Skip to main content

2016 | OriginalPaper | Buchkapitel

3. Surface Functionalization of Microfluidic Devices

verfasst von : M. Eichler, C.-P. Klages, K. Lachmann

Erschienen in: Microsystems for Pharmatechnology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Internal surfaces of pharmatechnological or biomedical microfluidic components may be functionalized—i.e., tailored or adapted to fulfill one or more specific physicochemical functions within a lab-on-chip system—by surface-technological methods selected from a number of available coating or modification processes.
Among various potential functions of a surface, its wetting behavior is of particular importance if two different phases (e.g., water and air, water and oil) are involved during operation of the system. Adhesive properties of internal walls are of major relevance in applications where particulate matter (cells, micro- or nanoparticles) plays a role: It may be necessary to prevent the adhesion of such particles on the surfaces in order to prevent clogging; on the other hand, the adhesion of cells may be aspired on certain parts of the surface. Adhesion promotion may, however, not only be an issue for the operation of an MF device but also for its manufacturing, for example for sealing or bonding processes. Frequently an undesired wall deposition of proteins or other constituents of the fluid has to be prevented by an antifouling coating or a suitable pretreatment of the surface. Coatings or surface modifications generating chemically reactive groups may be utilized to bind small molecules, polymers, biomolecules, or nanoparticles covalently to a surface. Controlling the density of charged functional groups, the ζ potential of a surface can be adjusted in order to influence, e.g., the charge of droplets dispensed from a pipette.
While so far mentioned functions of the MF device walls largely depend on their chemical composition close to the interface, specific geometrical and physical characteristics of surfaces and surface coatings may also be desired. Examples are the role of topography and Young’s modulus for the attachment of cells and microorganisms, coatings with specific electrical or optical functions involved in sensing and detection, electrowetting, or electrophoresis, and, last but not least, permeation barriers preventing the leaching of polymer constituents into the fluid or controlling gas transport through a polymer.
The present article gives an introduction to surface modification and coating processes which are established or under development in order to attain the above-mentioned surface functions. An emphasis will be laid on special requirements of microfluidic devices to be used with two-phase fluids and particulate matter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Alexandridis P, Hatton TA (1995) Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf A 96:1–46CrossRef Alexandridis P, Hatton TA (1995) Poly(ethylene oxide)-poly(propylene oxide)-poly(ethylene oxide) block copolymer surfactants in aqueous solutions and at interfaces: thermodynamics, structure, dynamics, and modeling. Colloids Surf A 96:1–46CrossRef
2.
Zurück zum Zitat Alf ME, Asatekin A, Barr MC, Baxamusa SH, Chelawat H, Ozaydin-Ince G, Petruczok CD, Sreenivasan R, Tenhaeff WE, Trujillo NJ, Vaddiraju S, Xu J, Gleason KK (2010) Chemical vapor deposition of conformal, functional, and responsive polymer films. Adv Mater 22:1993–2027CrossRef Alf ME, Asatekin A, Barr MC, Baxamusa SH, Chelawat H, Ozaydin-Ince G, Petruczok CD, Sreenivasan R, Tenhaeff WE, Trujillo NJ, Vaddiraju S, Xu J, Gleason KK (2010) Chemical vapor deposition of conformal, functional, and responsive polymer films. Adv Mater 22:1993–2027CrossRef
3.
Zurück zum Zitat Annabi N, Selimović S, Acevedo Cox JP, Ribas J, Afshar Bakooshli M, Heintze D, Weiss AS, Cropek D, Khademhosseini A (2013) Hydrogel-coated microfluidic channels for cardiomyocyte culture. Lab Chip 13:3569–3577CrossRef Annabi N, Selimović S, Acevedo Cox JP, Ribas J, Afshar Bakooshli M, Heintze D, Weiss AS, Cropek D, Khademhosseini A (2013) Hydrogel-coated microfluidic channels for cardiomyocyte culture. Lab Chip 13:3569–3577CrossRef
4.
Zurück zum Zitat Asatekin A, Barr MC, Baxamusa SH, Lau KKS, Tenhaeff W, Xu J, Gleason KK (2010) Designing polymer surfaces via vapor deposition. Mater Today 13:26–33CrossRef Asatekin A, Barr MC, Baxamusa SH, Lau KKS, Tenhaeff W, Xu J, Gleason KK (2010) Designing polymer surfaces via vapor deposition. Mater Today 13:26–33CrossRef
5.
Zurück zum Zitat Azadi G, Tripathi A (2012) Surfactant-induced electroosmotic flow in microfluidic capillaries. Electrophoresis 33:2094–2101CrossRef Azadi G, Tripathi A (2012) Surfactant-induced electroosmotic flow in microfluidic capillaries. Electrophoresis 33:2094–2101CrossRef
6.
Zurück zum Zitat Bäcker M, Raue M, Schusser S, Jeitner C, Breuer L, Wagner P, Poghossian A, Förster A, Mang T, Schöning MJ (2012) Microfluidic chip with integrated microvalves based on temperature and pH-responsive hydrogel thin films. Phys Status Solidi A 209:839–845CrossRef Bäcker M, Raue M, Schusser S, Jeitner C, Breuer L, Wagner P, Poghossian A, Förster A, Mang T, Schöning MJ (2012) Microfluidic chip with integrated microvalves based on temperature and pH-responsive hydrogel thin films. Phys Status Solidi A 209:839–845CrossRef
7.
Zurück zum Zitat Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M (2007) Design of fluorescent materials for chemical sensing. Chem Soc Rev 36:993–1017CrossRef Basabe-Desmonts L, Reinhoudt DN, Crego-Calama M (2007) Design of fluorescent materials for chemical sensing. Chem Soc Rev 36:993–1017CrossRef
8.
Zurück zum Zitat Bashir M, Bashir S, Rees JM, Zimmerman WB (2014) Surface coating of bonded PDMS microchannels by atmospheric pressure microplasma. Plasma Process Polym 11:279–288CrossRef Bashir M, Bashir S, Rees JM, Zimmerman WB (2014) Surface coating of bonded PDMS microchannels by atmospheric pressure microplasma. Plasma Process Polym 11:279–288CrossRef
9.
Zurück zum Zitat Bayer H, Engelhardt H (1996) Capillary electrophoresis in organic polymer capillaries. J Microcolumn Sep 8:479–484CrossRef Bayer H, Engelhardt H (1996) Capillary electrophoresis in organic polymer capillaries. J Microcolumn Sep 8:479–484CrossRef
10.
Zurück zum Zitat Besch W, Foest R, Schröder K, Ohl A (2008) Allylamine plasma polymer coatings of interior surfaces in small trench structures. Plasma Process Polym 5:105–112CrossRef Besch W, Foest R, Schröder K, Ohl A (2008) Allylamine plasma polymer coatings of interior surfaces in small trench structures. Plasma Process Polym 5:105–112CrossRef
11.
Zurück zum Zitat Bhattacharyya A, Klapperich M (2007) Mechanical and chemical analysis of plasma and ultraviolet-ozone surface treatments for thermal bonding of polymeric microfluidic devices. Lab Chip 7:876–882CrossRef Bhattacharyya A, Klapperich M (2007) Mechanical and chemical analysis of plasma and ultraviolet-ozone surface treatments for thermal bonding of polymeric microfluidic devices. Lab Chip 7:876–882CrossRef
12.
Zurück zum Zitat Bhushan B, Cichomski M (2007) Nanotribological characterization of vapor phase deposited fluorosilane self-assembled monolayers deposited on polydimethylsiloxane surfaces for biomedical micro-/nanodevices. J Vac Sci Technol A 25:1285–1293CrossRef Bhushan B, Cichomski M (2007) Nanotribological characterization of vapor phase deposited fluorosilane self-assembled monolayers deposited on polydimethylsiloxane surfaces for biomedical micro-/nanodevices. J Vac Sci Technol A 25:1285–1293CrossRef
13.
Zurück zum Zitat Bhushan B, Hansford D, Lee KK (2006) Surface modification of silicon and polydimethylsiloxane surfaces with vapor-phase-deposited ultrathin fluorosilane films for biomedical nanodevices. J Vac Sci Technol A 24:1197–1202CrossRef Bhushan B, Hansford D, Lee KK (2006) Surface modification of silicon and polydimethylsiloxane surfaces with vapor-phase-deposited ultrathin fluorosilane films for biomedical nanodevices. J Vac Sci Technol A 24:1197–1202CrossRef
14.
Zurück zum Zitat Biederman H (ed) (2004) Plasma polymer films. Imperial College Press, London Biederman H (ed) (2004) Plasma polymer films. Imperial College Press, London
15.
Zurück zum Zitat Blees MH, Winkelman GB, Balkenende AR, den Toonder JMJ (2000) The effect of friction on scratch adhesion testing: application to a sol-gel coating on polypropylene. Thin Solid Films 359:1–13CrossRef Blees MH, Winkelman GB, Balkenende AR, den Toonder JMJ (2000) The effect of friction on scratch adhesion testing: application to a sol-gel coating on polypropylene. Thin Solid Films 359:1–13CrossRef
16.
Zurück zum Zitat Cai L, Wang Y, Wu Y, Xu C, Zhong M, Lai H, Huang J (2014) Fabrication of a microfluidic paper-based analytical device by silanization of filter cellulose using a paper mask for glucose assay. Analyst 139:4593–4598CrossRef Cai L, Wang Y, Wu Y, Xu C, Zhong M, Lai H, Huang J (2014) Fabrication of a microfluidic paper-based analytical device by silanization of filter cellulose using a paper mask for glucose assay. Analyst 139:4593–4598CrossRef
17.
Zurück zum Zitat Chan CM, Ko TM, Hiraoka H (1996) Polymer surface modification by plasmas and photons. Surf Sci Rep 24:1–54CrossRef Chan CM, Ko TM, Hiraoka H (1996) Polymer surface modification by plasmas and photons. Surf Sci Rep 24:1–54CrossRef
18.
Zurück zum Zitat Chang JH, Choi DY, Han S, Pak JJ (2010) Driving characteristics of the electrowetting-on-dielectric device using atomic-layer-deposited aluminum oxide as the dielectric. Microfluid Nanofluid 8:269–273CrossRef Chang JH, Choi DY, Han S, Pak JJ (2010) Driving characteristics of the electrowetting-on-dielectric device using atomic-layer-deposited aluminum oxide as the dielectric. Microfluid Nanofluid 8:269–273CrossRef
19.
Zurück zum Zitat Chen C, Xu P, Li X (2014) Regioselective patterning of multiple SAMs and applications in surface-guided smart microfluidics. Appl Mater Interfaces 6:21961–21969CrossRef Chen C, Xu P, Li X (2014) Regioselective patterning of multiple SAMs and applications in surface-guided smart microfluidics. Appl Mater Interfaces 6:21961–21969CrossRef
20.
Zurück zum Zitat Chen S, Li L, Zhao C, Zheng J (2010) Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51:5283–5293CrossRef Chen S, Li L, Zhao C, Zheng J (2010) Surface hydration: principles and applications toward low-fouling/nonfouling biomaterials. Polymer 51:5283–5293CrossRef
21.
Zurück zum Zitat Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R 36:143–206CrossRef Chu PK, Chen JY, Wang LP, Huang N (2002) Plasma-surface modification of biomaterials. Mater Sci Eng R 36:143–206CrossRef
22.
Zurück zum Zitat Cifuentes A, Rodríguez MA, García-Montelongo FJ (1996) Separation of basic proteins in free solution capillary electrophoresis: effect of additive, temperature and voltage. J Chromatogr A 742:257–266CrossRef Cifuentes A, Rodríguez MA, García-Montelongo FJ (1996) Separation of basic proteins in free solution capillary electrophoresis: effect of additive, temperature and voltage. J Chromatogr A 742:257–266CrossRef
23.
Zurück zum Zitat Coclite AM, Howden RM, Borrelli DC, Petruczok CD, Yang R, Yagüe JL, Ugur A, Chen N, Lee S, Jo WJ, Liu A, Wang X, Gleason KK (2013) 25th Anniversary article: CVD polymers: a new paradigm for surface modification and device fabrication. Adv Mater 2013(25):5392–5423CrossRef Coclite AM, Howden RM, Borrelli DC, Petruczok CD, Yang R, Yagüe JL, Ugur A, Chen N, Lee S, Jo WJ, Liu A, Wang X, Gleason KK (2013) 25th Anniversary article: CVD polymers: a new paradigm for surface modification and device fabrication. Adv Mater 2013(25):5392–5423CrossRef
24.
Zurück zum Zitat Cohen Stuart MA (2003) Macromolecular adsorption: a brief introduction. In: Malmsten M (ed) Biopolymers at interfaces, 2nd edn. Marcel Dekker, New York, pp 1–25 Cohen Stuart MA (2003) Macromolecular adsorption: a brief introduction. In: Malmsten M (ed) Biopolymers at interfaces, 2nd edn. Marcel Dekker, New York, pp 1–25
25.
Zurück zum Zitat Cordeiro AL, Nitschke M, Janke A, Helbig R, D’Souza F, Donnelly GT, Willemsen PR, Werner C (2008) Fluorination of poly(dimethylsiloxane) surfaces by low pressure CF4 plasma—physicochemical and antifouling properties. eXPRESS Polym Lett 3:70–83CrossRef Cordeiro AL, Nitschke M, Janke A, Helbig R, D’Souza F, Donnelly GT, Willemsen PR, Werner C (2008) Fluorination of poly(dimethylsiloxane) surfaces by low pressure CF4 plasma—physicochemical and antifouling properties. eXPRESS Polym Lett 3:70–83CrossRef
26.
Zurück zum Zitat Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210(21):831–835CrossRef Decher G, Hong JD, Schmitt J (1992) Buildup of ultrathin multilayer films by a self-assembly process: III. Consecutively alternating adsorption of anionic and cationic polyelectrolytes on charged surfaces. Thin Solid Films 210(21):831–835CrossRef
27.
Zurück zum Zitat Demming S, Lesche C, Schmolke H, Klages CP, Büttgenbach S (2011) Characterization of long-term stability of hydrophilized PEG-grafted PDMS within different media for biotechnological and pharmaceutical applications. Phys Status Solidi A 208:1301–1307CrossRef Demming S, Lesche C, Schmolke H, Klages CP, Büttgenbach S (2011) Characterization of long-term stability of hydrophilized PEG-grafted PDMS within different media for biotechnological and pharmaceutical applications. Phys Status Solidi A 208:1301–1307CrossRef
28.
Zurück zum Zitat Demming S, Peterat G, Llobera A, Schmolke H, Bruns A, Kohlstedt M, Al-Halhouli A, Klages CP, Krull R, Büttgenbach S (2012) Vertical microbubble column—a photonic lab-on-chip for cultivation and online analysis of yeast cell cultures. Biomicrofluidics 6:034106 (14 pp)CrossRef Demming S, Peterat G, Llobera A, Schmolke H, Bruns A, Kohlstedt M, Al-Halhouli A, Klages CP, Krull R, Büttgenbach S (2012) Vertical microbubble column—a photonic lab-on-chip for cultivation and online analysis of yeast cell cultures. Biomicrofluidics 6:034106 (14 pp)CrossRef
29.
Zurück zum Zitat Deng J, Wang L, Liu L, Yang W (2009) Developments and new applications of UV-induced surface graft polymerizations. Prog Polym Sci 34:156–193CrossRef Deng J, Wang L, Liu L, Yang W (2009) Developments and new applications of UV-induced surface graft polymerizations. Prog Polym Sci 34:156–193CrossRef
30.
Zurück zum Zitat Deng X, Lahann J (2014) Orthogonal surface functionalization through bioactive vapor-based polymer coatings. J Appl Polym Sci 2014:40315 (9pp) Deng X, Lahann J (2014) Orthogonal surface functionalization through bioactive vapor-based polymer coatings. J Appl Polym Sci 2014:40315 (9pp)
31.
Zurück zum Zitat Dijt JC, Cohen Stuart MA, Fleer GJ (1992) Kinetics of polymer adsorption and desorption in capillary flow. Macromolecules 25:5416–5423CrossRef Dijt JC, Cohen Stuart MA, Fleer GJ (1992) Kinetics of polymer adsorption and desorption in capillary flow. Macromolecules 25:5416–5423CrossRef
32.
Zurück zum Zitat Eichler M, Hennecke P, Nagel K, Gabriel M, Klages CP (2013) Plasma activation as a pretreatment tool for low-temperature direct wafer bonding in microsystems technology. ECS Trans 50:265–276CrossRef Eichler M, Hennecke P, Nagel K, Gabriel M, Klages CP (2013) Plasma activation as a pretreatment tool for low-temperature direct wafer bonding in microsystems technology. ECS Trans 50:265–276CrossRef
33.
Zurück zum Zitat Eichler M, Nagel K, Hennecke P, Klages CP (2012) Area-selective microplasma treatment in microfluidic channels for novel fluid phase separators. Plasma Process Polym 9:1160–1167CrossRef Eichler M, Nagel K, Hennecke P, Klages CP (2012) Area-selective microplasma treatment in microfluidic channels for novel fluid phase separators. Plasma Process Polym 9:1160–1167CrossRef
34.
Zurück zum Zitat Evju JK, Howell PB, Locascio LE, Tarlov MJ, Hickman JJ (2004) Atmospheric pressure microplasmas for modifying sealed microfluidic devices. Appl Phys Lett 84:1668–1670CrossRef Evju JK, Howell PB, Locascio LE, Tarlov MJ, Hickman JJ (2004) Atmospheric pressure microplasmas for modifying sealed microfluidic devices. Appl Phys Lett 84:1668–1670CrossRef
35.
Zurück zum Zitat Fidalgo LM, Abell C, Huch WTS (2007) Surface-induced droplet fusion in microfluidic devices. Lab Chip 7:984–986CrossRef Fidalgo LM, Abell C, Huch WTS (2007) Surface-induced droplet fusion in microfluidic devices. Lab Chip 7:984–986CrossRef
36.
Zurück zum Zitat Finke JH, Schmolke H, Klages CP, Müller-Goymann CC (2013) Controlling solid lipid nanoparticle adhesion by polyelectrolyte multilayer surface modifications. Int J Pharm 449:59–71CrossRef Finke JH, Schmolke H, Klages CP, Müller-Goymann CC (2013) Controlling solid lipid nanoparticle adhesion by polyelectrolyte multilayer surface modifications. Int J Pharm 449:59–71CrossRef
37.
Zurück zum Zitat Gao Z, Henthorn DB, Kim CS (2008) Enhanced wettability of an SU-8 photoresist through a photografting procedure for bioanalytical device applications. J Micromech Microeng 18:045013 (7 pp)CrossRef Gao Z, Henthorn DB, Kim CS (2008) Enhanced wettability of an SU-8 photoresist through a photografting procedure for bioanalytical device applications. J Micromech Microeng 18:045013 (7 pp)CrossRef
38.
Zurück zum Zitat Glass NR, Tjeung R, Chan P, Yeo LY, Friend JR (2011) Organosilane deposition for microfluidic applications. Biomicrofluidics 5:036501–036507CrossRef Glass NR, Tjeung R, Chan P, Yeo LY, Friend JR (2011) Organosilane deposition for microfluidic applications. Biomicrofluidics 5:036501–036507CrossRef
39.
Zurück zum Zitat Glavan AC, Martinez RV, Subramaniam AB, Yoon HJ, Nunes RMD, Lange H, Thuo MM, Whitesides GM (2014) Omniphobic “RF Paper” produced by silanization of paper with fluoroalkyltrichlorsilanes. Adv Funct Mater 24:60–70CrossRef Glavan AC, Martinez RV, Subramaniam AB, Yoon HJ, Nunes RMD, Lange H, Thuo MM, Whitesides GM (2014) Omniphobic “RF Paper” produced by silanization of paper with fluoroalkyltrichlorsilanes. Adv Funct Mater 24:60–70CrossRef
40.
Zurück zum Zitat Gogolides E, Constantoudis V, Kokkoris G, Kontziampasis D, Tsougeni K, Boulousis G, Vlachopoulou M, Tserepi A (2011) Controlling roughness: from etching to nanotexturing and plasma-directed organization on organic and inorganic materials. J Phys D Appl Phys 44:174021CrossRef Gogolides E, Constantoudis V, Kokkoris G, Kontziampasis D, Tsougeni K, Boulousis G, Vlachopoulou M, Tserepi A (2011) Controlling roughness: from etching to nanotexturing and plasma-directed organization on organic and inorganic materials. J Phys D Appl Phys 44:174021CrossRef
41.
Zurück zum Zitat Gomez-Sjoberg R, Leyrat AA, Houseman BT, Shokat K, Quake SR (2010) Biocompatibility and reduced drug absorption of sol-gel-treated poly(dimethyl siloxane) for microfluidic cell culture applications. Anal Chem 82:8954–8960CrossRef Gomez-Sjoberg R, Leyrat AA, Houseman BT, Shokat K, Quake SR (2010) Biocompatibility and reduced drug absorption of sol-gel-treated poly(dimethyl siloxane) for microfluidic cell culture applications. Anal Chem 82:8954–8960CrossRef
42.
Zurück zum Zitat Gross-Kosche P, Low SP, Guo R, Steele DA, Michelmore A (2014) Deposition of nonfouling plasma polymers to a thermoplastic silicone elastomer for microfluidic and biomedical applications. J. Appl Polym Sci 131. doi:10.1002/APP.40500 Gross-Kosche P, Low SP, Guo R, Steele DA, Michelmore A (2014) Deposition of nonfouling plasma polymers to a thermoplastic silicone elastomer for microfluidic and biomedical applications. J. Appl Polym Sci 131. doi:10.​1002/​APP.​40500
43.
Zurück zum Zitat Habouti S, Kunstmann-Olsen C, Hoyland JD, Rubahn HG, Es-Souni M (2014) In situ ZnO–PVA nanocomposite coated microfluidic chips for biosensing. Appl Phys A 115:645–649CrossRef Habouti S, Kunstmann-Olsen C, Hoyland JD, Rubahn HG, Es-Souni M (2014) In situ ZnO–PVA nanocomposite coated microfluidic chips for biosensing. Appl Phys A 115:645–649CrossRef
44.
Zurück zum Zitat Hamada Y, Ono T, Akagi T, Ishihara K, Ichiki T (2007) Photochemical oxidation of poly(dimethylsiloxane) surface and subsequent coating with biomimetic phosphorylcholine polymer. J Photopolym Sci Technol 20:245–249CrossRef Hamada Y, Ono T, Akagi T, Ishihara K, Ichiki T (2007) Photochemical oxidation of poly(dimethylsiloxane) surface and subsequent coating with biomimetic phosphorylcholine polymer. J Photopolym Sci Technol 20:245–249CrossRef
45.
Zurück zum Zitat He M, Herr AE (2010) Polyacrylamide gel photopatterning enables automated protein immunoblotting in a two-dimensional microdevice. J Am Chem Soc 132:2512–2513CrossRef He M, Herr AE (2010) Polyacrylamide gel photopatterning enables automated protein immunoblotting in a two-dimensional microdevice. J Am Chem Soc 132:2512–2513CrossRef
46.
47.
Zurück zum Zitat Hergelová B, Homola T, Zahoranová A, Plecenik T (2012) Plasma surface modification of biocompatible polymers using atmospheric pressure dielectric barrier discharge. In: WDS’12 proceedings of contributed papers, Part II, pp 128–133. ISBN 978-80-7378-225-2 Hergelová B, Homola T, Zahoranová A, Plecenik T (2012) Plasma surface modification of biocompatible polymers using atmospheric pressure dielectric barrier discharge. In: WDS’12 proceedings of contributed papers, Part II, pp 128–133. ISBN 978-80-7378-225-2
48.
Zurück zum Zitat Horvath J, Dolnik V (2001) Polymer wall coatings for capillary electrophoresis. Electrophoresis 22:644–655CrossRef Horvath J, Dolnik V (2001) Polymer wall coatings for capillary electrophoresis. Electrophoresis 22:644–655CrossRef
49.
Zurück zum Zitat Idota N, Tsukahara T, Sato K (2009) The use of electron beam lithographic graft-polymerization on thermoresponsive polymers for regulating the directionality of cell attachment and detachment. Biomaterials 30:2095–2101CrossRef Idota N, Tsukahara T, Sato K (2009) The use of electron beam lithographic graft-polymerization on thermoresponsive polymers for regulating the directionality of cell attachment and detachment. Biomaterials 30:2095–2101CrossRef
50.
Zurück zum Zitat Jackson JM, Witek MA, Hupert ML, Brady C, Pullagurla S, Kamande J, Aufforth RD, Tignanelli CJ, Torphy RJ, Yeh JJ, Soper SA (2014) UV activation of polymeric high aspect ratio microstructures: ramifications in antibody surface loading for circulating tumor cell selection. Lab Chip 14:106–117CrossRef Jackson JM, Witek MA, Hupert ML, Brady C, Pullagurla S, Kamande J, Aufforth RD, Tignanelli CJ, Torphy RJ, Yeh JJ, Soper SA (2014) UV activation of polymeric high aspect ratio microstructures: ramifications in antibody surface loading for circulating tumor cell selection. Lab Chip 14:106–117CrossRef
51.
Zurück zum Zitat Jena RK, Yue CY (2012) Cyclic olefin copolymer based microfluidic devices for biochip applications: ultraviolet surface grafting using 2-methacryloyloxyethyl phosphorylcholine. Biomicrofluidics 6:012822 (12 pp) Jena RK, Yue CY (2012) Cyclic olefin copolymer based microfluidic devices for biochip applications: ultraviolet surface grafting using 2-methacryloyloxyethyl phosphorylcholine. Biomicrofluidics 6:012822 (12 pp)
52.
Zurück zum Zitat Jokinen V, Suvanto P, Franssilab S (2012) Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers. Biomicrofluidics 6:016501CrossRef Jokinen V, Suvanto P, Franssilab S (2012) Oxygen and nitrogen plasma hydrophilization and hydrophobic recovery of polymers. Biomicrofluidics 6:016501CrossRef
53.
Zurück zum Zitat Kano S, Matsumoto S, Ichikawa N (2009) Surface treated PDMS by UV-Vis light applied to micro-fluidic device. In: Vengallatore S, Bagdahn J, Sheppard NF, Spearing SM (eds) Microelectromechanical systems—materials and devices II book series: Materials Research Society symposium proceedings, vol 1139, pp 121–125 Kano S, Matsumoto S, Ichikawa N (2009) Surface treated PDMS by UV-Vis light applied to micro-fluidic device. In: Vengallatore S, Bagdahn J, Sheppard NF, Spearing SM (eds) Microelectromechanical systems—materials and devices II book series: Materials Research Society symposium proceedings, vol 1139, pp 121–125
54.
Zurück zum Zitat Katayama H, Ishihama Y, Asakawa N (1998) Stable capillary coating with successive multiple ionic polymer layers. Anal Chem 70:2254–2260CrossRef Katayama H, Ishihama Y, Asakawa N (1998) Stable capillary coating with successive multiple ionic polymer layers. Anal Chem 70:2254–2260CrossRef
55.
Zurück zum Zitat Kim D, Herr AE (2013) Protein immobilization techniques for microfluidic assays. Biomicrofluidics 7:041501CrossRef Kim D, Herr AE (2013) Protein immobilization techniques for microfluidic assays. Biomicrofluidics 7:041501CrossRef
56.
Zurück zum Zitat Kim D, Karns K, Tia SQ (2012) Electrostatic protein immobilization using charged polyacrylamide gels and cationic detergent microfluidic western blotting. Anal Chem 84:2533–2540CrossRef Kim D, Karns K, Tia SQ (2012) Electrostatic protein immobilization using charged polyacrylamide gels and cationic detergent microfluidic western blotting. Anal Chem 84:2533–2540CrossRef
57.
Zurück zum Zitat Kim YJ, Taniguchi Y, Murase K, Taguchi Y, Sugimura H (2009) Vacuum ultraviolet-induced surface modification of cyclo-olefin polymer substrates for photochemical activation bonding. Appl Surf Sci 255:3648–3654CrossRef Kim YJ, Taniguchi Y, Murase K, Taguchi Y, Sugimura H (2009) Vacuum ultraviolet-induced surface modification of cyclo-olefin polymer substrates for photochemical activation bonding. Appl Surf Sci 255:3648–3654CrossRef
58.
Zurück zum Zitat Klages CP, Berger C, Eichler M, Thomas M (2007) Microplasma-based treatment of inner surfaces in microfluidic devices. Contrib Plasma Phys 47:1–8CrossRef Klages CP, Berger C, Eichler M, Thomas M (2007) Microplasma-based treatment of inner surfaces in microfluidic devices. Contrib Plasma Phys 47:1–8CrossRef
59.
Zurück zum Zitat Klages CP, Höpfner K, Kläke N, Thyen R (2000) Surface functionalization at atmospheric pressure by DBD-based pulsed plasma polymerization. Plasmas Polym 5:79–89CrossRef Klages CP, Höpfner K, Kläke N, Thyen R (2000) Surface functionalization at atmospheric pressure by DBD-based pulsed plasma polymerization. Plasmas Polym 5:79–89CrossRef
60.
Zurück zum Zitat Klages CP, Thyen R (2000) German Patent DE 10035177 C 2 Klages CP, Thyen R (2000) German Patent DE 10035177 C 2
61.
Zurück zum Zitat Koh WG, Pishko M (2005) Immobilization of multi-enzyme microreactors inside microfluidic devices. Sens Actuators B 106:335–342CrossRef Koh WG, Pishko M (2005) Immobilization of multi-enzyme microreactors inside microfluidic devices. Sens Actuators B 106:335–342CrossRef
62.
Zurück zum Zitat Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021CrossRef Kolb HC, Finn MG, Sharpless KB (2001) Click chemistry: diverse chemical function from a few good reactions. Angew Chem Int Ed 40:2004–2021CrossRef
63.
Zurück zum Zitat Kovach KM, Capaona JR, Gupta AS, Potkay JA (2014) The effects of PEG-based surface modification of PDMS microchannels on long-term hemocompatibility. J Biomed Mater Res A 102A:4195–4205 Kovach KM, Capaona JR, Gupta AS, Potkay JA (2014) The effects of PEG-based surface modification of PDMS microchannels on long-term hemocompatibility. J Biomed Mater Res A 102A:4195–4205
64.
Zurück zum Zitat Kumar A, Srivastava A, Galaev IY, Mattiasson B (2007) Smart polymers: physical forms and biomedical applications. Prog Polym Sci 32:1205–1237CrossRef Kumar A, Srivastava A, Galaev IY, Mattiasson B (2007) Smart polymers: physical forms and biomedical applications. Prog Polym Sci 32:1205–1237CrossRef
65.
Zurück zum Zitat Launiere C, Gaskill M, Czaplewski G (2012) Channel surface patterning of alternating biomimetic protein combinations for enhanced microfluidic tumor cell isolation. Anal Chem 84:4022–4028CrossRef Launiere C, Gaskill M, Czaplewski G (2012) Channel surface patterning of alternating biomimetic protein combinations for enhanced microfluidic tumor cell isolation. Anal Chem 84:4022–4028CrossRef
66.
Zurück zum Zitat Lee AG, Arena CP, Beebe DJ, Palecek SP (2010) Development of macroporous poly(ethylene glycol) hydrogels arrays within microfluidic channels. Biomacromolecules 11:3316–3324CrossRef Lee AG, Arena CP, Beebe DJ, Palecek SP (2010) Development of macroporous poly(ethylene glycol) hydrogels arrays within microfluidic channels. Biomacromolecules 11:3316–3324CrossRef
67.
Zurück zum Zitat Lee AG, Beebe DJ, Palecek SP (2012) Quantification of kinase activity in cell lysates via photopatterned macroporous poly(ethylene glycol) hydrogel arrays in microfluidic channels. Biomed Microdevices 14:247–257CrossRef Lee AG, Beebe DJ, Palecek SP (2012) Quantification of kinase activity in cell lysates via photopatterned macroporous poly(ethylene glycol) hydrogel arrays in microfluidic channels. Biomed Microdevices 14:247–257CrossRef
68.
Zurück zum Zitat Lee KK, Bhushan B, Hansford D (2005) Nanotribological characterization of fluoropolymer thin films for biomedical micro/nanoelectromechanical system applications. J Vac Sci Technol A 23:804–810CrossRef Lee KK, Bhushan B, Hansford D (2005) Nanotribological characterization of fluoropolymer thin films for biomedical micro/nanoelectromechanical system applications. J Vac Sci Technol A 23:804–810CrossRef
69.
Zurück zum Zitat Lee KS, Ram RJ (2007) Plastic–PDMS bonding for high pressure hydrolytically stable active microfluidics. Lab Chip 9:1618–1624CrossRef Lee KS, Ram RJ (2007) Plastic–PDMS bonding for high pressure hydrolytically stable active microfluidics. Lab Chip 9:1618–1624CrossRef
70.
Zurück zum Zitat Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ (2004) Permanent, nonleaching antibacterial surfaces 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5:877–882CrossRef Lee SB, Koepsel RR, Morley SW, Matyjaszewski K, Sun Y, Russell AJ (2004) Permanent, nonleaching antibacterial surfaces 1. Synthesis by atom transfer radical polymerization. Biomacromolecules 5:877–882CrossRef
71.
Zurück zum Zitat Leskelä M, Ritala M (2002) Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films 409:138–146CrossRef Leskelä M, Ritala M (2002) Atomic layer deposition (ALD): from precursors to thin film structures. Thin Solid Films 409:138–146CrossRef
72.
Zurück zum Zitat Liu Z, Xiao L, Xu B (2012) Covalently immobilized biomolecule gradient on hydrogel surface using a gradient generating microfluidic device for a quantitative mesenchymal stem cell study. Biomicrofluidics 6:024111–024111-12CrossRef Liu Z, Xiao L, Xu B (2012) Covalently immobilized biomolecule gradient on hydrogel surface using a gradient generating microfluidic device for a quantitative mesenchymal stem cell study. Biomicrofluidics 6:024111–024111-12CrossRef
73.
Zurück zum Zitat Lugli F, Firavanti G, Pattani D, Pasquali L, Montecchi M, Gentili D, Murgia M, Hemmatian Z, Cavallini M, Zerbetto F (2013) And yet it moves! Microfluidics without channels and troughs. Adv Funct Mater 23:5543–5549CrossRef Lugli F, Firavanti G, Pattani D, Pasquali L, Montecchi M, Gentili D, Murgia M, Hemmatian Z, Cavallini M, Zerbetto F (2013) And yet it moves! Microfluidics without channels and troughs. Adv Funct Mater 23:5543–5549CrossRef
74.
Zurück zum Zitat Lycans RM, Higgins CB, Tanner MS, Blough ER, Scott Day B (2014) Plasma treatment of PDMS for applications of in vitro motility assays. Colloids Surf B Biointerfaces 116:687–694CrossRef Lycans RM, Higgins CB, Tanner MS, Blough ER, Scott Day B (2014) Plasma treatment of PDMS for applications of in vitro motility assays. Colloids Surf B Biointerfaces 116:687–694CrossRef
75.
Zurück zum Zitat Ma H, Zhang M (2014) Superhydrophilic titania wall coating in microchannels by in situ sol–gel modification. J Mater Sci 49:8123–8126CrossRef Ma H, Zhang M (2014) Superhydrophilic titania wall coating in microchannels by in situ sol–gel modification. J Mater Sci 49:8123–8126CrossRef
76.
Zurück zum Zitat Martin IT, Dressen B, Boggs M, Liu Y, Henry CS, Fisher ER (2007) Plasma modification of PDMS microfluidic devices for control of electroosmotic flow. Plasma Process Polym 4:414–424CrossRef Martin IT, Dressen B, Boggs M, Liu Y, Henry CS, Fisher ER (2007) Plasma modification of PDMS microfluidic devices for control of electroosmotic flow. Plasma Process Polym 4:414–424CrossRef
77.
Zurück zum Zitat Mascia L, Zhang Z (1996) Internal surface interactions in the plasma treatment of fine bore fluoropolymer tubings. Appl Surf Sci 93:1–7CrossRef Mascia L, Zhang Z (1996) Internal surface interactions in the plasma treatment of fine bore fluoropolymer tubings. Appl Surf Sci 93:1–7CrossRef
78.
Zurück zum Zitat Matsuda T, Ohya S (2005) Photoiniferter-based thermoresponsive graft architecture with albumin covalently fixed at growing graft chain end. Langmuir 21:9660–9665CrossRef Matsuda T, Ohya S (2005) Photoiniferter-based thermoresponsive graft architecture with albumin covalently fixed at growing graft chain end. Langmuir 21:9660–9665CrossRef
79.
Zurück zum Zitat Matyjaszewski K, Dong H, Jukabowski W, Pietrasik J, Kusomo A (2007) Grafting from surfaces for “Everyone”: ARGET ATRP in the presence of air. Langmuir 23:4528–4531CrossRef Matyjaszewski K, Dong H, Jukabowski W, Pietrasik J, Kusomo A (2007) Grafting from surfaces for “Everyone”: ARGET ATRP in the presence of air. Langmuir 23:4528–4531CrossRef
80.
Zurück zum Zitat Matyjaszewski K, Miller PJ, Shukla N, Immaraporn B, Gelman A, Luokala BB, Siclovan TM, Kickelbick G, Vallant T, Hoffmann H, Pakula T (1999) Polymers at interfaces: using atomic transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator. Macromolecules 32:8716–8724CrossRef Matyjaszewski K, Miller PJ, Shukla N, Immaraporn B, Gelman A, Luokala BB, Siclovan TM, Kickelbick G, Vallant T, Hoffmann H, Pakula T (1999) Polymers at interfaces: using atomic transfer radical polymerization in the controlled growth of homopolymers and block copolymers from silicon surfaces in the absence of untethered sacrificial initiator. Macromolecules 32:8716–8724CrossRef
81.
Zurück zum Zitat McCarley RL, Vaidya B, Wei S, Smith AF, Patel AB, Feng J, Murphy MC, Soper SA (2005) Resist-free patterning of surface architectures in polymer-based microanalytical devices. J Am Chem Soc 127:842–843CrossRef McCarley RL, Vaidya B, Wei S, Smith AF, Patel AB, Feng J, Murphy MC, Soper SA (2005) Resist-free patterning of surface architectures in polymer-based microanalytical devices. J Am Chem Soc 127:842–843CrossRef
82.
Zurück zum Zitat McNesby JR, Okabe H (1964) Vacuum ultraviolet photochemistry. In: Noyes Jr WA, Hammond GS, Pitts Jr JN (eds) Advances in photochemistry, vol 3. Interscience, New York McNesby JR, Okabe H (1964) Vacuum ultraviolet photochemistry. In: Noyes Jr WA, Hammond GS, Pitts Jr JN (eds) Advances in photochemistry, vol 3. Interscience, New York
83.
Zurück zum Zitat Moad G, Chong YK, Postma A, Rizzardo E, Thang SH (2005) Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer 46:8458–8468CrossRef Moad G, Chong YK, Postma A, Rizzardo E, Thang SH (2005) Advances in RAFT polymerization: the synthesis of polymers with defined end-groups. Polymer 46:8458–8468CrossRef
84.
Zurück zum Zitat Nakayama Y, Matsuda T, Irie M (1993) A novel surface photograft polymerization method for fabricated devices. Trans Am Soc Artif Intern Org J 39:M545–M549CrossRef Nakayama Y, Matsuda T, Irie M (1993) A novel surface photograft polymerization method for fabricated devices. Trans Am Soc Artif Intern Org J 39:M545–M549CrossRef
85.
Zurück zum Zitat Nakayama Y, Matsuda T (1996) Surface macromolecular architectural designs using photo-graft copolymerization based on photo-chemistry of benzyl-N,N-diethyldithiocarbamate. Macromolecules 29:8622–8630CrossRef Nakayama Y, Matsuda T (1996) Surface macromolecular architectural designs using photo-graft copolymerization based on photo-chemistry of benzyl-N,N-diethyldithiocarbamate. Macromolecules 29:8622–8630CrossRef
86.
Zurück zum Zitat Nejadnik MR, Olsson ALJ, Sharma PK, van der Mei HC, Norde W, Busscher HJ (2009) Adsorption of Pluronic F-127 on surfaces with different hydrophobicities probed by quartz crystal microbalance with dissipation. Langmuir 25:6245–6249CrossRef Nejadnik MR, Olsson ALJ, Sharma PK, van der Mei HC, Norde W, Busscher HJ (2009) Adsorption of Pluronic F-127 on surfaces with different hydrophobicities probed by quartz crystal microbalance with dissipation. Langmuir 25:6245–6249CrossRef
87.
Zurück zum Zitat Niedl RR, Beta C (2015) Hydrogel-driven paper-based microfluidics. Lab Chip 15:2452–2459CrossRef Niedl RR, Beta C (2015) Hydrogel-driven paper-based microfluidics. Lab Chip 15:2452–2459CrossRef
88.
Zurück zum Zitat Olsen K, Ross DJ, Tarlov MJ (2002) Immobilization of DNA hydrogel plugs in microfluidic channels. Anal Chem 74:1436–1441CrossRef Olsen K, Ross DJ, Tarlov MJ (2002) Immobilization of DNA hydrogel plugs in microfluidic channels. Anal Chem 74:1436–1441CrossRef
89.
Zurück zum Zitat Park JJ, Luo X, Yi H, Valentine TM, Payne GF, Bentley WE, Ghodssi R, Rubloff GW (2006) Chitosan-mediated in situ biomolecule assembly in completely packaged microfluidic devices. Lab Chip 6:1315–1321CrossRef Park JJ, Luo X, Yi H, Valentine TM, Payne GF, Bentley WE, Ghodssi R, Rubloff GW (2006) Chitosan-mediated in situ biomolecule assembly in completely packaged microfluidic devices. Lab Chip 6:1315–1321CrossRef
90.
Zurück zum Zitat Patrito N, McLachlan JM, Faria SN, Chan J, Norton PR (2007) A novel metal-protected plasma treatment for the robust bonding of polydimethylsiloxane. Lab Chip 7:1813–1818CrossRef Patrito N, McLachlan JM, Faria SN, Chan J, Norton PR (2007) A novel metal-protected plasma treatment for the robust bonding of polydimethylsiloxane. Lab Chip 7:1813–1818CrossRef
91.
Zurück zum Zitat Pei SN, Valley JK, Neale SL, Jamshidi A, Hsu HY, Wu MC (2010) Light-actuated digital microfluidics for large-scale, parallel manipulation of arbitrarily sized droplets. In: Abstracts of the 23rd IEEE international conference on micro electro mechanical systems (MEMS), Wanchai, Hong Kong, 24–28 January 2010, pp 252–255. INSPEc accession number: 11229702. doi:10.1109/MEMSYS.2010.5442519 Pei SN, Valley JK, Neale SL, Jamshidi A, Hsu HY, Wu MC (2010) Light-actuated digital microfluidics for large-scale, parallel manipulation of arbitrarily sized droplets. In: Abstracts of the 23rd IEEE international conference on micro electro mechanical systems (MEMS), Wanchai, Hong Kong, 24–28 January 2010, pp 252–255. INSPEc accession number: 11229702. doi:10.​1109/​MEMSYS.​2010.​5442519
92.
Zurück zum Zitat Piao Y, Han DJ, Reza Azad M, Park M, Seo TS (2015) Enzyme incorporated microfluidic device for in-situ glucose detection in water-in-air microdroplets. Biosens Bioelectron 65:220–225CrossRef Piao Y, Han DJ, Reza Azad M, Park M, Seo TS (2015) Enzyme incorporated microfluidic device for in-situ glucose detection in water-in-air microdroplets. Biosens Bioelectron 65:220–225CrossRef
93.
Zurück zum Zitat Popat KC, Johnson RW, Desai TA (2003) Characterization of vapor deposited poly ethylene glycol films on silicon surfaces for surface modification of microfluidic systems. J Vac Sci Technol B 22:645–654CrossRef Popat KC, Johnson RW, Desai TA (2003) Characterization of vapor deposited poly ethylene glycol films on silicon surfaces for surface modification of microfluidic systems. J Vac Sci Technol B 22:645–654CrossRef
94.
Zurück zum Zitat Prakash S, Karacor MB (2011) Characterization stability of “click” modified glass surfaces to common microfabrication conditions and aqueous electrolyte solutions. Nanoscale 3:3309–3315CrossRef Prakash S, Karacor MB (2011) Characterization stability of “click” modified glass surfaces to common microfabrication conditions and aqueous electrolyte solutions. Nanoscale 3:3309–3315CrossRef
95.
Zurück zum Zitat Priest C, Gruner PJ, Szili EJ, Al-Bataineh SA, Bradley JW, Ralston J, Steele DA, Short RD (2011) Microplasma patterning of bonded microchannels using high-precision “injected” electrodes. Lab Chip 11:541–544CrossRef Priest C, Gruner PJ, Szili EJ, Al-Bataineh SA, Bradley JW, Ralston J, Steele DA, Short RD (2011) Microplasma patterning of bonded microchannels using high-precision “injected” electrodes. Lab Chip 11:541–544CrossRef
96.
Zurück zum Zitat Puchberger-Enengl D, Kruztler C, Keplinger F, Vellekoop MJ (2014) Single-step design of hydrogel based microfluidic assays for rapid diagnostics. Lab Chip 14:378–383CrossRef Puchberger-Enengl D, Kruztler C, Keplinger F, Vellekoop MJ (2014) Single-step design of hydrogel based microfluidic assays for rapid diagnostics. Lab Chip 14:378–383CrossRef
97.
Zurück zum Zitat Reinholt SJ, Baeumner AJ (2014) Microfluidic isolation of nucleic acids. Angew Chem Int Ed 53:13988–14001CrossRef Reinholt SJ, Baeumner AJ (2014) Microfluidic isolation of nucleic acids. Angew Chem Int Ed 53:13988–14001CrossRef
98.
Zurück zum Zitat Riaz A, Gandhiraman RP, Dimov IK, Basabe-Desmonts L, Ducree J, Daniels S, Riccoa AJ, Lee LP (2012) Reactive deposition of nano-films in deep polymeric microcavities. Lab Chip 12:4877–4883CrossRef Riaz A, Gandhiraman RP, Dimov IK, Basabe-Desmonts L, Ducree J, Daniels S, Riccoa AJ, Lee LP (2012) Reactive deposition of nano-films in deep polymeric microcavities. Lab Chip 12:4877–4883CrossRef
99.
Zurück zum Zitat Riche CT, Marin BC, Malmstadt N, Gupta M (2011) Vapor deposition of crosslinked fluoropolymer barrier coatings onto pre-assembled microfluidic devices. Lab Chip 11:3049–3052CrossRef Riche CT, Marin BC, Malmstadt N, Gupta M (2011) Vapor deposition of crosslinked fluoropolymer barrier coatings onto pre-assembled microfluidic devices. Lab Chip 11:3049–3052CrossRef
100.
Zurück zum Zitat Riche CT, Zhang C, Gupta M, Malmstadt N (2014) Fluoropolymer surface coatings to control droplets in microfluidic devices. Lab Chip 14:1834–1841CrossRef Riche CT, Zhang C, Gupta M, Malmstadt N (2014) Fluoropolymer surface coatings to control droplets in microfluidic devices. Lab Chip 14:1834–1841CrossRef
101.
Zurück zum Zitat Righetti PG, Gelfi C, Verzola B, Castelletti L (2001) The state of the art of dynamic coatings. Electrophoresis 22:603–611CrossRef Righetti PG, Gelfi C, Verzola B, Castelletti L (2001) The state of the art of dynamic coatings. Electrophoresis 22:603–611CrossRef
102.
Zurück zum Zitat Roman GT, Hlaus T, Bass KJ, Seelhammer TG, Culbertson CT (2005) Sol-gel modified poly(dimethylsiloxane) microfluidic devices with high electroosmotic mobilities and hydrophilic channel wall characteristics. Anal Chem 77:1414–1422CrossRef Roman GT, Hlaus T, Bass KJ, Seelhammer TG, Culbertson CT (2005) Sol-gel modified poly(dimethylsiloxane) microfluidic devices with high electroosmotic mobilities and hydrophilic channel wall characteristics. Anal Chem 77:1414–1422CrossRef
103.
Zurück zum Zitat Roy S, Yue CY, Venkatraman SS (2013) Fabrication of smart COC chips: advantages of N-vinylpyrrolidone (NVP) monomer over other hydrophilic monomers. Sens Actuators B 178:86–95CrossRef Roy S, Yue CY, Venkatraman SS (2013) Fabrication of smart COC chips: advantages of N-vinylpyrrolidone (NVP) monomer over other hydrophilic monomers. Sens Actuators B 178:86–95CrossRef
104.
Zurück zum Zitat Sakai-Kato K, Kato M, Toyo’oka T (2002) On-line trypsin-encapsulated enzyme reactor by the sol-gel method integrated into capillary electrophoresis. Anal Chem 74:2943–2949CrossRef Sakai-Kato K, Kato M, Toyo’oka T (2002) On-line trypsin-encapsulated enzyme reactor by the sol-gel method integrated into capillary electrophoresis. Anal Chem 74:2943–2949CrossRef
105.
Zurück zum Zitat Sakai-Kato K, Kato M, Toyo’oka T (2003) Creation of an on-chip enzyme reactor by encapsulating trypsin in sol-gel on a plastic microchip. Anal Chem 75:388–393CrossRef Sakai-Kato K, Kato M, Toyo’oka T (2003) Creation of an on-chip enzyme reactor by encapsulating trypsin in sol-gel on a plastic microchip. Anal Chem 75:388–393CrossRef
106.
Zurück zum Zitat Schmolke H (2014) Funktionale Polyelektrolytschichten für mikrofluidische Systeme. In: Fraunhofer IST, Braunschweig (eds) Berichte aus Forschung und Entwicklung IST, Band 39, Fraunhofer Verlag Schmolke H (2014) Funktionale Polyelektrolytschichten für mikrofluidische Systeme. In: Fraunhofer IST, Braunschweig (eds) Berichte aus Forschung und Entwicklung IST, Band 39, Fraunhofer Verlag
107.
Zurück zum Zitat Schmolke H, Demming S, Edlich A, Magdanz V, Büttgenbach S, Franco-Lara E, Krull R, Klages CP (2010) Polyelectrolyte multilayer surface functionalization of poly(dimethylsiloxane) (PDMS) for reduction of yeast cell adhesion in microfluidic devices. Biomicrofluidics 4:044113CrossRef Schmolke H, Demming S, Edlich A, Magdanz V, Büttgenbach S, Franco-Lara E, Krull R, Klages CP (2010) Polyelectrolyte multilayer surface functionalization of poly(dimethylsiloxane) (PDMS) for reduction of yeast cell adhesion in microfluidic devices. Biomicrofluidics 4:044113CrossRef
108.
Zurück zum Zitat Schmolke H, Hartwig S, Klages CP (2011) Poly(acrylic acid)-graft-poly(ethylene glycol) preparation and adsorption on polyelectrolyte multilayers (PEMs) for custom-made antiadhesive surfaces. Phys Status Solidi A 208:1290–1300CrossRef Schmolke H, Hartwig S, Klages CP (2011) Poly(acrylic acid)-graft-poly(ethylene glycol) preparation and adsorption on polyelectrolyte multilayers (PEMs) for custom-made antiadhesive surfaces. Phys Status Solidi A 208:1290–1300CrossRef
109.
Zurück zum Zitat Schneider MH, Willaime H, Tran Y, Rezgui F, Tabeling P (2010) Wettability patterning by UV-initiated graft polymerization of poly(acrylic acid) in closed microfluidic systems of complex geometry. Anal Chem 82:8848–8855CrossRef Schneider MH, Willaime H, Tran Y, Rezgui F, Tabeling P (2010) Wettability patterning by UV-initiated graft polymerization of poly(acrylic acid) in closed microfluidic systems of complex geometry. Anal Chem 82:8848–8855CrossRef
110.
Zurück zum Zitat Schröder ME, Zurick KM, Mc Grath DE, Bernards MT (2013) Multifunctional polyampholyte hydrogels with fouling resistance and protein conjugation capacity. Biomacromolecules 14:3112–3122CrossRef Schröder ME, Zurick KM, Mc Grath DE, Bernards MT (2013) Multifunctional polyampholyte hydrogels with fouling resistance and protein conjugation capacity. Biomacromolecules 14:3112–3122CrossRef
111.
Zurück zum Zitat Schröen CGPH, Cohen Stuart MA, van der Voort Maarschalk K K, van der Padt A, van’t Riet K (1995) Influence of preadsorbed block copolymers on protein adsorption: surface properties, layer thickness, and surface coverage. Langmuir 11:3068–3074CrossRef Schröen CGPH, Cohen Stuart MA, van der Voort Maarschalk K K, van der Padt A, van’t Riet K (1995) Influence of preadsorbed block copolymers on protein adsorption: surface properties, layer thickness, and surface coverage. Langmuir 11:3068–3074CrossRef
112.
Zurück zum Zitat Seguin C, McLachlan JM, Norton PR, Lagugné-Labarthet F (2010) Surface modification of poly(dimethylsiloxane) for microfluidic assay applications. Appl Surf Sci 256:2524–2531CrossRef Seguin C, McLachlan JM, Norton PR, Lagugné-Labarthet F (2010) Surface modification of poly(dimethylsiloxane) for microfluidic assay applications. Appl Surf Sci 256:2524–2531CrossRef
113.
Zurück zum Zitat Shah AM, Yu M, Nakamura Z, Ciciliano J, Ulman M, Kotz K, Stott SL, Maheswaran S, Haber DA, Toner M (2012) Biopolymer system for cell recovery from microfluidic cell capture devices. Anal Chem 84:3682–3688CrossRef Shah AM, Yu M, Nakamura Z, Ciciliano J, Ulman M, Kotz K, Stott SL, Maheswaran S, Haber DA, Toner M (2012) Biopolymer system for cell recovery from microfluidic cell capture devices. Anal Chem 84:3682–3688CrossRef
114.
Zurück zum Zitat Shirai K, Mawatari K, Kitamori T (2014) Extended nanofluidic immunochemical reaction with femtoliter sample volumes. Small 10:1514–1522CrossRef Shirai K, Mawatari K, Kitamori T (2014) Extended nanofluidic immunochemical reaction with femtoliter sample volumes. Small 10:1514–1522CrossRef
115.
Zurück zum Zitat Spagnola JC, Gong B, Parsons GN (2010) Surface texture and wetting stability of polydimethylsiloxane coated with aluminum oxide at low temperature by atomic layer deposition. J Vac Sci Technol A 28:1330–1337CrossRef Spagnola JC, Gong B, Parsons GN (2010) Surface texture and wetting stability of polydimethylsiloxane coated with aluminum oxide at low temperature by atomic layer deposition. J Vac Sci Technol A 28:1330–1337CrossRef
116.
Zurück zum Zitat Stojkovič G, Krivec M, Vesel A, Marinšeka M, Žnidaršič-Plazla P (2014) Surface cell immobilization within perfluoralkoxy microchannels. Appl Surf Sci 320:810–817CrossRef Stojkovič G, Krivec M, Vesel A, Marinšeka M, Žnidaršič-Plazla P (2014) Surface cell immobilization within perfluoralkoxy microchannels. Appl Surf Sci 320:810–817CrossRef
117.
Zurück zum Zitat Sui G, Wang J, Lee CC, Lu W, Lee SP, Leyton JV, Wu AM, Tseng HR (2006) Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels. Anal Chem 78:5543–5551CrossRef Sui G, Wang J, Lee CC, Lu W, Lee SP, Leyton JV, Wu AM, Tseng HR (2006) Solution-phase surface modification in intact poly(dimethylsiloxane) microfluidic channels. Anal Chem 78:5543–5551CrossRef
118.
Zurück zum Zitat Tehranirokh M, Kouzani AZ, Francis PS (2013) Microfluidic devices for cell cultivation and proliferation. Biomicrofluidics 7:051502 (32pp) Tehranirokh M, Kouzani AZ, Francis PS (2013) Microfluidic devices for cell cultivation and proliferation. Biomicrofluidics 7:051502 (32pp)
119.
Zurück zum Zitat Thévenot J, Oliveira H, Sandre O, Lecommandoux S (2013) Magnetic responsive polymer composite materials. Chem Soc Rev 42:7099–7116CrossRef Thévenot J, Oliveira H, Sandre O, Lecommandoux S (2013) Magnetic responsive polymer composite materials. Chem Soc Rev 42:7099–7116CrossRef
120.
Zurück zum Zitat Thomas M, Borris J, Dohse A, Eichler M, Hinze A, Lachmann K, Nagel K, Klages CP (2012) Plasma printing and related techniques - patterning of surfaces using microplasmas at atmospheric pressure. Plasma Process Polym 9:1086–1103CrossRef Thomas M, Borris J, Dohse A, Eichler M, Hinze A, Lachmann K, Nagel K, Klages CP (2012) Plasma printing and related techniques - patterning of surfaces using microplasmas at atmospheric pressure. Plasma Process Polym 9:1086–1103CrossRef
121.
Zurück zum Zitat Tia SQ, He M, Kim D (2011) Multianalyte on-chip native western blotting. Anal Chem 83:3581–3588CrossRef Tia SQ, He M, Kim D (2011) Multianalyte on-chip native western blotting. Anal Chem 83:3581–3588CrossRef
122.
Zurück zum Zitat Ting YK, Liu CC, Park SM, Jiang H, Nealey PF, Wendt AE (2010) Surface roughening of polystyrene and poly(methyl methacrylate) in Ar/O2 plasma etching. Polymers 2:649–663CrossRef Ting YK, Liu CC, Park SM, Jiang H, Nealey PF, Wendt AE (2010) Surface roughening of polystyrene and poly(methyl methacrylate) in Ar/O2 plasma etching. Polymers 2:649–663CrossRef
123.
Zurück zum Zitat Tran TB, Cho S, Min J (2013) Hydrogel-based diffusion chip with electric cell-substrate impedance sensing (ECIS) integration for cell viability assay and drug toxicity screening. Biosens Bioelectron 50:453–459CrossRef Tran TB, Cho S, Min J (2013) Hydrogel-based diffusion chip with electric cell-substrate impedance sensing (ECIS) integration for cell viability assay and drug toxicity screening. Biosens Bioelectron 50:453–459CrossRef
124.
Zurück zum Zitat Tsao CW, Hromada L, Liu J, Kumar P, DeVoe DL (2007) Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7:499–505CrossRef Tsao CW, Hromada L, Liu J, Kumar P, DeVoe DL (2007) Low temperature bonding of PMMA and COC microfluidic substrates using UV/ozone surface treatment. Lab Chip 7:499–505CrossRef
125.
Zurück zum Zitat Van Midwoud PM, Janse A, Merema MT, Groothuis GMM, Verpoorte E (2012) Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal Chem 84:3938–3944CrossRef Van Midwoud PM, Janse A, Merema MT, Groothuis GMM, Verpoorte E (2012) Comparison of biocompatibility and adsorption properties of different plastics for advanced microfluidic cell and tissue culture models. Anal Chem 84:3938–3944CrossRef
126.
Zurück zum Zitat Wei S, Vaidya B, Patel AB, Soper SA, McCarley RL (2005) Photochemically patterned poly(methyl methacrylate) surfaces used in the fabrication of microanalytical devices. J Phys Chem B 109:16988–16996CrossRef Wei S, Vaidya B, Patel AB, Soper SA, McCarley RL (2005) Photochemically patterned poly(methyl methacrylate) surfaces used in the fabrication of microanalytical devices. J Phys Chem B 109:16988–16996CrossRef
127.
Zurück zum Zitat Wen J, Legendre LA, Bienvenue JM, Landers JP (2008) Purification of nucleic acids in microfluidic devices. Anal Chem 80:6472–6479CrossRef Wen J, Legendre LA, Bienvenue JM, Landers JP (2008) Purification of nucleic acids in microfluidic devices. Anal Chem 80:6472–6479CrossRef
128.
Zurück zum Zitat West J, Michels A, Kittel S, Jacob P, Franzke J (2007) Microplasma writing for surface-directed millifluidics. Lab Chip 7:981–983CrossRef West J, Michels A, Kittel S, Jacob P, Franzke J (2007) Microplasma writing for surface-directed millifluidics. Lab Chip 7:981–983CrossRef
129.
Zurück zum Zitat Wu H, Tian Y, Liu B, Lu H, Wang X, Zhai J, Jin H, Yang P, Xu Y, Wang H (2004) Titania and alumina sol-gel-derived microfluidics enzymatic-reactors for peptide mapping: design, characterization, and performance. J Proteome Res 3:1201–1209CrossRef Wu H, Tian Y, Liu B, Lu H, Wang X, Zhai J, Jin H, Yang P, Xu Y, Wang H (2004) Titania and alumina sol-gel-derived microfluidics enzymatic-reactors for peptide mapping: design, characterization, and performance. J Proteome Res 3:1201–1209CrossRef
130.
Zurück zum Zitat Wright JD, Sommerdijk NAJM (2001) Sol-gel materials chemistry and applications. CRC Press, Boca Raton Wright JD, Sommerdijk NAJM (2001) Sol-gel materials chemistry and applications. CRC Press, Boca Raton
131.
Zurück zum Zitat Yang WT, Rånby B (1996) Radical living graft polymerization on the surface of polymeric material. Macromolecules 29:3308–3310CrossRef Yang WT, Rånby B (1996) Radical living graft polymerization on the surface of polymeric material. Macromolecules 29:3308–3310CrossRef
132.
Zurück zum Zitat Ziółkowski B, Czugala M, Diamond D (2012) Integrating stimulus responsive materials and microfluidics: the key to next-generation chemical sensors. J Intel Mat Syst Str 24:2221–2238CrossRef Ziółkowski B, Czugala M, Diamond D (2012) Integrating stimulus responsive materials and microfluidics: the key to next-generation chemical sensors. J Intel Mat Syst Str 24:2221–2238CrossRef
133.
Zurück zum Zitat Zhang Y, Trinh KTL, Yoo IS, Lee NY (2014) One-step glass-like coating of polycarbonate for seamless DNA purification and amplification on an integrated monolithic microdevice. Sens Actuat B 202:1281–1289CrossRef Zhang Y, Trinh KTL, Yoo IS, Lee NY (2014) One-step glass-like coating of polycarbonate for seamless DNA purification and amplification on an integrated monolithic microdevice. Sens Actuat B 202:1281–1289CrossRef
Metadaten
Titel
Surface Functionalization of Microfluidic Devices
verfasst von
M. Eichler
C.-P. Klages
K. Lachmann
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-26920-7_3

Neuer Inhalt