface enhanced Raman scattering optimization of gold nanocylinder arrays: Influence of the localized surface plasmon resonance and excitation wavelength. Appl. Phys. Lett. 97, 23113 (2010). https://​doi.​org/​10.​1063/​1.​3462068 CrossRef
97.
Zurück zum Zitat C. D’Andrea, A. Irrera, B. Fazio, A. Foti, E. Messina, O.M. Maragò, S. Kessentini, P. Artoni, C. David, P.G. Gucciardi, Red shifted spectral dependence of the SERS enhancement in a random array of gold nanoparticles covered with a silica shell: Extinction versus scattering. J. Opt. 17, 114016 (2015). https://doi.org/10.1088/2040-8978/17/11/114016 CrossRef C. D’Andrea, A. Irrera, B. Fazio, A. Foti, E. Messina, O.M. Maragò, S. Kessentini, P. Artoni, C. David, P.G. Gucciardi, Red shifted spectral dependence of the SERS enhancement in a random array of gold nanoparticles covered with a silica shell: Extinction versus scattering. J. Opt. 17, 114016 (2015). https://​doi.​org/​10.​1088/​2040-8978/​17/​11/​114016 CrossRef
98.
Zurück zum Zitat K.U. Von Raben, R.K. Chang, B.L. Laube, P.W. Barber, Wavelength dependence of surface-enhanced Raman scattering from Ag colloids with adsorbed CN- complexes, SO3, and pyridine. J. Phys. Chem. 88, 5290–5296 (1984)CrossRef K.U. Von Raben, R.K. Chang, B.L. Laube, P.W. Barber, Wavelength dependence of surface-enhanced Raman scattering from Ag colloids with adsorbed CN- complexes, SO3, and pyridine. J. Phys. Chem. 88, 5290–5296 (1984)CrossRef
100.
Zurück zum Zitat H. Feilchenfeld, O. Siiman, Surface Raman excitation and enhancement profiles for chromate, molybdate, and tungstate on colloidal silver. J. Phys. Chem. 90, 2163–2168 (1986)CrossRef H. Feilchenfeld, O. Siiman, Surface Raman excitation and enhancement profiles for chromate, molybdate, and tungstate on colloidal silver. J. Phys. Chem. 90, 2163–2168 (1986)CrossRef
103.
Zurück zum Zitat V. Weber, A. Feis, C. Gellini, R. Pilot, P.R. Salvi, R. Signorini, Far- and nearfield properties of gold nanoshells studied by photoacoustic and surface-enhanced Raman spectroscopies. Phys. Chem. Chem. Phys. 17, 21190–21197 (2015). https://doi.org/10.1039/C4CP05054A CrossRef V. Weber, A. Feis, C. Gellini, R. Pilot, P.R. Salvi, R. Signorini, Far- and nearfield properties of gold nanoshells studied by photoacoustic and surface-enhanced Raman spectroscopies. Phys. Chem. Chem. Phys. 17, 21190–21197 (2015). https://​doi.​org/​10.​1039/​C4CP05054A CrossRef
104.
Zurück zum Zitat F. Colas, M. Cottat, R. Gillibert, N. Guillot, N. Djaker, N. Lidgi-Guigui, T. Toury, D. Barchiesi, A. Toma, E. Di Fabrizio, P.G. Gucciardi, M.L. de la Chapelle, Red-shift effects in surface enhanced Raman spectroscopy: Spectral or intensity dependence of the near-field? J. Phys. Chem. C (2016). https://doi.org/10.1021/acs.jpcc.6b01492 F. Colas, M. Cottat, R. Gillibert, N. Guillot, N. Djaker, N. Lidgi-Guigui, T. Toury, D. Barchiesi, A. Toma, E. Di Fabrizio, P.G. Gucciardi, M.L. de la Chapelle, Red-shift effects in surface enhanced Raman spectroscopy: Spectral or intensity dependence of the near-field? J. Phys. Chem. C (2016). https://​doi.​org/​10.​1021/​acs.​jpcc.​6b01492
107.
Zurück zum Zitat N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College Publishing, Orlando, 1976) N.W. Ashcroft, N.D. Mermin, Solid State Physics (Saunders College Publishing, Orlando, 1976)
108.
Zurück zum Zitat E. Cottancin, G. Celep, J. Lermé, M. Pellarin, J.R. Huntzinger, J.L. Vialle, M. Broyer, Optical properties of noble metal clusters as a function of the size: Comparison between experiments and a semi-quantal theory. Theor. Chem. Accounts 116, 514–523 (2006). https://doi.org/10.1007/s00214-006-0089-1 CrossRef E. Cottancin, G. Celep, J. Lermé, M. Pellarin, J.R. Huntzinger, J.L. Vialle, M. Broyer, Optical properties of noble metal clusters as a function of the size: Comparison between experiments and a semi-quantal theory. Theor. Chem. Accounts 116, 514–523 (2006). https://​doi.​org/​10.​1007/​s00214-006-0089-1 CrossRef
110.
Zurück zum Zitat E.D. Palik, Handbook of Optical Constants of Solids (Academic, 1985) E.D. Palik, Handbook of Optical Constants of Solids (Academic, 1985)
130.
Zurück zum Zitat M. Jahn, S. Patze, I.J. Hidi, R. Knipper, A.I. Radu, A. Mühlig, S. Yüksel, V. Peksa, K. Weber, T. Mayerhöfer, D. Cialla-May, J. Popp, Plasmonic nanostructures for surface enhanced spectroscopic methods. Analyst 141, 756–793 (2015). https://doi.org/10.1039/C5AN02057C CrossRef M. Jahn, S. Patze, I.J. Hidi, R. Knipper, A.I. Radu, A. Mühlig, S. Yüksel, V. Peksa, K. Weber, T. Mayerhöfer, D. Cialla-May, J. Popp, Plasmonic nanostructures for surface enhanced spectroscopic methods. Analyst 141, 756–793 (2015). https://​doi.​org/​10.​1039/​C5AN02057C CrossRef
135.
Zurück zum Zitat R.G. Freeman, K.C. Grabar, K.J. Allison, R.M. Bright, J.A. Davis, A.P. Guthrie, M.B. Hommer, M.A. Jackson, P.C. Smith, D.G. Walter, M.J. Natan, Self-assembled metal colloid monolayers: An approach to SERS substrates. Science 267, 1629–1632 (1995)CrossRef R.G. Freeman, K.C. Grabar, K.J. Allison, R.M. Bright, J.A. Davis, A.P. Guthrie, M.B. Hommer, M.A. Jackson, P.C. Smith, D.G. Walter, M.J. Natan, Self-assembled metal colloid monolayers: An approach to SERS substrates. Science 267, 1629–1632 (1995)CrossRef
136.
Zurück zum Zitat K.C. Grabar, P.C. Smith, M.D. Musick, J.A. Davis, D.G. Walter, M.A. Jackson, A.P. Guthrie, M.J. Natan, Kinetic control of interparticle spacing in Au colloid-based surfaces: Rational nanometer-scale architecture. J. Am. Chem. Soc. 118, 1148–1153 (1996). https://doi.org/10.1021/ja952233+ CrossRef K.C. Grabar, P.C. Smith, M.D. Musick, J.A. Davis, D.G. Walter, M.A. Jackson, A.P. Guthrie, M.J. Natan, Kinetic control of interparticle spacing in Au colloid-based surfaces: Rational nanometer-scale architecture. J. Am. Chem. Soc. 118, 1148–1153 (1996). https://​doi.​org/​10.​1021/​ja952233+ CrossRef
138.
Zurück zum Zitat B.-B. Xu, Z.-C. Ma, L. Wang, R. Zhang, L.-G. Niu, Z. Yang, Y.-L. Zhang, W.-H. Zheng, B. Zhao, Y. Xu, Q.-D. Chen, H. Xia, H.-B. Sun, Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels. Lab Chip 11, 3347 (2011). https://doi.org/10.1039/c1lc20397e CrossRef B.-B. Xu, Z.-C. Ma, L. Wang, R. Zhang, L.-G. Niu, Z. Yang, Y.-L. Zhang, W.-H. Zheng, B. Zhao, Y. Xu, Q.-D. Chen, H. Xia, H.-B. Sun, Localized flexible integration of high-efficiency surface enhanced Raman scattering (SERS) monitors into microfluidic channels. Lab Chip 11, 3347 (2011). https://​doi.​org/​10.​1039/​c1lc20397e CrossRef
140.
Zurück zum Zitat M.L. Tseng, Y.W. Huang, M.K. Hsiao, H.W. Huang, H.M. Chen, Y.L. Chen, C.H. Chu, N.N. Chu, Y.J. He, C.M. Chang, W.C. Lin, D.W. Huang, H.P. Chiang, R.S. Liu, G. Sun, D.P. Tsai, Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement. ACS Nano 6, 5190–5197 (2012). https://doi.org/10.1021/nn300947n CrossRef M.L. Tseng, Y.W. Huang, M.K. Hsiao, H.W. Huang, H.M. Chen, Y.L. Chen, C.H. Chu, N.N. Chu, Y.J. He, C.M. Chang, W.C. Lin, D.W. Huang, H.P. Chiang, R.S. Liu, G. Sun, D.P. Tsai, Fast fabrication of a Ag nanostructure substrate using the femtosecond laser for broad-band and tunable plasmonic enhancement. ACS Nano 6, 5190–5197 (2012). https://​doi.​org/​10.​1021/​nn300947n CrossRef
145.
Zurück zum Zitat G. Das, N. Patra, A. Gopalakrishnan, R.P. Zaccaria, A. Toma, S. Thorat, E. Di Fabrizio, A. Diaspro, M. Salerno, Fabrication of large-area ordered and reproducible nanostructures for SERS biosensor application. Analyst 137, 1785 (2012). https://doi.org/10.1039/c2an16022f CrossRef G. Das, N. Patra, A. Gopalakrishnan, R.P. Zaccaria, A. Toma, S. Thorat, E. Di Fabrizio, A. Diaspro, M. Salerno, Fabrication of large-area ordered and reproducible nanostructures for SERS biosensor application. Analyst 137, 1785 (2012). https://​doi.​org/​10.​1039/​c2an16022f CrossRef
148.
Zurück zum Zitat X. Zhang, J. Zhao, A.V. Whitney, J.W. Elam, R.P. Van Duyne, Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J. Am. Chem. Soc. 128, 10304–10309 (2006). https://doi.org/10.1021/JA0638760 CrossRef X. Zhang, J. Zhao, A.V. Whitney, J.W. Elam, R.P. Van Duyne, Ultrastable substrates for surface-enhanced Raman spectroscopy: Al2O3 overlayers fabricated by atomic layer deposition yield improved anthrax biomarker detection. J. Am. Chem. Soc. 128, 10304–10309 (2006). https://​doi.​org/​10.​1021/​JA0638760 CrossRef
154.
Zurück zum Zitat F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M.L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R.P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, E. Di Fabrizio, Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat. Photonics 5, 682–687 (2011). https://doi.org/10.1038/nphoton.2011.222 CrossRef F. De Angelis, F. Gentile, F. Mecarini, G. Das, M. Moretti, P. Candeloro, M.L. Coluccio, G. Cojoc, A. Accardo, C. Liberale, R.P. Zaccaria, G. Perozziello, L. Tirinato, A. Toma, G. Cuda, R. Cingolani, E. Di Fabrizio, Breaking the diffusion limit with super-hydrophobic delivery of molecules to plasmonic nanofocusing SERS structures. Nat. Photonics 5, 682–687 (2011). https://​doi.​org/​10.​1038/​nphoton.​2011.​222 CrossRef
160.
Zurück zum Zitat M. Cottat, N. Lidgi-Guigui, I. Tijunelyte, G. Barbillon, F. Hamouda, P. Gogol, A. Aassime, J.-M. Lourtioz, B. Bartenlian, M.L. de la Chapelle, Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection. Nanoscale Res. Lett. 9, 623 (2014). https://doi.org/10.1186/1556-276X-9-623 CrossRef M. Cottat, N. Lidgi-Guigui, I. Tijunelyte, G. Barbillon, F. Hamouda, P. Gogol, A. Aassime, J.-M. Lourtioz, B. Bartenlian, M.L. de la Chapelle, Soft UV nanoimprint lithography-designed highly sensitive substrates for SERS detection. Nanoscale Res. Lett. 9, 623 (2014). https://​doi.​org/​10.​1186/​1556-276X-9-623 CrossRef
161.
Zurück zum Zitat S. Picciolini, D. Mehn, C. Morasso, R. Vanna, M. Bedoni, P. Pellacani, G. Marchesini, A. Valsesia, D. Prosperi, C. Tresoldi, F. Ciceri, F. Gramatica, Polymer nanopillar – Gold arrays as surface-enhanced Raman spectroscopy substrate for the simultaneous detection of multiple genes. ACS Nano 8, 10496–10506 (2014). https://doi.org/10.1021/nn503873d CrossRef S. Picciolini, D. Mehn, C. Morasso, R. Vanna, M. Bedoni, P. Pellacani, G. Marchesini, A. Valsesia, D. Prosperi, C. Tresoldi, F. Ciceri, F. Gramatica, Polymer nanopillar – Gold arrays as surface-enhanced Raman spectroscopy substrate for the simultaneous detection of multiple genes. ACS Nano 8, 10496–10506 (2014). https://​doi.​org/​10.​1021/​nn503873d CrossRef
173.
Zurück zum Zitat A. Hakonen, T. Rindzevicius, M.S. Schmidt, P.O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, M. Käll, Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion. Nanoscale 8, 1305–1308 (2016). https://doi.org/10.1039/c5nr06524k CrossRef A. Hakonen, T. Rindzevicius, M.S. Schmidt, P.O. Andersson, L. Juhlin, M. Svedendahl, A. Boisen, M. Käll, Detection of nerve gases using surface-enhanced Raman scattering substrates with high droplet adhesion. Nanoscale 8, 1305–1308 (2016). https://​doi.​org/​10.​1039/​c5nr06524k CrossRef
176.
Zurück zum Zitat M. Yilmaz, E. Senlik, E. Biskin, M.S. Yavuz, U. Tamer, G. Demirel, Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS. Phys. Chem. Chem. Phys. 16, 5563–5570 (2014). https://doi.org/10.1039/c3cp55087g CrossRef M. Yilmaz, E. Senlik, E. Biskin, M.S. Yavuz, U. Tamer, G. Demirel, Combining 3-D plasmonic gold nanorod arrays with colloidal nanoparticles as a versatile concept for reliable, sensitive, and selective molecular detection by SERS. Phys. Chem. Chem. Phys. 16, 5563–5570 (2014). https://​doi.​org/​10.​1039/​c3cp55087g CrossRef
181.
183.
Zurück zum Zitat W. Ji, Y. Wang, I. Tanabe, X. Han, B. Zhao, Y. Ozaki, Semiconductor-driven “turn-off” surface-enhanced Raman scattering spectroscopy: Application in selective determination of chromium( vi ) in water. Chem. Sci. 6, 342–348 (2015). https://doi.org/10.1039/C4SC02618G CrossRef W. Ji, Y. Wang, I. Tanabe, X. Han, B. Zhao, Y. Ozaki, Semiconductor-driven “turn-off” surface-enhanced Raman scattering spectroscopy: Application in selective determination of chromium( vi ) in water. Chem. Sci. 6, 342–348 (2015). https://​doi.​org/​10.​1039/​C4SC02618G CrossRef
184.
Zurück zum Zitat S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, T. Pal, Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: A platform for SERS based low-level detection of uranyl ion. ACS Appl. Mater. Interfaces 5, 8724–8732 (2013). https://doi.org/10.1021/am4025017 CrossRef S. Dutta, C. Ray, S. Sarkar, M. Pradhan, Y. Negishi, T. Pal, Silver nanoparticle decorated reduced graphene oxide (rGO) nanosheet: A platform for SERS based low-level detection of uranyl ion. ACS Appl. Mater. Interfaces 5, 8724–8732 (2013). https://​doi.​org/​10.​1021/​am4025017 CrossRef
186.
Zurück zum Zitat M. Mueller, M. Tebbe, D.V. Andreeva, M. Karg, R.A.A. Puebla, N.P. Perez, A. Fery, Platforms for polycyclic aromatic hydrocarbons sensing in gas. Langmuir 28, 9168–9173 (2012)CrossRef M. Mueller, M. Tebbe, D.V. Andreeva, M. Karg, R.A.A. Puebla, N.P. Perez, A. Fery, Platforms for polycyclic aromatic hydrocarbons sensing in gas. Langmuir 28, 9168–9173 (2012)CrossRef
192.
Zurück zum Zitat S. Feng, F. Gao, Z. Chen, E. Grant, D.D. Kitts, S. Wang, X. Lu, Determination of α-tocopherol in vegetable oils using a molecularly imprinted polymers-surface-enhanced Raman spectroscopic biosensor. J. Agric. Food Chem. 61, 10467–10475 (2013). https://doi.org/10.1021/jf4038858 CrossRef S. Feng, F. Gao, Z. Chen, E. Grant, D.D. Kitts, S. Wang, X. Lu, Determination of α-tocopherol in vegetable oils using a molecularly imprinted polymers-surface-enhanced Raman spectroscopic biosensor. J. Agric. Food Chem. 61, 10467–10475 (2013). https://​doi.​org/​10.​1021/​jf4038858 CrossRef
193.
Zurück zum Zitat B. Peng, G. Li, D. Li, S. Dodson, Q. Zhang, J. Zhang, Y.H. Lee, H.V. Demir, X. Yi Ling, Q. Xiong, Vertically aligned gold nanorod monolayer on arbitrary substrates: Self-assembly and femtomolar detection of food contaminants. ACS Nano 7, 5993–6000 (2013). https://doi.org/10.1021/nn401685p CrossRef B. Peng, G. Li, D. Li, S. Dodson, Q. Zhang, J. Zhang, Y.H. Lee, H.V. Demir, X. Yi Ling, Q. Xiong, Vertically aligned gold nanorod monolayer on arbitrary substrates: Self-assembly and femtomolar detection of food contaminants. ACS Nano 7, 5993–6000 (2013). https://​doi.​org/​10.​1021/​nn401685p CrossRef
194.
195.
Zurück zum Zitat X. Wang, Y. Du, H. Zhang, Y. Xu, Y. Pan, T. Wu, H. Hu, Fast enrichment and ultrasensitive in-situ detection of pesticide residues on oranges with surface-enhanced Raman spectroscopy based on Au nanoparticles decorated glycidyl methacrylate-ethylene dimethacrylate material. Food Control 46, 108–114 (2014). https://doi.org/10.1016/j.foodcont.2014.04.035 CrossRef X. Wang, Y. Du, H. Zhang, Y. Xu, Y. Pan, T. Wu, H. Hu, Fast enrichment and ultrasensitive in-situ detection of pesticide residues on oranges with surface-enhanced Raman spectroscopy based on Au nanoparticles decorated glycidyl methacrylate-ethylene dimethacrylate material. Food Control 46, 108–114 (2014). https://​doi.​org/​10.​1016/​j.​foodcont.​2014.​04.​035 CrossRef
201.
Zurück zum Zitat L. Fabris, M. Dante, G. Braun, S.J. Lee, M. Moskovits, T.-Q. Nguyen, G.C. Bazan, N.O. Reich, Communication a heterogeneous PNA-based SERS method for DNA detection a heterogeneous PNA-based SERS method for DNA detection. Society 129, 6086–6087 (2007). https://doi.org/10.1021/ja0705184 L. Fabris, M. Dante, G. Braun, S.J. Lee, M. Moskovits, T.-Q. Nguyen, G.C. Bazan, N.O. Reich, Communication a heterogeneous PNA-based SERS method for DNA detection a heterogeneous PNA-based SERS method for DNA detection. Society 129, 6086–6087 (2007). https://​doi.​org/​10.​1021/​ja0705184
202.
203.
Zurück zum Zitat S. He, K.K. Liu, S. Su, J. Yan, X. Mao, D. Wang, Y. He, L.J. Li, S. Song, C. Fan, Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection. Anal. Chem. 84, 4622–4627 (2012). https://doi.org/10.1021/ac300577d CrossRef S. He, K.K. Liu, S. Su, J. Yan, X. Mao, D. Wang, Y. He, L.J. Li, S. Song, C. Fan, Graphene-based high-efficiency surface-enhanced Raman scattering-active platform for sensitive and multiplex DNA detection. Anal. Chem. 84, 4622–4627 (2012). https://​doi.​org/​10.​1021/​ac300577d CrossRef
204.
205.
207.
Zurück zum Zitat S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, H. Qiu, Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine. ACS Appl. Mater. Interfaces 7, 10977–10987 (2015). https://doi.org/10.1021/acsami.5b02303 CrossRef S. Xu, B. Man, S. Jiang, J. Wang, J. Wei, S. Xu, H. Liu, S. Gao, H. Liu, Z. Li, H. Li, H. Qiu, Graphene/Cu nanoparticle hybrids fabricated by chemical vapor deposition as surface-enhanced Raman scattering substrate for label-free detection of adenosine. ACS Appl. Mater. Interfaces 7, 10977–10987 (2015). https://​doi.​org/​10.​1021/​acsami.​5b02303 CrossRef
211.
Zurück zum Zitat F. Sun, J.R. Ella-Menye, D.D. Galvan, T. Bai, H.C. Hung, Y.N. Chou, P. Zhang, S. Jiang, Q. Yu, Stealth surface modification of surface-enhanced Raman scattering substrates for sensitive and accurate detection in protein solutions. ACS Nano 9, 2668–2676 (2015). https://doi.org/10.1021/nn506447k CrossRef F. Sun, J.R. Ella-Menye, D.D. Galvan, T. Bai, H.C. Hung, Y.N. Chou, P. Zhang, S. Jiang, Q. Yu, Stealth surface modification of surface-enhanced Raman scattering substrates for sensitive and accurate detection in protein solutions. ACS Nano 9, 2668–2676 (2015). https://​doi.​org/​10.​1021/​nn506447k CrossRef
215.
Zurück zum Zitat A. Virga, P. Rivolo, E. Descrovi, A. Chiolerio, G. Digregorio, F. Frascella, M. Soster, F. Bussolino, S. Marchiò, F. Geobaldo, F. Giorgis, SERS active Ag nanoparticles in mesoporous silicon: Detection of organic molecules and peptide-antibody assays. J. Raman Spectrosc. 43, 730–736 (2012). https://doi.org/10.1002/jrs.3086 CrossRef A. Virga, P. Rivolo, E. Descrovi, A. Chiolerio, G. Digregorio, F. Frascella, M. Soster, F. Bussolino, S. Marchiò, F. Geobaldo, F. Giorgis, SERS active Ag nanoparticles in mesoporous silicon: Detection of organic molecules and peptide-antibody assays. J. Raman Spectrosc. 43, 730–736 (2012). https://​doi.​org/​10.​1002/​jrs.​3086 CrossRef
216.
Zurück zum Zitat P. Negri, G. Chen, A. Kage, A. Nitsche, D. Naumann, B. Xu, R.A. Dluhy, Direct optical detection of viral nucleoprotein binding to an anti-influenza aptamer. Anal. Chem. 84, 5501 (2012)CrossRef P. Negri, G. Chen, A. Kage, A. Nitsche, D. Naumann, B. Xu, R.A. Dluhy, Direct optical detection of viral nucleoprotein binding to an anti-influenza aptamer. Anal. Chem. 84, 5501 (2012)CrossRef
219.
Zurück zum Zitat F. Shao, Z. Lu, C. Liu, H. Han, K. Chen, W. Li, Q. He, H. Peng, J. Chen, Hierarchical Nanogaps within bioscaffold arrays as a high- performance SERS substrate for animal virus biosensing. ACS Appl. Mater. Interfaces 6, 6281–6289 (2014). https://doi.org/10.1021/am4045212 CrossRef F. Shao, Z. Lu, C. Liu, H. Han, K. Chen, W. Li, Q. He, H. Peng, J. Chen, Hierarchical Nanogaps within bioscaffold arrays as a high- performance SERS substrate for animal virus biosensing. ACS Appl. Mater. Interfaces 6, 6281–6289 (2014). https://​doi.​org/​10.​1021/​am4045212 CrossRef
221.
Zurück zum Zitat T.-Y. Liu, K.-T. Tsai, H.-H. Wang, Y. Chen, Y.-H. Chen, Y.-C. Chao, H.-H. Chang, C.-H. Lin, J.-K. Wang, Y.-L. Wang, Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nat. Commun. 2, 538 (2011). https://doi.org/10.1038/ncomms1546 CrossRef T.-Y. Liu, K.-T. Tsai, H.-H. Wang, Y. Chen, Y.-H. Chen, Y.-C. Chao, H.-H. Chang, C.-H. Lin, J.-K. Wang, Y.-L. Wang, Functionalized arrays of Raman-enhancing nanoparticles for capture and culture-free analysis of bacteria in human blood. Nat. Commun. 2, 538 (2011). https://​doi.​org/​10.​1038/​ncomms1546 CrossRef
222.
226.
227.
Zurück zum Zitat F. Gentile, M.L. Coluccio, N. Coppede, F. Mecarini, G. Das, C. Liberale, L. Tirinato, M. Leoncini, G. Perozziello, P. Candeloro, F. De Angelis, E. Di Fabrizio, Superhydrophobic surfaces as smart platforms for the analysis of diluted biological solutions. ACS Appl. Mater. Interfaces 4, 3213–3224 (2012). https://doi.org/10.1021/am300556w CrossRef F. Gentile, M.L. Coluccio, N. Coppede, F. Mecarini, G. Das, C. Liberale, L. Tirinato, M. Leoncini, G. Perozziello, P. Candeloro, F. De Angelis, E. Di Fabrizio, Superhydrophobic surfaces as smart platforms for the analysis of diluted biological solutions. ACS Appl. Mater. Interfaces 4, 3213–3224 (2012). https://​doi.​org/​10.​1021/​am300556w CrossRef
237.
Zurück zum Zitat P. Zhang, R. Zhang, M. Gao, X. Zhang, Novel nitrocellulose membrane substrate for efficient analysis of circulating tumor cells coupled with surface-enhanced Raman scattering imaging. ACS Appl. Mater. Interfaces 6, 370–376 (2014)CrossRef P. Zhang, R. Zhang, M. Gao, X. Zhang, Novel nitrocellulose membrane substrate for efficient analysis of circulating tumor cells coupled with surface-enhanced Raman scattering imaging. ACS Appl. Mater. Interfaces 6, 370–376 (2014)CrossRef
239.
Zurück zum Zitat X. Jiang, Z. Jiang, T. Xu, S. Su, Y. Zhong, F. Peng, Y. Su, Y. He, Surface-enhanced Raman scattering-based sensing in vitro: Facile and label-free detection of apoptotic cells at the single-cell level. Anal. Chem. 85, 2809–2816 (2013). https://doi.org/10.1021/ac303337b CrossRef X. Jiang, Z. Jiang, T. Xu, S. Su, Y. Zhong, F. Peng, Y. Su, Y. He, Surface-enhanced Raman scattering-based sensing in vitro: Facile and label-free detection of apoptotic cells at the single-cell level. Anal. Chem. 85, 2809–2816 (2013). https://​doi.​org/​10.​1021/​ac303337b CrossRef
240.
Zurück zum Zitat S. Yamazoe, M. Naya, M. Shiota, T. Morikawa, A. Kubo, T. Tani, T. Hishiki, T. Horiuchi, M. Suematsu, M. Kajimura, Large-area surface-enhanced Raman spectroscopy imaging of brain ischemia by gold nanoparticles grown on random nanoarrays of transparent boehmite. ACS Nano 8, 5622–5632 (2014). https://doi.org/10.1021/nn4065692 CrossRef S. Yamazoe, M. Naya, M. Shiota, T. Morikawa, A. Kubo, T. Tani, T. Hishiki, T. Horiuchi, M. Suematsu, M. Kajimura, Large-area surface-enhanced Raman spectroscopy imaging of brain ischemia by gold nanoparticles grown on random nanoarrays of transparent boehmite. ACS Nano 8, 5622–5632 (2014). https://​doi.​org/​10.​1021/​nn4065692 CrossRef
241.
Zurück zum Zitat A. Lorén, C. Eliasson, M. Josefson, K.V.G.K. Murty, M. Käll, J. Abrahamsson, K. Abrahamsson, Feasibility of quantitative determination of doxorubicin with surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 32, 971–974 (2001). https://doi.org/10.1002/jrs.783 CrossRef A. Lorén, C. Eliasson, M. Josefson, K.V.G.K. Murty, M. Käll, J. Abrahamsson, K. Abrahamsson, Feasibility of quantitative determination of doxorubicin with surface-enhanced Raman spectroscopy. J. Raman Spectrosc. 32, 971–974 (2001). https://​doi.​org/​10.​1002/​jrs.​783 CrossRef
245.
Zurück zum Zitat C. Mc Laughlin, D. Mac Millan, C. Mc Cardle, W.E. Smith, Quantitative analysis of mitoxantrone by surface-enhanced resonance Raman scattering. Anal. Chem. 74, 3160–3167 (2002)CrossRef C. Mc Laughlin, D. Mac Millan, C. Mc Cardle, W.E. Smith, Quantitative analysis of mitoxantrone by surface-enhanced resonance Raman scattering. Anal. Chem. 74, 3160–3167 (2002)CrossRef
253.
Zurück zum Zitat Z. Xu, J. Jiang, X. Wang, K. Han, A. Ameen, I. Khan, T.-W. Chang, G.L. Liu, Large-area, uniform and low-cost dual-mode plasmonic naked-eye colorimetry and SERS sensor with handheld Raman spectrometer. Nanoscale 8, 6162–6172 (2016). https://doi.org/10.1039/C5NR08357E CrossRef Z. Xu, J. Jiang, X. Wang, K. Han, A. Ameen, I. Khan, T.-W. Chang, G.L. Liu, Large-area, uniform and low-cost dual-mode plasmonic naked-eye colorimetry and SERS sensor with handheld Raman spectrometer. Nanoscale 8, 6162–6172 (2016). https://​doi.​org/​10.​1039/​C5NR08357E CrossRef
258.
Zurück zum Zitat N.G. Greeneltch, A.S. Davis, N.A. Valley, F. Casadio, G.C. Schatz, R.P. Van Duyne, N.C. Shah, Near-infrared surface-enhanced raman spectroscopy (NIR-SERS) for the identification of eosin Y: Theoretical calculations and evaluation of two different nanoplasmonic substrates. J. Phys. Chem. A 116, 11863–11869 (2012). https://doi.org/10.1021/jp3081035 CrossRef N.G. Greeneltch, A.S. Davis, N.A. Valley, F. Casadio, G.C. Schatz, R.P. Van Duyne, N.C. Shah, Near-infrared surface-enhanced raman spectroscopy (NIR-SERS) for the identification of eosin Y: Theoretical calculations and evaluation of two different nanoplasmonic substrates. J. Phys. Chem. A 116, 11863–11869 (2012). https://​doi.​org/​10.​1021/​jp3081035 CrossRef
260.
Zurück zum Zitat N.G. Greeneltch, M.G. Blaber, G.C. Schatz, R.P. Van Duyne, Plasmon-sampled surface-enhanced raman excitation spectroscopy on silver immobilized nanorod assemblies and optimization for near infrared (ex = 1064 nm) studies. J. Phys. Chem. C 117, 2554–2558 (2013). https://doi.org/10.1021/jp310846j CrossRef N.G. Greeneltch, M.G. Blaber, G.C. Schatz, R.P. Van Duyne, Plasmon-sampled surface-enhanced raman excitation spectroscopy on silver immobilized nanorod assemblies and optimization for near infrared (ex = 1064 nm) studies. J. Phys. Chem. C 117, 2554–2558 (2013). https://​doi.​org/​10.​1021/​jp310846j CrossRef
261.
Zurück zum Zitat X.Y. Ling, R. Yan, S. Lo, D.T. Hoang, C. Liu, M.A. Fardy, S.B. Khan, A.M. Asiri, S.M. Bawaked, P. Yang, Alumina-coated Ag nanocrystal monolayers as surface enhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Res. 7, 132–143 (2014). https://doi.org/10.1007/s12274-013-0380-0 CrossRef X.Y. Ling, R. Yan, S. Lo, D.T. Hoang, C. Liu, M.A. Fardy, S.B. Khan, A.M. Asiri, S.M. Bawaked, P. Yang, Alumina-coated Ag nanocrystal monolayers as surface enhanced Raman spectroscopy platforms for the direct spectroscopic detection of water splitting reaction intermediates. Nano Res. 7, 132–143 (2014). https://​doi.​org/​10.​1007/​s12274-013-0380-0 CrossRef
264.
Zurück zum Zitat Q. Cao, K. Yuan, Q. Liu, C. Liang, X. Wang, Y.F. Cheng, Q. Li, M. Wang, R. Che, Porous Au-Ag alloy particles inlaid AgCl membranes as versatile Plasmonic catalytic interfaces with simultaneous, in situ SERS monitoring. ACS Appl. Mater. Interfaces 7, 18491–18500 (2015). https://doi.org/10.1021/acsami.5b04769 CrossRef Q. Cao, K. Yuan, Q. Liu, C. Liang, X. Wang, Y.F. Cheng, Q. Li, M. Wang, R. Che, Porous Au-Ag alloy particles inlaid AgCl membranes as versatile Plasmonic catalytic interfaces with simultaneous, in situ SERS monitoring. ACS Appl. Mater. Interfaces 7, 18491–18500 (2015). https://​doi.​org/​10.​1021/​acsami.​5b04769 CrossRef
265.
Zurück zum Zitat R. Liu, J.F. Liu, Z.M. Zhang, L.Q. Zhang, J.F. Sun, M.T. Sun, G.B. Jiang, Submonolayer-Pt-coated ultrathin Au nanowires and their self-organized nanoporous film: SERS and catalysis active substrates for operando SERS monitoring of catalytic reactions. J. Phys. Chem. Lett. 5, 969–975 (2014). https://doi.org/10.1021/jz500238z CrossRef R. Liu, J.F. Liu, Z.M. Zhang, L.Q. Zhang, J.F. Sun, M.T. Sun, G.B. Jiang, Submonolayer-Pt-coated ultrathin Au nanowires and their self-organized nanoporous film: SERS and catalysis active substrates for operando SERS monitoring of catalytic reactions. J. Phys. Chem. Lett. 5, 969–975 (2014). https://​doi.​org/​10.​1021/​jz500238z CrossRef
Metadaten
Titel
Surface-Enhanced Raman Spectroscopy: Principles, Substrates, and Applications
verfasst von
Roberto Pilot
Raffaella Signorini
Laura Fabris
Copyright-Jahr
2018
DOI
https://doi.org/10.1007/978-3-319-68053-8_4

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.