Skip to main content

2016 | OriginalPaper | Buchkapitel

4. Microbioreactors

verfasst von : R. Krull, S. Lladó‐Maldonado, T. Lorenz, S. Demming, S. Büttgenbach

Erschienen in: Microsystems for Pharmatechnology

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

In the last decade, microbioreactor (MBR) technology has allowed for rapid advances in biotechnology process development and the investigation of various biological systems from the industrial biotechnology and pharmaceutical biotechnology. Many of the devices that have been reported in the literature are being applied for early-stage bioprocess research. This research makes it possible to perform comprehensive experiments with very expensive substances that are only available in limited quantities.
Microtechnologically fabricated MBRs range in complexity from simple microtiter-based systems to complex automated parallel bioreactors designed to allow meaningful scaling up/scaling down of conventional pilot and large-scale bioprocesses. MBR technology and the capability to monitor cultivation process variables in situ, such as the optical density, dissolved oxygen, pH and fluorescent protein expression, provide real-time and quantitative data from a microliter cultivation broth. Currently, the majority of MBR systems have been designed for batch and fed-batch processing; there are a few efforts directed at developing MBRs for continuous chemostat mode operation.
This overview of microtechnologically fabricated MBRs, their design and application presents the advantages, different strategies for manufacturing and biotechnological applications of these tiny devices in different operation modes. The report discusses the possibility of design versatility and maintaining key aspects, for example, single-use and fluidic connections, as well as the application of MBRs in versatile and different biotechnological fields.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Al-Halhouli A, Demming S, Waldschik A, Büttgenbach S (2014) Implementation of synchronous micromotor in developing integrated microfluidic systems. Micromachines 5:442–456CrossRef Al-Halhouli A, Demming S, Waldschik A, Büttgenbach S (2014) Implementation of synchronous micromotor in developing integrated microfluidic systems. Micromachines 5:442–456CrossRef
2.
Zurück zum Zitat Allain M, Berthier J, Basrour S, Pouteau P (2010) Electrically actuated sacrificial membranes for valving in microsystems. J Micromech Microeng 20:035006CrossRef Allain M, Berthier J, Basrour S, Pouteau P (2010) Electrically actuated sacrificial membranes for valving in microsystems. J Micromech Microeng 20:035006CrossRef
3.
Zurück zum Zitat Amirouche F, Zhou Y, Johnson T (2009) Current micropump technologies and their biomedical applications. Microsyst Technol 15:647–666CrossRef Amirouche F, Zhou Y, Johnson T (2009) Current micropump technologies and their biomedical applications. Microsyst Technol 15:647–666CrossRef
4.
Zurück zum Zitat Atencia J, Cooksey GA, Jahn A, Zook JM, Vreeland WN, Locascio LE (2010) Magnetic connectors for microfluidic applications. Lab Chip 10:246–249CrossRef Atencia J, Cooksey GA, Jahn A, Zook JM, Vreeland WN, Locascio LE (2010) Magnetic connectors for microfluidic applications. Lab Chip 10:246–249CrossRef
5.
Zurück zum Zitat Au AK, Lai H, Utela BR, Folch A (2011) Microvalves and micropumps for BioMEMS. Micromachines 2:179–220CrossRef Au AK, Lai H, Utela BR, Folch A (2011) Microvalves and micropumps for BioMEMS. Micromachines 2:179–220CrossRef
6.
Zurück zum Zitat Balagaddé FK, You L, Hansen CL, Arnold FH, Quake SR (2005) Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309:137–140CrossRef Balagaddé FK, You L, Hansen CL, Arnold FH, Quake SR (2005) Long-term monitoring of bacteria undergoing programmed population control in a microchemostat. Science 309:137–140CrossRef
7.
Zurück zum Zitat Bechert T, Steinrücke P, Guggenbichler JP (2000) A new method for screening anti-infective biomaterials. Nat Med 6:1053–1056CrossRef Bechert T, Steinrücke P, Guggenbichler JP (2000) A new method for screening anti-infective biomaterials. Nat Med 6:1053–1056CrossRef
8.
Zurück zum Zitat Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286CrossRef Beebe DJ, Mensing GA, Walker GM (2002) Physics and applications of microfluidics in biology. Annu Rev Biomed Eng 4:261–286CrossRef
9.
Zurück zum Zitat Betts JI, Baganz F (2006) Miniature bioreactors: current practices and future opportunities. Microb Cell Fact 5:21CrossRef Betts JI, Baganz F (2006) Miniature bioreactors: current practices and future opportunities. Microb Cell Fact 5:21CrossRef
10.
Zurück zum Zitat Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip 8:1906–1914CrossRef Bhagat AAS, Kuntaegowdanahalli SS, Papautsky I (2008) Continuous particle separation in spiral microchannels using dean flows and differential migration. Lab Chip 8:1906–1914CrossRef
11.
Zurück zum Zitat Boccazzi P, Zhang Z, Kurosawa K, Szita N, Bhattacharya S, Jensen KF, Sinskey AJ (2006) Differential gene expression profiles and real-time measurements of growth parameters in Saccharomyces cerevisiae grown in microliter-scale bioreactors equipped with internal stirring. Biotechnol Prog 22:710–717CrossRef Boccazzi P, Zhang Z, Kurosawa K, Szita N, Bhattacharya S, Jensen KF, Sinskey AJ (2006) Differential gene expression profiles and real-time measurements of growth parameters in Saccharomyces cerevisiae grown in microliter-scale bioreactors equipped with internal stirring. Biotechnol Prog 22:710–717CrossRef
12.
Zurück zum Zitat Boxshall K, Wu M, Cui Z, Cui Z, Watts JF, Baker MA (2005) Simple surface treatments to modify protein adsorption and cell attachment properties within a poly(dimethylsiloxane) micro-bioreactor. Surf Interface Anal 38:198–201CrossRef Boxshall K, Wu M, Cui Z, Cui Z, Watts JF, Baker MA (2005) Simple surface treatments to modify protein adsorption and cell attachment properties within a poly(dimethylsiloxane) micro-bioreactor. Surf Interface Anal 38:198–201CrossRef
13.
Zurück zum Zitat Breslauer DN, Lee PJ, Lee LP (2006) Microfluidics-based systems biology. Mol Biosyst 2:97–112CrossRef Breslauer DN, Lee PJ, Lee LP (2006) Microfluidics-based systems biology. Mol Biosyst 2:97–112CrossRef
14.
Zurück zum Zitat Bridle H, Millingen M, Jesorka A (2008) On-chip fabrication to add temperature control to a microfluidic solution exchange system. Lab Chip 8:480–483CrossRef Bridle H, Millingen M, Jesorka A (2008) On-chip fabrication to add temperature control to a microfluidic solution exchange system. Lab Chip 8:480–483CrossRef
15.
Zurück zum Zitat Brody JP, Yager P, Goldstein RE, Austin RH (1996) Biotechnology at low Reynolds numbers. Biophys J 71:3430–3441CrossRef Brody JP, Yager P, Goldstein RE, Austin RH (1996) Biotechnology at low Reynolds numbers. Biophys J 71:3430–3441CrossRef
16.
Zurück zum Zitat Büttgenbach S (2014) Electromagnetic micromotors—design, fabrication and applications. Micromachines 5:929–942CrossRef Büttgenbach S (2014) Electromagnetic micromotors—design, fabrication and applications. Micromachines 5:929–942CrossRef
17.
Zurück zum Zitat Carregal-Romero E, Fernández-Sánchez C, Eguizabal A, Demming S, Büttgenbach S, Llobera A (2012) Development and integration of xerogel polymeric absorbance micro-filters into lab-on-chip systems. Opt Express 20:23700–19CrossRef Carregal-Romero E, Fernández-Sánchez C, Eguizabal A, Demming S, Büttgenbach S, Llobera A (2012) Development and integration of xerogel polymeric absorbance micro-filters into lab-on-chip systems. Opt Express 20:23700–19CrossRef
18.
Zurück zum Zitat Chen A, Chitta R, Chang D, Amanullah A (2009) Twenty-four well plate miniature bioreactor system as a scale-down model for cell culture process development. Biotechnol Bioeng 102:148–160CrossRef Chen A, Chitta R, Chang D, Amanullah A (2009) Twenty-four well plate miniature bioreactor system as a scale-down model for cell culture process development. Biotechnol Bioeng 102:148–160CrossRef
19.
Zurück zum Zitat Chen H, Acharya D, Gajraj A, Meiners J (2003) Robust interconnects and packaging for microfluidic elastomeric chips. Anal Chem 75:5287–5291CrossRef Chen H, Acharya D, Gajraj A, Meiners J (2003) Robust interconnects and packaging for microfluidic elastomeric chips. Anal Chem 75:5287–5291CrossRef
20.
Zurück zum Zitat Choi H, Boccazzi P, Laibinis PE, Sinskey AJ, Jensen KF (2003) Poly(ethylene glycol) (PEG)-modified poly(dimethylsiloxane) (PDMS) for protein- and cell-resistant surfaces in microbioreactor. In: 7th International conference on miniaturized chemical and biochemical analysts systems, Squaw Valley, CA, USA, pp 1105–1108 Choi H, Boccazzi P, Laibinis PE, Sinskey AJ, Jensen KF (2003) Poly(ethylene glycol) (PEG)-modified poly(dimethylsiloxane) (PDMS) for protein- and cell-resistant surfaces in microbioreactor. In: 7th International conference on miniaturized chemical and biochemical analysts systems, Squaw Valley, CA, USA, pp 1105–1108
21.
Zurück zum Zitat Chung SK, Zhao Y, Cho SK (2008) On-chip creation and elimination of microbubbles for a micro-object manipulator. J Micromech Microeng 18:1–13 Chung SK, Zhao Y, Cho SK (2008) On-chip creation and elimination of microbubbles for a micro-object manipulator. J Micromech Microeng 18:1–13
22.
Zurück zum Zitat Demming S (2011) Disposable lab-on-chip systems for biotechnological screening. In: Büttgenbach S (ed) Berichte aus der Mikro- und Feinwerktechnik, vol 30. Ph.D. Thesis, Technische Universität Braunschweig, Shaker-Verlag, Aachen Demming S (2011) Disposable lab-on-chip systems for biotechnological screening. In: Büttgenbach S (ed) Berichte aus der Mikro- und Feinwerktechnik, vol 30. Ph.D. Thesis, Technische Universität Braunschweig, Shaker-Verlag, Aachen
23.
Zurück zum Zitat Demming S, Hahn A, Edlich A, Franco-Lara E, Krull R, Barcikowski S, Büttgenbach S (2010) Softlithographic partial integration of surface-active nanoparticles in a PDMS matrix for microfluidic biodevices. Phys Status Solidi A Appl Mater Sci 207:898–903CrossRef Demming S, Hahn A, Edlich A, Franco-Lara E, Krull R, Barcikowski S, Büttgenbach S (2010) Softlithographic partial integration of surface-active nanoparticles in a PDMS matrix for microfluidic biodevices. Phys Status Solidi A Appl Mater Sci 207:898–903CrossRef
24.
Zurück zum Zitat Demming S, Peterat G, Llobera A, Schmolke H, Bruns A, Kohlstedt M, Al-Halhouli A, Klages C-P, Krull R, Büttgenbach S (2012) Vertical microbubble column-A photonic lab-on-chip for cultivation and online analysis of yeast cell cultures. Biomicrofluidics 6:34106CrossRef Demming S, Peterat G, Llobera A, Schmolke H, Bruns A, Kohlstedt M, Al-Halhouli A, Klages C-P, Krull R, Büttgenbach S (2012) Vertical microbubble column-A photonic lab-on-chip for cultivation and online analysis of yeast cell cultures. Biomicrofluidics 6:34106CrossRef
25.
Zurück zum Zitat Demming S, Sommer B, Llobera A, Rasch D, Krull R, Büttgenbach S (2011) Disposable parallel poly(dimethylsiloxane) microbioreactor with integrated readout grid for germination screening of Aspergillus ochraceus. Biomicrofluidics 5:14104CrossRef Demming S, Sommer B, Llobera A, Rasch D, Krull R, Büttgenbach S (2011) Disposable parallel poly(dimethylsiloxane) microbioreactor with integrated readout grid for germination screening of Aspergillus ochraceus. Biomicrofluidics 5:14104CrossRef
26.
Zurück zum Zitat Demming S, Vila-Planas J, Aliasghar Zadeh S, Edlich A, Franco-Lara E, Radespiel R, Büttgenbach S, Llobera A (2011) Poly(dimethylsiloxane) photonic microbioreactors based on segmented waveguides for local absorbance measurement. Electrophoresis 32:431–439CrossRef Demming S, Vila-Planas J, Aliasghar Zadeh S, Edlich A, Franco-Lara E, Radespiel R, Büttgenbach S, Llobera A (2011) Poly(dimethylsiloxane) photonic microbioreactors based on segmented waveguides for local absorbance measurement. Electrophoresis 32:431–439CrossRef
27.
Zurück zum Zitat Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci U S A 104:18892–18897CrossRef Di Carlo D, Irimia D, Tompkins RG, Toner M (2007) Continuous inertial focusing, ordering, and separation of particles in microchannels. Proc Natl Acad Sci U S A 104:18892–18897CrossRef
28.
Zurück zum Zitat Doig SD, Diep A, Baganz F (2005) Characterisation of a novel miniaturised bubble column bioreactor for high throughput cell cultivation. Biochem Eng J 23:97–105CrossRef Doig SD, Diep A, Baganz F (2005) Characterisation of a novel miniaturised bubble column bioreactor for high throughput cell cultivation. Biochem Eng J 23:97–105CrossRef
29.
Zurück zum Zitat Doig SD, Ortiz-Ochoa K, Ward JM, Baganz F (2005) Characterization of oxygen transfer in miniature and lab-scale bubble column bioreactors and comparison of microbial growth performance based on constant k L a. Biotechnol Prog 21:1175–82CrossRef Doig SD, Ortiz-Ochoa K, Ward JM, Baganz F (2005) Characterization of oxygen transfer in miniature and lab-scale bubble column bioreactors and comparison of microbial growth performance based on constant k L a. Biotechnol Prog 21:1175–82CrossRef
30.
Zurück zum Zitat Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984CrossRef Duffy DC, McDonald JC, Schueller OJ, Whitesides GM (1998) Rapid prototyping of microfluidic systems in poly(dimethylsiloxane). Anal Chem 70:4974–4984CrossRef
31.
Zurück zum Zitat Edlich A (2010) Entwicklung eines Mikroreaktors als Screening-Instrument für biologische Prozesse. In: Wittmann C (ed) ibvt-Schriftenreihe, vol 51. Ph.D. Thesis, Technische Universität Braunschweig, Cuvillier-Verlag, Göttingen Edlich A (2010) Entwicklung eines Mikroreaktors als Screening-Instrument für biologische Prozesse. In: Wittmann C (ed) ibvt-Schriftenreihe, vol 51. Ph.D. Thesis, Technische Universität Braunschweig, Cuvillier-Verlag, Göttingen
32.
Zurück zum Zitat Edlich A, Magdanz V, Rasch D, Demming S, Aliasghar Zadeh S, Segura R, Kähler C, Radespiel R, Büttgenbach S, Franco-Lara E, Krull R (2010) Microfluidic reactor for continuous cultivation of Saccharomyces cerevisiae. Biotechnol Prog 26:1259–1270CrossRef Edlich A, Magdanz V, Rasch D, Demming S, Aliasghar Zadeh S, Segura R, Kähler C, Radespiel R, Büttgenbach S, Franco-Lara E, Krull R (2010) Microfluidic reactor for continuous cultivation of Saccharomyces cerevisiae. Biotechnol Prog 26:1259–1270CrossRef
33.
Zurück zum Zitat El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442:403–411CrossRef El-Ali J, Sorger PK, Jensen KF (2006) Cells on chips. Nature 442:403–411CrossRef
34.
Zurück zum Zitat Feldmann M, Buttgenbach S (2007) Novel microrobots and micromotors using Lorentz force driven linear microactuators based on polymer magnets. IEEE Trans Magn 43:3891–3895CrossRef Feldmann M, Buttgenbach S (2007) Novel microrobots and micromotors using Lorentz force driven linear microactuators based on polymer magnets. IEEE Trans Magn 43:3891–3895CrossRef
35.
Zurück zum Zitat Fernández-Sánchez C, Cadarso VJ, Darder M, Domínguez C, Llobera A (2008) Patterning high-aspect-ratio sol–gel structures by microtransfer molding. Chem Mater 20:2662–2668CrossRef Fernández-Sánchez C, Cadarso VJ, Darder M, Domínguez C, Llobera A (2008) Patterning high-aspect-ratio sol–gel structures by microtransfer molding. Chem Mater 20:2662–2668CrossRef
36.
Zurück zum Zitat Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother 54:1019–1024CrossRef Furno F, Morley KS, Wong B, Sharp BL, Arnold PL, Howdle SM, Bayston R, Brown PD, Winship PD, Reid HJ (2004) Silver nanoparticles and polymeric medical devices: a new approach to prevention of infection? J Antimicrob Chemother 54:1019–1024CrossRef
37.
Zurück zum Zitat Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176CrossRef Garcia-Ochoa F, Gomez E (2009) Bioreactor scale-up and oxygen transfer rate in microbial processes: an overview. Biotechnol Adv 27:153–176CrossRef
38.
Zurück zum Zitat Geng Z, Cui D, Wang H, Chen X (2006) Disposable PDMS diaphragm micropump actuated by PZT. In: 1st IEEE International conference on nano/micro engineered and molecular systems, IEEE, Zhuhai, China, pp 1436–1439 Geng Z, Cui D, Wang H, Chen X (2006) Disposable PDMS diaphragm micropump actuated by PZT. In: 1st IEEE International conference on nano/micro engineered and molecular systems, IEEE, Zhuhai, China, pp 1436–1439
39.
Zurück zum Zitat Gravesen P, Branebjerg J, Jensen OS (1993) Microfluidics—a review. J Micromech Microeng 3:168–182CrossRef Gravesen P, Branebjerg J, Jensen OS (1993) Microfluidics—a review. J Micromech Microeng 3:168–182CrossRef
40.
Zurück zum Zitat Groisman A, Lobo C, Cho H, Campbell JK, Dufour YS, Stevens AM, Levchenko A (2005) A microfluidic chemostat for experiments with bacterial and yeast cells. Nat Methods 2:685–689CrossRef Groisman A, Lobo C, Cho H, Campbell JK, Dufour YS, Stevens AM, Levchenko A (2005) A microfluidic chemostat for experiments with bacterial and yeast cells. Nat Methods 2:685–689CrossRef
41.
Zurück zum Zitat Gruenberger A, Probst C, Heyer A, Wiechert W, Frunzke J, Kohlheyer D (2013) Microfluidic picoliter bioreactor for microbial single-cell analysis: fabrication, system setup, and operation. J Vis Exp 82:50560 Gruenberger A, Probst C, Heyer A, Wiechert W, Frunzke J, Kohlheyer D (2013) Microfluidic picoliter bioreactor for microbial single-cell analysis: fabrication, system setup, and operation. J Vis Exp 82:50560
42.
Zurück zum Zitat Grünberger A, Paczia N, Probst C, Schendzielorz G, Eggeling L, Noack S, Wiechert W, Kohlheyer D (2012) A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level. Lab Chip 12:2060–2068CrossRef Grünberger A, Paczia N, Probst C, Schendzielorz G, Eggeling L, Noack S, Wiechert W, Kohlheyer D (2012) A disposable picolitre bioreactor for cultivation and investigation of industrially relevant bacteria on the single cell level. Lab Chip 12:2060–2068CrossRef
43.
Zurück zum Zitat Grünberger A, Wiechert W, Kohlheyer D (2014) Single-cell microfluidics: opportunity for bioprocess development. Curr Opin Biotechnol 29C:15–23CrossRef Grünberger A, Wiechert W, Kohlheyer D (2014) Single-cell microfluidics: opportunity for bioprocess development. Curr Opin Biotechnol 29C:15–23CrossRef
44.
Zurück zum Zitat Harrison DJ, Manz A, Fan Z, Luedi H, Widmer HM (1992) Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal Chem 64:1926–1932CrossRef Harrison DJ, Manz A, Fan Z, Luedi H, Widmer HM (1992) Capillary electrophoresis and sample injection systems integrated on a planar glass chip. Anal Chem 64:1926–1932CrossRef
45.
Zurück zum Zitat Hegab HM, Elmekawy A, Stakenborg T (2013) Review of microfluidic microbioreactor technology for high-throughput submerged microbiological cultivation. Biomicrofluidics 7:21502CrossRef Hegab HM, Elmekawy A, Stakenborg T (2013) Review of microfluidic microbioreactor technology for high-throughput submerged microbiological cultivation. Biomicrofluidics 7:21502CrossRef
46.
Zurück zum Zitat Hemmerich J, Adelantado N, Barrigón JM, Ponte X, Hörmann A, Ferrer P, Kensy F, Valero F (2014) Comprehensive clone screening and evaluation of fed-batch strategies in a microbioreactor and lab scale stirred tank bioreactor system: application on Pichia pastoris producing Rhizopus oryzae lipase. Microb Cell Fact 13:36CrossRef Hemmerich J, Adelantado N, Barrigón JM, Ponte X, Hörmann A, Ferrer P, Kensy F, Valero F (2014) Comprehensive clone screening and evaluation of fed-batch strategies in a microbioreactor and lab scale stirred tank bioreactor system: application on Pichia pastoris producing Rhizopus oryzae lipase. Microb Cell Fact 13:36CrossRef
47.
48.
Zurück zum Zitat Hessel V, Löwe H, Schönfeld F (2005) Micromixers—a review on passive and active mixing principles. Chem Eng Sci 60:2479–2501CrossRef Hessel V, Löwe H, Schönfeld F (2005) Micromixers—a review on passive and active mixing principles. Chem Eng Sci 60:2479–2501CrossRef
49.
Zurück zum Zitat Hu S, Ren X, Bachman M, Sims CE, Li GP, Allbritton N (2002) Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Anal Chem 74:4117–4123CrossRef Hu S, Ren X, Bachman M, Sims CE, Li GP, Allbritton N (2002) Surface modification of poly(dimethylsiloxane) microfluidic devices by ultraviolet polymer grafting. Anal Chem 74:4117–4123CrossRef
50.
Zurück zum Zitat Huber R, Ritter D, Hering T, Hillmer A-K, Kensy F, Müller C, Wang L, Büchs J (2009) Robo-Lector—a novel platform for automated high-throughput cultivations in microtiter plates with high information content. Microb Cell Fact 8:42CrossRef Huber R, Ritter D, Hering T, Hillmer A-K, Kensy F, Müller C, Wang L, Büchs J (2009) Robo-Lector—a novel platform for automated high-throughput cultivations in microtiter plates with high information content. Microb Cell Fact 8:42CrossRef
51.
Zurück zum Zitat Hung PJ, Lee PJ, Sabounchi P, Lin R, Lee LP (2004) Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol Bioeng 89:1–8CrossRef Hung PJ, Lee PJ, Sabounchi P, Lin R, Lee LP (2004) Continuous perfusion microfluidic cell culture array for high-throughput cell-based assays. Biotechnol Bioeng 89:1–8CrossRef
52.
Zurück zum Zitat Inman W, Domansky K, Serdy J, Owens B, Trumper D, Griffith LG (2007) Design, modeling and fabrication of a constant flow pneumatic micropump. J Micromech Microeng 17:891–899CrossRef Inman W, Domansky K, Serdy J, Owens B, Trumper D, Griffith LG (2007) Design, modeling and fabrication of a constant flow pneumatic micropump. J Micromech Microeng 17:891–899CrossRef
53.
Zurück zum Zitat Jeong OC, Park SW, Yang SS, Pak JJ (2005) Fabrication of a peristaltic PDMS micropump. Sensors Actuators A Phys 123–124:453–458CrossRef Jeong OC, Park SW, Yang SS, Pak JJ (2005) Fabrication of a peristaltic PDMS micropump. Sensors Actuators A Phys 123–124:453–458CrossRef
54.
Zurück zum Zitat Jones KD, Kompala DS (1999) Cybernetic model of the growth dynamics of Saccharomyces cerevisiae in batch and continuous cultures. J Biotechnol 71:105–131CrossRef Jones KD, Kompala DS (1999) Cybernetic model of the growth dynamics of Saccharomyces cerevisiae in batch and continuous cultures. J Biotechnol 71:105–131CrossRef
55.
Zurück zum Zitat Kang JH, Kim YC, Park JK (2007) Analysis of pressure-driven air bubble elimination in a microfluidic device. Lab Chip 8:176–178CrossRef Kang JH, Kim YC, Park JK (2007) Analysis of pressure-driven air bubble elimination in a microfluidic device. Lab Chip 8:176–178CrossRef
56.
Zurück zum Zitat Kardous F, Yahiaoui R, Aoubiza B, Manceau JF (2014) Acoustic mixer using low frequency vibration for biological and chemical applications. Sensors Actuators A Phys 211:19–26CrossRef Kardous F, Yahiaoui R, Aoubiza B, Manceau JF (2014) Acoustic mixer using low frequency vibration for biological and chemical applications. Sensors Actuators A Phys 211:19–26CrossRef
57.
Zurück zum Zitat Kim BJ, Zhao T, Young L, Zhou P, Shuler ML (2012) Batch, fed-batch, and microcarrier cultures with CHO cell lines in a pressure-cycle driven miniaturized bioreactor. Biotechnol Bioeng 109:137–45CrossRef Kim BJ, Zhao T, Young L, Zhou P, Shuler ML (2012) Batch, fed-batch, and microcarrier cultures with CHO cell lines in a pressure-cycle driven miniaturized bioreactor. Biotechnol Bioeng 109:137–45CrossRef
58.
Zurück zum Zitat Kim J, Kang M, Jensen EC, Mathies RA (2012) Lifting gate polydimethylsiloxane microvalves and pumps for microfluidic control. Anal Chem 84:2067–2071CrossRef Kim J, Kang M, Jensen EC, Mathies RA (2012) Lifting gate polydimethylsiloxane microvalves and pumps for microfluidic control. Anal Chem 84:2067–2071CrossRef
59.
Zurück zum Zitat Kim JH, Na KH, Kang CJ, Kim YS (2005) A disposable thermopneumatic-actuated micropump stacked with PDMS layers and ITO-coated glass. Sensors Actuators A Phys 120:365–369CrossRef Kim JH, Na KH, Kang CJ, Kim YS (2005) A disposable thermopneumatic-actuated micropump stacked with PDMS layers and ITO-coated glass. Sensors Actuators A Phys 120:365–369CrossRef
60.
Zurück zum Zitat Kirk TV, Szita N (2013) Oxygen transfer characteristics of miniaturized bioreactor systems. Biotechnol Bioeng 110:1005–1019CrossRef Kirk TV, Szita N (2013) Oxygen transfer characteristics of miniaturized bioreactor systems. Biotechnol Bioeng 110:1005–1019CrossRef
61.
Zurück zum Zitat Kliche S, Räuchle K, Bertau M, Reschetilowski W (2009) Ganzzell-Biokatalyse mittels Saccharomyces cerevisiae im Mikroreaktor. Chem Ing Tech 81:343–347CrossRef Kliche S, Räuchle K, Bertau M, Reschetilowski W (2009) Ganzzell-Biokatalyse mittels Saccharomyces cerevisiae im Mikroreaktor. Chem Ing Tech 81:343–347CrossRef
62.
Zurück zum Zitat Korivi NS, Jiang L (2007) A generic chip-to-world fluidic interconnect system for microfluidic devices. In: 39th Southeastern symposium on system theory, IEEE, Macon, GA, USA, pp 176–180 Korivi NS, Jiang L (2007) A generic chip-to-world fluidic interconnect system for microfluidic devices. In: 39th Southeastern symposium on system theory, IEEE, Macon, GA, USA, pp 176–180
63.
Zurück zum Zitat Kostov Y, Harms P, Randers-Eichhorn L, Rao G (2001) Low-cost microbioreactor for high-throughput bioprocessing. Biotechnol Bioeng 72:346–352CrossRef Kostov Y, Harms P, Randers-Eichhorn L, Rao G (2001) Low-cost microbioreactor for high-throughput bioprocessing. Biotechnol Bioeng 72:346–352CrossRef
64.
Zurück zum Zitat Kovarik ML, Gach PC, Ornoff DM, Wang Y, Balowski J, Farrag L, Allbritton NL (2012) Micro total analysis systems for cell biology and biochemical assays. Anal Chem 84:516–540CrossRef Kovarik ML, Gach PC, Ornoff DM, Wang Y, Balowski J, Farrag L, Allbritton NL (2012) Micro total analysis systems for cell biology and biochemical assays. Anal Chem 84:516–540CrossRef
65.
Zurück zum Zitat Kuhlmann W, Meyer H-D, Bellgardt KH, Schügerl K (1984) On-line analysis of yeast growth and alcohol production. J Biotechnol 1:171–185CrossRef Kuhlmann W, Meyer H-D, Bellgardt KH, Schügerl K (1984) On-line analysis of yeast growth and alcohol production. J Biotechnol 1:171–185CrossRef
66.
Zurück zum Zitat Kunze M, Lattermann C, Diederichs S, Kroutil W, Büchs J (2014) Minireactor-based high-throughput temperature profiling for the optimization of microbial and enzymatic processes. J Biol Eng 8:22CrossRef Kunze M, Lattermann C, Diederichs S, Kroutil W, Büchs J (2014) Minireactor-based high-throughput temperature profiling for the optimization of microbial and enzymatic processes. J Biol Eng 8:22CrossRef
67.
Zurück zum Zitat Lamping SR, Zhang H, Allen B, Ayazi Shamlou P (2003) Design of a prototype miniature bioreactor for high throughput automated bioprocessing. Chem Eng Sci 58:747–758CrossRef Lamping SR, Zhang H, Allen B, Ayazi Shamlou P (2003) Design of a prototype miniature bioreactor for high throughput automated bioprocessing. Chem Eng Sci 58:747–758CrossRef
68.
Zurück zum Zitat Lara AR, Galindo E, Ramírez OT, Palomares LA (2006) Living with heterogeneities in bioreactors: understanding the effects of environmental gradients on cells. Mol Biotechnol 34:355–381CrossRef Lara AR, Galindo E, Ramírez OT, Palomares LA (2006) Living with heterogeneities in bioreactors: understanding the effects of environmental gradients on cells. Mol Biotechnol 34:355–381CrossRef
69.
Zurück zum Zitat Lattermann C, Büchs J (2015) Microscale and miniscale fermentation and screening. Curr Opin Biotechnol 35:1–6CrossRef Lattermann C, Büchs J (2015) Microscale and miniscale fermentation and screening. Curr Opin Biotechnol 35:1–6CrossRef
70.
Zurück zum Zitat Lee HLT, Boccazzi P, Ram RJ, Sinskey AJ (2006) Microbioreactor arrays with integrated mixers and fluid injectors for high-throughput experimentation with pH and dissolved oxygen control. Lab Chip 6:1229–1235CrossRef Lee HLT, Boccazzi P, Ram RJ, Sinskey AJ (2006) Microbioreactor arrays with integrated mixers and fluid injectors for high-throughput experimentation with pH and dissolved oxygen control. Lab Chip 6:1229–1235CrossRef
71.
Zurück zum Zitat Lee KS, Boccazzi P, Sinskey AJ, Ram RJ (2011) Microfluidic chemostat and turbidostat with flow rate, oxygen, and temperature control for dynamic continuous culture. Lab Chip 11:1730–1739CrossRef Lee KS, Boccazzi P, Sinskey AJ, Ram RJ (2011) Microfluidic chemostat and turbidostat with flow rate, oxygen, and temperature control for dynamic continuous culture. Lab Chip 11:1730–1739CrossRef
72.
Zurück zum Zitat Lee PJ, Hung PJ, Rao VM, Lee LP (2005) Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnol Bioeng 94:5–14CrossRef Lee PJ, Hung PJ, Rao VM, Lee LP (2005) Nanoliter scale microbioreactor array for quantitative cell biology. Biotechnol Bioeng 94:5–14CrossRef
73.
Zurück zum Zitat Lewis G, Taylor IW, Nienow AW, Hewitt CJ (2004) The application of multi-parameter flow cytometry to the study of recombinant Escherichia coli batch fermentation processes. J Ind Microbiol Biotechnol 31:311–322CrossRef Lewis G, Taylor IW, Nienow AW, Hewitt CJ (2004) The application of multi-parameter flow cytometry to the study of recombinant Escherichia coli batch fermentation processes. J Ind Microbiol Biotechnol 31:311–322CrossRef
74.
Zurück zum Zitat Li L, Wang W, Zhang S, Chen S, Guo S, Français O, Cheng J-K, Huang W-H (2011) Integrated microdevice for long-term automated perfusion culture without shear stress and real-time electrochemical monitoring of cells. Anal Chem 83:9524–9530CrossRef Li L, Wang W, Zhang S, Chen S, Guo S, Français O, Cheng J-K, Huang W-H (2011) Integrated microdevice for long-term automated perfusion culture without shear stress and real-time electrochemical monitoring of cells. Anal Chem 83:9524–9530CrossRef
75.
Zurück zum Zitat Liu C-H, Lee G-B (2013) A micropump using amplified deformation of resilient membranes through oil hydraulics. Microfluid Nanofluid 17:393–400CrossRef Liu C-H, Lee G-B (2013) A micropump using amplified deformation of resilient membranes through oil hydraulics. Microfluid Nanofluid 17:393–400CrossRef
76.
Zurück zum Zitat Llobera A, Cadarso VJ, Darder M, Domínguez C, Fernández-Sánchez C (2008) Full-field photonic biosensors based on tunable bio-doped sol-gel glasses. Lab Chip 8:1185–1190CrossRef Llobera A, Cadarso VJ, Darder M, Domínguez C, Fernández-Sánchez C (2008) Full-field photonic biosensors based on tunable bio-doped sol-gel glasses. Lab Chip 8:1185–1190CrossRef
77.
Zurück zum Zitat Llobera A, Demming S, Joensson HN, Vila-Planas J, Andersson-Svahn H, Büttgenbach S (2010) Monolithic PDMS passband filters for fluorescence detection. Lab Chip 10:1987–1992CrossRef Llobera A, Demming S, Joensson HN, Vila-Planas J, Andersson-Svahn H, Büttgenbach S (2010) Monolithic PDMS passband filters for fluorescence detection. Lab Chip 10:1987–1992CrossRef
78.
Zurück zum Zitat Llobera A, Wilke R, Büttgenbach S (2004) Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift. Lab Chip 4:24–27CrossRef Llobera A, Wilke R, Büttgenbach S (2004) Poly(dimethylsiloxane) hollow Abbe prism with microlenses for detection based on absorption and refractive index shift. Lab Chip 4:24–27CrossRef
79.
Zurück zum Zitat Lo R, Meng E (2008) Integrated and reusable in-plane microfluidic interconnects. Sensors Actuators B Chem 132:531–539CrossRef Lo R, Meng E (2008) Integrated and reusable in-plane microfluidic interconnects. Sensors Actuators B Chem 132:531–539CrossRef
80.
Zurück zum Zitat Long Z, Nugent E, Javer A, Cicuta P, Sclavi B, Cosentino Lagomarsino M, Dorfman KD (2013) Microfluidic chemostat for measuring single cell dynamics in bacteria. Lab Chip 13:947–954CrossRef Long Z, Nugent E, Javer A, Cicuta P, Sclavi B, Cosentino Lagomarsino M, Dorfman KD (2013) Microfluidic chemostat for measuring single cell dynamics in bacteria. Lab Chip 13:947–954CrossRef
81.
Zurück zum Zitat Lorenz H, Despont M, Fahrni N, Brugger J, Vettiger P, Renaud P (1998) High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS. Sensors Actuators A Phys 64:33–39CrossRef Lorenz H, Despont M, Fahrni N, Brugger J, Vettiger P, Renaud P (1998) High-aspect-ratio, ultrathick, negative-tone near-UV photoresist and its applications for MEMS. Sensors Actuators A Phys 64:33–39CrossRef
82.
Zurück zum Zitat Loverich J, Kanno I, Kotera H (2006) Single-step replicable microfluidic check valve for rectifying and sensing low Reynolds number flow. Microfluid Nanofluid 3:427–435CrossRef Loverich J, Kanno I, Kotera H (2006) Single-step replicable microfluidic check valve for rectifying and sensing low Reynolds number flow. Microfluid Nanofluid 3:427–435CrossRef
83.
Zurück zum Zitat Lucas N, Demming S, Jordan A, Sichler P, Büttgenbach S (2008) An improved method for double-sided moulding of PDMS. J Micromech Microeng 18:075037CrossRef Lucas N, Demming S, Jordan A, Sichler P, Büttgenbach S (2008) An improved method for double-sided moulding of PDMS. J Micromech Microeng 18:075037CrossRef
84.
Zurück zum Zitat Maharbiz MM, Holtz WJ, Howe RT, Keasling JD (2004) Microbioreactor arrays with parametric control for high-throughput experimentation. Biotechnol Bioeng 85:376–381CrossRef Maharbiz MM, Holtz WJ, Howe RT, Keasling JD (2004) Microbioreactor arrays with parametric control for high-throughput experimentation. Biotechnol Bioeng 85:376–381CrossRef
85.
Zurück zum Zitat Mandal S, Rouillard JM, Srivannavit O, Gulari E (2007) Cytophobic surface modification of microfluidic arrays for in situ parallel peptide synthesis and cell adhesion assays. Biotechnol Prog 23:972–978CrossRef Mandal S, Rouillard JM, Srivannavit O, Gulari E (2007) Cytophobic surface modification of microfluidic arrays for in situ parallel peptide synthesis and cell adhesion assays. Biotechnol Prog 23:972–978CrossRef
86.
Zurück zum Zitat Mansur EA, Ye M, Wang Y, Dai Y (2008) A state-of-the-art review of mixing in microfluidic mixers. Chin J Chem Eng 16:503–516CrossRef Mansur EA, Ye M, Wang Y, Dai Y (2008) A state-of-the-art review of mixing in microfluidic mixers. Chin J Chem Eng 16:503–516CrossRef
87.
Zurück zum Zitat Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors Actuators B Chem 1:244–248CrossRef Manz A, Graber N, Widmer HM (1990) Miniaturized total chemical analysis systems: a novel concept for chemical sensing. Sensors Actuators B Chem 1:244–248CrossRef
88.
Zurück zum Zitat Matsubara Y, Murakami Y, Kobayashi M, Morita Y, Tamiya E (2003) Application of on-chip cell cultures for the detection of allergic response. Biosens Bioelectron 19:741–747CrossRef Matsubara Y, Murakami Y, Kobayashi M, Morita Y, Tamiya E (2003) Application of on-chip cell cultures for the detection of allergic response. Biosens Bioelectron 19:741–747CrossRef
89.
Zurück zum Zitat McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40CrossRef McDonald JC, Duffy DC, Anderson JR, Chiu DT, Wu H, Schueller OJ, Whitesides GM (2000) Fabrication of microfluidic systems in poly(dimethylsiloxane). Electrophoresis 21:27–40CrossRef
90.
Zurück zum Zitat McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499CrossRef McDonald JC, Whitesides GM (2002) Poly(dimethylsiloxane) as a material for fabricating microfluidic devices. Acc Chem Res 35:491–499CrossRef
91.
Zurück zum Zitat Meyvantsson I, Beebe DJ (2008) Cell culture models in microfluidic systems. Annu Rev Anal Chem (Palo Alto CA, USA) 1:423–449CrossRef Meyvantsson I, Beebe DJ (2008) Cell culture models in microfluidic systems. Annu Rev Anal Chem (Palo Alto CA, USA) 1:423–449CrossRef
92.
Zurück zum Zitat Moffitt JR, Lee JB, Cluzel P (2012) The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities. Lab Chip 12:1487–1494CrossRef Moffitt JR, Lee JB, Cluzel P (2012) The single-cell chemostat: an agarose-based, microfluidic device for high-throughput, single-cell studies of bacteria and bacterial communities. Lab Chip 12:1487–1494CrossRef
93.
Zurück zum Zitat Mohan R, Schudel BR, Desai AV, Yearsley JD, Apblett CA, Kenis PJA (2011) Design considerations for elastomeric normally closed microfluidic valves. Sensors Actuators B Chem 160:1216–1223CrossRef Mohan R, Schudel BR, Desai AV, Yearsley JD, Apblett CA, Kenis PJA (2011) Design considerations for elastomeric normally closed microfluidic valves. Sensors Actuators B Chem 160:1216–1223CrossRef
94.
Zurück zum Zitat Moncada-Hernández H, Lapizco-Encinas BH (2010) Simultaneous concentration and separation of microorganisms: insulator-based dielectrophoretic approach. Anal Bioanal Chem 396:1805–1816CrossRef Moncada-Hernández H, Lapizco-Encinas BH (2010) Simultaneous concentration and separation of microorganisms: insulator-based dielectrophoretic approach. Anal Bioanal Chem 396:1805–1816CrossRef
95.
Zurück zum Zitat Moon H, Nam Y, Jae CP, Jung H (2009) Dielectrophoretic separation of airborne microbes and dust particles using a microfluidic channel for real-time bioaerosol monitoring. Environ Sci Technol 43:5857–5863CrossRef Moon H, Nam Y, Jae CP, Jung H (2009) Dielectrophoretic separation of airborne microbes and dust particles using a microfluidic channel for real-time bioaerosol monitoring. Environ Sci Technol 43:5857–5863CrossRef
96.
Zurück zum Zitat Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRef Morones JR, Elechiguerra JL, Camacho A, Holt K, Kouri JB, Ramírez JT, Yacaman MJ (2005) The bactericidal effect of silver nanoparticles. Nanotechnology 16:2346–2353CrossRef
97.
Zurück zum Zitat Morris CJ, Forster FK (2003) Low-order modeling of resonance for fixed-valve micropumps based on first principles. J Microelectromech Syst 12:325–334CrossRef Morris CJ, Forster FK (2003) Low-order modeling of resonance for fixed-valve micropumps based on first principles. J Microelectromech Syst 12:325–334CrossRef
98.
Zurück zum Zitat Muñoz-Berbel X, Rodríguez-Rodríguez R, Vigués N, Demming S, Mas J, Büttgenbach S, Verpoorte E, Ortiz P, Llobera A (2013) Monolithically integrated biophotonic lab-on-a-chip for cell culture and simultaneous pH monitoring. Lab Chip 13:4239–4247CrossRef Muñoz-Berbel X, Rodríguez-Rodríguez R, Vigués N, Demming S, Mas J, Büttgenbach S, Verpoorte E, Ortiz P, Llobera A (2013) Monolithically integrated biophotonic lab-on-a-chip for cell culture and simultaneous pH monitoring. Lab Chip 13:4239–4247CrossRef
99.
Zurück zum Zitat Nazrul M, Zainal H, Gernaey KV (2012) Overview on design considerations for development of disposable microbiorector prototypes. J Teknol Sci Eng 59:53–60 Nazrul M, Zainal H, Gernaey KV (2012) Overview on design considerations for development of disposable microbiorector prototypes. J Teknol Sci Eng 59:53–60
100.
Zurück zum Zitat Nguyen NT, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15:R1–R16CrossRef Nguyen NT, Wu Z (2005) Micromixers—a review. J Micromech Microeng 15:R1–R16CrossRef
101.
Zurück zum Zitat Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sensors Actuators B Chem 130:917–942CrossRef Nisar A, Afzulpurkar N, Mahaisavariya B, Tuantranont A (2008) MEMS-based micropumps in drug delivery and biomedical applications. Sensors Actuators B Chem 130:917–942CrossRef
102.
Zurück zum Zitat Niu X, Liu L, Wen W, Sheng P (2007) Microfluidic manipulation in lab-chips using electrorheological fluid. J Intell Mater Syst Struct 18:1187–1190CrossRef Niu X, Liu L, Wen W, Sheng P (2007) Microfluidic manipulation in lab-chips using electrorheological fluid. J Intell Mater Syst Struct 18:1187–1190CrossRef
103.
Zurück zum Zitat Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16:R13–R39CrossRef Oh KW, Ahn CH (2006) A review of microvalves. J Micromech Microeng 16:R13–R39CrossRef
104.
Zurück zum Zitat Ostrovidov S, Jiang J, Sakai Y, Fujii T (2004) Membrane-based PDMS microbioreactor for perfused 3D primary rat hepatocyte cultures. Biomed Microdevices 6:279–287CrossRef Ostrovidov S, Jiang J, Sakai Y, Fujii T (2004) Membrane-based PDMS microbioreactor for perfused 3D primary rat hepatocyte cultures. Biomed Microdevices 6:279–287CrossRef
105.
Zurück zum Zitat Palme O, Comanescu G, Stoineva I, Radel S, Benes E, Develter D, Wray V, Lang S (2010) Sophorolipids from Candida bombicola: cell separation by ultrasonic particle manipulation. Eur J Lipid Sci Technol 112:663–673CrossRef Palme O, Comanescu G, Stoineva I, Radel S, Benes E, Develter D, Wray V, Lang S (2010) Sophorolipids from Candida bombicola: cell separation by ultrasonic particle manipulation. Eur J Lipid Sci Technol 112:663–673CrossRef
106.
Zurück zum Zitat Park J, Wu J, Polymenis M, Han A (2013) Microchemostat array with small-volume fraction replenishment for steady-state microbial culture. Lab Chip 13:4217CrossRef Park J, Wu J, Polymenis M, Han A (2013) Microchemostat array with small-volume fraction replenishment for steady-state microbial culture. Lab Chip 13:4217CrossRef
107.
Zurück zum Zitat Pečar B, Križaj D, Vrtačnik D, Resnik D, Dolžan T, Možek M (2014) Piezoelectric peristaltic micropump with a single actuator. J Micromech Microeng 24:105010CrossRef Pečar B, Križaj D, Vrtačnik D, Resnik D, Dolžan T, Možek M (2014) Piezoelectric peristaltic micropump with a single actuator. J Micromech Microeng 24:105010CrossRef
108.
Zurück zum Zitat Peng XY, Li PCH (2004) A three-dimensional flow control concept for single-cell experiments on a microchip. 1. Cell selection, cell retention, cell culture, cell balancing, and cell scanning. Anal Chem 76:5273–5281CrossRef Peng XY, Li PCH (2004) A three-dimensional flow control concept for single-cell experiments on a microchip. 1. Cell selection, cell retention, cell culture, cell balancing, and cell scanning. Anal Chem 76:5273–5281CrossRef
109.
Zurück zum Zitat Perozziello G, Bundgaard F, Geschke O (2008) Fluidic interconnections for microfluidic systems: a new integrated fluidic interconnection allowing plug“n”play functionality. Sensors Actuators B Chem 130:947–953CrossRef Perozziello G, Bundgaard F, Geschke O (2008) Fluidic interconnections for microfluidic systems: a new integrated fluidic interconnection allowing plug“n”play functionality. Sensors Actuators B Chem 130:947–953CrossRef
110.
Zurück zum Zitat Peterat G (2014) Prozesstechnik und reaktionskinetische Analysen in einem mehrphasigen Mikrobioreaktorsystem. In: Krull R (ed) ibvt-Schriftenreihe, vol 75. Ph.D. Thesis, Technische Universität Braunschweig, Cuvillier-Verlag, Göttingen Peterat G (2014) Prozesstechnik und reaktionskinetische Analysen in einem mehrphasigen Mikrobioreaktorsystem. In: Krull R (ed) ibvt-Schriftenreihe, vol 75. Ph.D. Thesis, Technische Universität Braunschweig, Cuvillier-Verlag, Göttingen
111.
Zurück zum Zitat Peterat G, Schmolke H, Lorenz T, Llobera A, Rasch D, Al-Halhouli AT, Dietzel A, Büttgenbach S, Klages C-P, Krull R (2014) Characterization of oxygen transfer in vertical microbubble columns for aerobic biotechnological processes. Biotechnol Bioeng 111:1809–1819CrossRef Peterat G, Schmolke H, Lorenz T, Llobera A, Rasch D, Al-Halhouli AT, Dietzel A, Büttgenbach S, Klages C-P, Krull R (2014) Characterization of oxygen transfer in vertical microbubble columns for aerobic biotechnological processes. Biotechnol Bioeng 111:1809–1819CrossRef
112.
Zurück zum Zitat Probst C, Grünberger A, Braun N, Helfrich S, Nöh K, Wiechert W, Kohlheyer D (2014) Rapid inoculation of single bacteria into parallel picoliter fermentation chambers. Anal Methods 7:91–98CrossRef Probst C, Grünberger A, Braun N, Helfrich S, Nöh K, Wiechert W, Kohlheyer D (2014) Rapid inoculation of single bacteria into parallel picoliter fermentation chambers. Anal Methods 7:91–98CrossRef
113.
Zurück zum Zitat Prokop A, Prokop Z, Schaffer D, Kozlov E, Wikswo J, Cliffel D, Baudenbacher F (2004) NanoLiterBioReactor: long-term mammalian cell culture at nanofabricated scale. Biomed Microdevices 6:325–339CrossRef Prokop A, Prokop Z, Schaffer D, Kozlov E, Wikswo J, Cliffel D, Baudenbacher F (2004) NanoLiterBioReactor: long-term mammalian cell culture at nanofabricated scale. Biomed Microdevices 6:325–339CrossRef
114.
Zurück zum Zitat Puskeiler R, Kusterer A, John GT, Weuster-Botz D (2005) Miniature bioreactors for automated high-throughput bioprocess design (HTBD): reproducibility of parallel fed-batch cultivations with Escherichia coli. Biotechnol Appl Biochem 42:227–235CrossRef Puskeiler R, Kusterer A, John GT, Weuster-Botz D (2005) Miniature bioreactors for automated high-throughput bioprocess design (HTBD): reproducibility of parallel fed-batch cultivations with Escherichia coli. Biotechnol Appl Biochem 42:227–235CrossRef
115.
Zurück zum Zitat Quaglio M, Canavese G, Giuri E, Marasso SL, Perrone D, Cocuzza M, Pirri CF (2008) Evaluation of different PDMS interconnection solutions for silicon, Pyrex and COC microfluidic chips. J Micromech Microeng 18:055012CrossRef Quaglio M, Canavese G, Giuri E, Marasso SL, Perrone D, Cocuzza M, Pirri CF (2008) Evaluation of different PDMS interconnection solutions for silicon, Pyrex and COC microfluidic chips. J Micromech Microeng 18:055012CrossRef
116.
Zurück zum Zitat Quake SR (2000) From micro- to nanofabrication with soft materials. Science 290:1536–1540CrossRef Quake SR (2000) From micro- to nanofabrication with soft materials. Science 290:1536–1540CrossRef
117.
Zurück zum Zitat Rhee SW, Taylor AM, Tu CH, Cribbs DH, Cotman CW, Jeon NL (2004) Patterned cell culture inside microfluidic devices. Lab Chip 5:102–7CrossRef Rhee SW, Taylor AM, Tu CH, Cribbs DH, Cotman CW, Jeon NL (2004) Patterned cell culture inside microfluidic devices. Lab Chip 5:102–7CrossRef
118.
Zurück zum Zitat Rodriguez-Rodriguez R, Muñoz-Berbel X, Demming S, Büttgenbach S, Herrera MD, Llobera A (2012) Cell-based microfluidic device for screening anti-proliferative activity of drugs in vascular smooth muscle cells. Biomed Microdevices 14:1129–1140CrossRef Rodriguez-Rodriguez R, Muñoz-Berbel X, Demming S, Büttgenbach S, Herrera MD, Llobera A (2012) Cell-based microfluidic device for screening anti-proliferative activity of drugs in vascular smooth muscle cells. Biomed Microdevices 14:1129–1140CrossRef
119.
Zurück zum Zitat Ryu KS, Shaikh K, Goluch E, Fan Z, Liu C (2004) Micro magnetic stir-bar mixer integrated with parylene microfluidic channels. Lab Chip 4:608–613CrossRef Ryu KS, Shaikh K, Goluch E, Fan Z, Liu C (2004) Micro magnetic stir-bar mixer integrated with parylene microfluidic channels. Lab Chip 4:608–613CrossRef
120.
Zurück zum Zitat Sabourin D, Snakenborg D, Dufva M (2009) Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections. J Micromech Microeng 19:035021CrossRef Sabourin D, Snakenborg D, Dufva M (2009) Interconnection blocks: a method for providing reusable, rapid, multiple, aligned and planar microfluidic interconnections. J Micromech Microeng 19:035021CrossRef
121.
Zurück zum Zitat Satoh W, Takahashi S, Sassa F, Fukuda J, Suzuki H (2009) On-chip culturing of hepatocytes and monitoring their ammonia metabolism. Lab Chip 9:35–37CrossRef Satoh W, Takahashi S, Sassa F, Fukuda J, Suzuki H (2009) On-chip culturing of hepatocytes and monitoring their ammonia metabolism. Lab Chip 9:35–37CrossRef
122.
Zurück zum Zitat Schäpper D (2010) Continuous culture microbioreactors. Ph.D. Thesis, Technical University of Denmark (DTU) Schäpper D (2010) Continuous culture microbioreactors. Ph.D. Thesis, Technical University of Denmark (DTU)
123.
Zurück zum Zitat Schäpper D, Alam MN, Szita N, Eliasson Lantz A, Gernaey KV (2009) Application of microbioreactors in fermentation process development: a review. Anal Bioanal Chem 395:679–695CrossRef Schäpper D, Alam MN, Szita N, Eliasson Lantz A, Gernaey KV (2009) Application of microbioreactors in fermentation process development: a review. Anal Bioanal Chem 395:679–695CrossRef
124.
Zurück zum Zitat Schäpper D, Stocks SM, Szita N, Lantz AE, Gernaey KV (2010) Development of a single-use microbioreactor for cultivation of microorganisms. Chem Eng J 160:891–898CrossRef Schäpper D, Stocks SM, Szita N, Lantz AE, Gernaey KV (2010) Development of a single-use microbioreactor for cultivation of microorganisms. Chem Eng J 160:891–898CrossRef
125.
Zurück zum Zitat Schlichting H, Gersten K (2006) Grenzschichttheorie, 10th edn. Springer, Berlin Schlichting H, Gersten K (2006) Grenzschichttheorie, 10th edn. Springer, Berlin
126.
Zurück zum Zitat Schmid L, Weitz DA, Franke T (2014) Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. Lab Chip 14:3710–3718CrossRef Schmid L, Weitz DA, Franke T (2014) Sorting drops and cells with acoustics: acoustic microfluidic fluorescence-activated cell sorter. Lab Chip 14:3710–3718CrossRef
127.
Zurück zum Zitat Schmolke H (2013) Funktionale Polyelektrolytschichten für mikrofluidische Systeme. Ph.D. Thesis, Technische Universität Braunschweig Schmolke H (2013) Funktionale Polyelektrolytschichten für mikrofluidische Systeme. Ph.D. Thesis, Technische Universität Braunschweig
128.
Zurück zum Zitat Schmolke H, Demming S, Edlich A, Magdanz V, Büttgenbach S, Franco-Lara E, Krull R, Klages CP (2010) Polyelectrolyte multilayer surface functionalization of poly(dimethylsiloxane) (PDMS) for reduction of yeast cell adhesion in microfluidic devices. Biomicrofluidics 4:44113CrossRef Schmolke H, Demming S, Edlich A, Magdanz V, Büttgenbach S, Franco-Lara E, Krull R, Klages CP (2010) Polyelectrolyte multilayer surface functionalization of poly(dimethylsiloxane) (PDMS) for reduction of yeast cell adhesion in microfluidic devices. Biomicrofluidics 4:44113CrossRef
129.
Zurück zum Zitat Sharma V, Dhayal M, Shivaprasad SM, Jain SC (2007) Surface characterization of plasma-treated and PEG-grafted PDMS for micro fluidic applications. Vacuum 81:1094–1100CrossRef Sharma V, Dhayal M, Shivaprasad SM, Jain SC (2007) Surface characterization of plasma-treated and PEG-grafted PDMS for micro fluidic applications. Vacuum 81:1094–1100CrossRef
130.
Zurück zum Zitat Skelley AM, Voldman J (2008) An active, integrated bubble trap and debubbler for microfluidic applications. In: 12th International conference on miniaturized systems for chemistry and life sciences, San Diego, CA, USA, pp 1360–1362 Skelley AM, Voldman J (2008) An active, integrated bubble trap and debubbler for microfluidic applications. In: 12th International conference on miniaturized systems for chemistry and life sciences, San Diego, CA, USA, pp 1360–1362
131.
Zurück zum Zitat Soares FO, Correia JH (2000) Bioreactor-on-a-chip: application to baker’s yeast fermentation. In: 1st Annual international IEEE-EMBS special topic conference on microtechnologies in medicine and biology, IEEE, Lyon, pp 45–48 Soares FO, Correia JH (2000) Bioreactor-on-a-chip: application to baker’s yeast fermentation. In: 1st Annual international IEEE-EMBS special topic conference on microtechnologies in medicine and biology, IEEE, Lyon, pp 45–48
132.
Zurück zum Zitat Spence DM, Torrence NJ, Kovarik ML, Martin RS (2004) Amperometric determination of nitric oxide derived from pulmonary artery endothelial cells immobilized in a microchip channel. Analyst 129:995–1000CrossRef Spence DM, Torrence NJ, Kovarik ML, Martin RS (2004) Amperometric determination of nitric oxide derived from pulmonary artery endothelial cells immobilized in a microchip channel. Analyst 129:995–1000CrossRef
133.
Zurück zum Zitat Suh YK, Kang S (2010) A review on mixing in microfluidics. Micromachines 1:82–111CrossRef Suh YK, Kang S (2010) A review on mixing in microfluidics. Micromachines 1:82–111CrossRef
134.
Zurück zum Zitat Szita N, Boccazzi P, Zhang Z, Boyle P, Sinskey AJ, Jensen KF (2005) Development of a multiplexed microbioreactor system for high-throughput bioprocessing. Lab Chip 5:819–826CrossRef Szita N, Boccazzi P, Zhang Z, Boyle P, Sinskey AJ, Jensen KF (2005) Development of a multiplexed microbioreactor system for high-throughput bioprocessing. Lab Chip 5:819–826CrossRef
135.
Zurück zum Zitat Tehranirokh M, Kouzani AZ, Francis PS, Kanwar JR (2013) Microfluidic devices for cell cultivation and proliferation. Biomicrofluidics 7:51502CrossRef Tehranirokh M, Kouzani AZ, Francis PS, Kanwar JR (2013) Microfluidic devices for cell cultivation and proliferation. Biomicrofluidics 7:51502CrossRef
136.
Zurück zum Zitat Thompson DM, King KR, Wieder KJ, Toner M, Yarmush ML, Jayaraman A (2004) Dynamic gene expression profiling using a microfabricated living cell array. Anal Chem 76:4098–4103CrossRef Thompson DM, King KR, Wieder KJ, Toner M, Yarmush ML, Jayaraman A (2004) Dynamic gene expression profiling using a microfabricated living cell array. Anal Chem 76:4098–4103CrossRef
137.
Zurück zum Zitat Toh YC, Lim TC, Tai D, Xiao G, van Noort D, Yu H (2009) A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip 9:2026–2035CrossRef Toh YC, Lim TC, Tai D, Xiao G, van Noort D, Yu H (2009) A microfluidic 3D hepatocyte chip for drug toxicity testing. Lab Chip 9:2026–2035CrossRef
138.
Zurück zum Zitat Vila-Planas J, Fernández-Rosas E, Ibarlucea B, Demming S, Nogués C, Plaza JA, Domínguez C, Büttgenbach S, Llobera A (2011) Cell analysis using a multiple internal reflection photonic lab-on-a-chip. Nat Protoc 6:1642–1655CrossRef Vila-Planas J, Fernández-Rosas E, Ibarlucea B, Demming S, Nogués C, Plaza JA, Domínguez C, Büttgenbach S, Llobera A (2011) Cell analysis using a multiple internal reflection photonic lab-on-a-chip. Nat Protoc 6:1642–1655CrossRef
139.
Zurück zum Zitat Von Meyenburg K (1969) Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth. Arch Mikrobiol 66:289–303CrossRef Von Meyenburg K (1969) Energetics of the budding cycle of Saccharomyces cerevisiae during glucose limited aerobic growth. Arch Mikrobiol 66:289–303CrossRef
140.
Zurück zum Zitat Walker GM, Zeringue HC, Beebe DJ (2004) Microenvironment design considerations for cellular scale studies. Lab Chip 4:91–97CrossRef Walker GM, Zeringue HC, Beebe DJ (2004) Microenvironment design considerations for cellular scale studies. Lab Chip 4:91–97CrossRef
141.
Zurück zum Zitat Wang YC, Ho CC (2004) Micropatterning of proteins and mammalian cells on biomaterials. FASEB J 18:525–527 Wang YC, Ho CC (2004) Micropatterning of proteins and mammalian cells on biomaterials. FASEB J 18:525–527
142.
Zurück zum Zitat Weigl BH, Bardell RL, Cabrera CR (2003) Lab-on-a-chip for drug development. Adv Drug Deliv Rev 55:349–377CrossRef Weigl BH, Bardell RL, Cabrera CR (2003) Lab-on-a-chip for drug development. Adv Drug Deliv Rev 55:349–377CrossRef
143.
Zurück zum Zitat Wenk P, Hemmerich J, Müller C, Kensy F (2012) Hochparallele Bioprozessentwicklung in geschüttelten Mikrobioreaktoren. Chem Ing Tech 84:704–714CrossRef Wenk P, Hemmerich J, Müller C, Kensy F (2012) Hochparallele Bioprozessentwicklung in geschüttelten Mikrobioreaktoren. Chem Ing Tech 84:704–714CrossRef
144.
Zurück zum Zitat Weuster-Botz D, Altenbach-Rehm J, Hawrylenko A (2001) Process-engineering characterization of small-scale bubble columns for microbial process development. Bioprocess Biosyst Eng 24:3–11CrossRef Weuster-Botz D, Altenbach-Rehm J, Hawrylenko A (2001) Process-engineering characterization of small-scale bubble columns for microbial process development. Bioprocess Biosyst Eng 24:3–11CrossRef
145.
Zurück zum Zitat Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–73CrossRef Whitesides GM, Ostuni E, Takayama S, Jiang X, Ingber DE (2001) Soft lithography in biology and biochemistry. Annu Rev Biomed Eng 3:335–73CrossRef
146.
Zurück zum Zitat Wilming A, Bähr C, Kamerke C, Büchs J (2014) Fed-batch operation in special microtiter plates: a new method for screening under production conditions. J Ind Microbiol Biotechnol 41:513–525CrossRef Wilming A, Bähr C, Kamerke C, Büchs J (2014) Fed-batch operation in special microtiter plates: a new method for screening under production conditions. J Ind Microbiol Biotechnol 41:513–525CrossRef
147.
Zurück zum Zitat Wu MH, Huang SB, Cui Z, Cui Z, Lee GB (2008) A high throughput perfusion-based microbioreactor platform integrated with pneumatic micropumps for three-dimensional cell culture. Biomed Microdevices 10:309–319CrossRef Wu MH, Huang SB, Cui Z, Cui Z, Lee GB (2008) A high throughput perfusion-based microbioreactor platform integrated with pneumatic micropumps for three-dimensional cell culture. Biomed Microdevices 10:309–319CrossRef
148.
Zurück zum Zitat Wu MH, Huang SB, Lee GB (2010) Microfluidic cell culture systems for drug research. Lab Chip 10:939–956CrossRef Wu MH, Huang SB, Lee GB (2010) Microfluidic cell culture systems for drug research. Lab Chip 10:939–956CrossRef
149.
Zurück zum Zitat Wu MH, Urban JPG, Cui Z, Cui ZF (2006) Development of PDMS microbioreactor with well-defined and homogenous culture environment for chondrocyte 3-D culture. Biomed Microdevices 8:331–340CrossRef Wu MH, Urban JPG, Cui Z, Cui ZF (2006) Development of PDMS microbioreactor with well-defined and homogenous culture environment for chondrocyte 3-D culture. Biomed Microdevices 8:331–340CrossRef
150.
Zurück zum Zitat Wu Z, Hjort K (2009) Surface modification of PDMS by gradient-induced migration of embedded Pluronic. Lab Chip 9:1500–1503CrossRef Wu Z, Hjort K (2009) Surface modification of PDMS by gradient-induced migration of embedded Pluronic. Lab Chip 9:1500–1503CrossRef
151.
Zurück zum Zitat Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184CrossRef Xia Y, Whitesides GM (1998) Soft lithography. Annu Rev Mater Sci 28:153–184CrossRef
152.
Zurück zum Zitat Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575CrossRef Xia Y, Whitesides GM (1998) Soft lithography. Angew Chem Int Ed 37:550–575CrossRef
153.
Zurück zum Zitat Yamamoto T, Fujii T, Nojima T (2002) PDMS-glass hybrid microreactor array with embedded temperature control device. Application to cell-free protein synthesis. Lab Chip 2:197–202CrossRef Yamamoto T, Fujii T, Nojima T (2002) PDMS-glass hybrid microreactor array with embedded temperature control device. Application to cell-free protein synthesis. Lab Chip 2:197–202CrossRef
154.
Zurück zum Zitat Yang B, Lin Q (2009) A latchable phase-change microvalve with integrated heaters. J Microelectromech Syst 18:860–867CrossRef Yang B, Lin Q (2009) A latchable phase-change microvalve with integrated heaters. J Microelectromech Syst 18:860–867CrossRef
155.
Zurück zum Zitat Yang YN, Hsiung SK, Lee GB (2008) A pneumatic micropump incorporated with a normally closed valve capable of generating a high pumping rate and a high back pressure. Microfluid Nanofluid 6:823–833CrossRef Yang YN, Hsiung SK, Lee GB (2008) A pneumatic micropump incorporated with a normally closed valve capable of generating a high pumping rate and a high back pressure. Microfluid Nanofluid 6:823–833CrossRef
156.
Zurück zum Zitat Yuen PK (2008) SmartBuild-a truly plug-n-play modular microfluidic system. Lab Chip 8:1374–1378CrossRef Yuen PK (2008) SmartBuild-a truly plug-n-play modular microfluidic system. Lab Chip 8:1374–1378CrossRef
157.
Zurück zum Zitat Zainal Alam MNH, Gernaey KV (2012) Overview on design considerations for development of disposable microbioreactor prototypes. J Teknol 59:53–60 Zainal Alam MNH, Gernaey KV (2012) Overview on design considerations for development of disposable microbioreactor prototypes. J Teknol 59:53–60
158.
Zurück zum Zitat Zanzotto A, Szita N, Boccazzi P, Lessard P, Sinskey AJ, Jensen KF (2004) Membrane-aerated microbioreactor for high-throughput bioprocessing. Biotechnol Bioeng 87:243–254CrossRef Zanzotto A, Szita N, Boccazzi P, Lessard P, Sinskey AJ, Jensen KF (2004) Membrane-aerated microbioreactor for high-throughput bioprocessing. Biotechnol Bioeng 87:243–254CrossRef
159.
Zurück zum Zitat Zeng Q, Guo F, Yao L, Zhu HW, Zheng L, Guo ZX, Liu W, Chen Y, Guo SS, Zhao XZ (2011) Milliseconds mixing in microfluidic channel using focused surface acoustic wave. Sensors Actuators B Chem 160:1552–1556CrossRef Zeng Q, Guo F, Yao L, Zhu HW, Zheng L, Guo ZX, Liu W, Chen Y, Guo SS, Zhao XZ (2011) Milliseconds mixing in microfluidic channel using focused surface acoustic wave. Sensors Actuators B Chem 160:1552–1556CrossRef
160.
Zurück zum Zitat Zhang W, Lin S, Wang C, Hu J, Li C, Zhuang Z, Zhou Y, Mathies R, Yang CJ (2009) PMMA/PDMS valves and pumps for disposable microfluidics. Lab Chip 9:3088–3094CrossRef Zhang W, Lin S, Wang C, Hu J, Li C, Zhuang Z, Zhou Y, Mathies R, Yang CJ (2009) PMMA/PDMS valves and pumps for disposable microfluidics. Lab Chip 9:3088–3094CrossRef
161.
Zurück zum Zitat Zhang Z, Boccazzi P, Choi H-G, Perozziello G, Sinskey AJ, Jensen KF (2006) Microchemostat-microbial continuous culture in a polymer-based, instrumented microbioreactor. Lab Chip 6:906–913CrossRef Zhang Z, Boccazzi P, Choi H-G, Perozziello G, Sinskey AJ, Jensen KF (2006) Microchemostat-microbial continuous culture in a polymer-based, instrumented microbioreactor. Lab Chip 6:906–913CrossRef
162.
Zurück zum Zitat Zhang Z, Boccazzi P, Choi HG, Szita N, Sinskey AJ, Jensen KF (2004) A microchemostat-continuous cell culture in microbioreactors. In: 8th International conference on miniaturized systems for chemistry and life sciences, Royal Society of Chemistry, Malmo, Sweden, pp 231–233 Zhang Z, Boccazzi P, Choi HG, Szita N, Sinskey AJ, Jensen KF (2004) A microchemostat-continuous cell culture in microbioreactors. In: 8th International conference on miniaturized systems for chemistry and life sciences, Royal Society of Chemistry, Malmo, Sweden, pp 231–233
163.
Zurück zum Zitat Zhang Z, Perozziello G, Boccazzi P, Sinskey AJ, Geschke O, Jensen KF (2007) Microbioreactors for bioprocess development. J Assoc Lab Autom 12:143–151CrossRef Zhang Z, Perozziello G, Boccazzi P, Sinskey AJ, Geschke O, Jensen KF (2007) Microbioreactors for bioprocess development. J Assoc Lab Autom 12:143–151CrossRef
164.
Zurück zum Zitat Zhang Z, Szita N, Boccazzi P, Sinskey AJ, Jensen KF (2005) A well-mixed, polymer-based microbioreactor with integrated optical measurements. Biotechnol Bioeng 93:286–296CrossRef Zhang Z, Szita N, Boccazzi P, Sinskey AJ, Jensen KF (2005) A well-mixed, polymer-based microbioreactor with integrated optical measurements. Biotechnol Bioeng 93:286–296CrossRef
Metadaten
Titel
Microbioreactors
verfasst von
R. Krull
S. Lladó‐Maldonado
T. Lorenz
S. Demming
S. Büttgenbach
Copyright-Jahr
2016
DOI
https://doi.org/10.1007/978-3-319-26920-7_4

Neuer Inhalt