Skip to main content
Erschienen in: Journal of Materials Science 13/2014

01.07.2014

Surface modification of polypyrrole-coated foam for the capture of organic solvents and oils

verfasst von: Jin An, Hanxue Sun, Jinfeng Cui, Zhaoqi Zhu, Weidong Liang, Chunjuan Pei, Baoping Yang, An Li

Erschienen in: Journal of Materials Science | Ausgabe 13/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The low stability and complicated fabrication procedures seriously hindered practical applications of superhydrophobic and superoleophilic materials. Here, we present a simple method for preparing the novelly three-dimensional material based on commercially available nickel foams functionalized with electrodepositing of sub-micrometer polypyrrole (PPy) particles, followed by modification of low-surface-energy material such as fluoroalkylsilane (FAS), which can efficiently separate oils and organic solvents from water. The formation of nanostructured surface roughness of PPy onto the nickel foam by combination with FAS modification would contribute to the excellent superhydrophobic and superoleophilic performance, as is the evidence of the water CA of 155° and oil CA of ca. 0° for FAS-treated PPy foam. As a separating membrane, organic solvents and oils could be easily removed without obvious absorption of water, which has great potential over traditional treatment techniques and is of technological significance as a promising and efficient absorbent material for separation of organic contaminates and oils from water.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Wu G, Kang HB, Zhang XY, Shao HB, Chu LY, Ruan CJ (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8CrossRef Wu G, Kang HB, Zhang XY, Shao HB, Chu LY, Ruan CJ (2010) A critical review on the bio-removal of hazardous heavy metals from contaminated soils: issues, progress, eco-environmental concerns and opportunities. J Hazard Mater 174:1–8CrossRef
2.
Zurück zum Zitat Feng L, Zhang ZY, Mai ZH, Ma YM, Liu BQ, Jiang L, Zhu DB (2004) A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew Chem Int Ed 43:2012–2014CrossRef Feng L, Zhang ZY, Mai ZH, Ma YM, Liu BQ, Jiang L, Zhu DB (2004) A super-hydrophobic and super-oleophilic coating mesh film for the separation of oil and water. Angew Chem Int Ed 43:2012–2014CrossRef
3.
Zurück zum Zitat Feng XJ, Jiang L (2006) Design and creation of superwetting/antiwetting surfaces. Adv Mater 18:3063–3078CrossRef Feng XJ, Jiang L (2006) Design and creation of superwetting/antiwetting surfaces. Adv Mater 18:3063–3078CrossRef
4.
Zurück zum Zitat Xue ZX, Wang ST, Lin L, Chen L, Liu MJ, Feng L, Jiang L (2011) A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv Mater 23:4270–4273CrossRef Xue ZX, Wang ST, Lin L, Chen L, Liu MJ, Feng L, Jiang L (2011) A novel superhydrophilic and underwater superoleophobic hydrogel-coated mesh for oil/water separation. Adv Mater 23:4270–4273CrossRef
5.
Zurück zum Zitat Wen Q, Di JC, Jiang L, Yu JH, Xu RR (2013) Zeolite-coated mesh film for efficient oil–water separation. Chem Sci 4:591–595CrossRef Wen Q, Di JC, Jiang L, Yu JH, Xu RR (2013) Zeolite-coated mesh film for efficient oil–water separation. Chem Sci 4:591–595CrossRef
6.
Zurück zum Zitat Choi SJ, Kwon TH, Im H, Moon DI, Baek DJ, Seol ML, Duarte JP, Choi YK (2011) A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl Mater Interfaces 3:4552–4556CrossRef Choi SJ, Kwon TH, Im H, Moon DI, Baek DJ, Seol ML, Duarte JP, Choi YK (2011) A polydimethylsiloxane (PDMS) sponge for the selective absorption of oil from water. ACS Appl Mater Interfaces 3:4552–4556CrossRef
7.
Zurück zum Zitat Zhu Q, Chu Y, Wang ZK, Chen N, Lin L, Liu FT, Pan QM (2013) Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. J Mater Chem A 1:5386–5393CrossRef Zhu Q, Chu Y, Wang ZK, Chen N, Lin L, Liu FT, Pan QM (2013) Robust superhydrophobic polyurethane sponge as a highly reusable oil-absorption material. J Mater Chem A 1:5386–5393CrossRef
8.
Zurück zum Zitat Calcagnile P, Fragouli D, Bayer IS, Anyfantis GC, Martiradonna L, Cozzoli PD, Cingolani R, Athanassiou A (2012) Magnetically driven floating foams for the removal of oil contaminants from water. ACS Nano 6:5413–5419CrossRef Calcagnile P, Fragouli D, Bayer IS, Anyfantis GC, Martiradonna L, Cozzoli PD, Cingolani R, Athanassiou A (2012) Magnetically driven floating foams for the removal of oil contaminants from water. ACS Nano 6:5413–5419CrossRef
9.
Zurück zum Zitat Zhu Q, Pan QM, Liu FT (2011) Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges. J Phys Chem C 115:17464–17470CrossRef Zhu Q, Pan QM, Liu FT (2011) Facile removal and collection of oils from water surfaces through superhydrophobic and superoleophilic sponges. J Phys Chem C 115:17464–17470CrossRef
10.
Zurück zum Zitat Nguyen DD, Tai NH, Lee SB, Kuo WS (2012) Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ Sci 5:7908–7912CrossRef Nguyen DD, Tai NH, Lee SB, Kuo WS (2012) Superhydrophobic and superoleophilic properties of graphene-based sponges fabricated using a facile dip coating method. Energy Environ Sci 5:7908–7912CrossRef
11.
Zurück zum Zitat Lin YR, Gregory JE, Colton B, Henry AS (2011) Superhydrophobic functionalized graphene aerogels. ACS Appl Mater Interfaces 3:2200–2203CrossRef Lin YR, Gregory JE, Colton B, Henry AS (2011) Superhydrophobic functionalized graphene aerogels. ACS Appl Mater Interfaces 3:2200–2203CrossRef
12.
Zurück zum Zitat Choi BG, Park HS (2012) Superhydrophobic graphene/nafion nanohybrid films with hierarchical roughness. J Phys Chem C 116:3207–3211CrossRef Choi BG, Park HS (2012) Superhydrophobic graphene/nafion nanohybrid films with hierarchical roughness. J Phys Chem C 116:3207–3211CrossRef
13.
Zurück zum Zitat Zhang L, Zha DA, Du TT, Mei SL, Shi ZJ, Jin ZX (2011) Formation of superhydrophobic microspheres of poly(vinylidene fluoride–hexafluoropropylene)/graphene composite via gelation. Langmuir 27:8943–8949CrossRef Zhang L, Zha DA, Du TT, Mei SL, Shi ZJ, Jin ZX (2011) Formation of superhydrophobic microspheres of poly(vinylidene fluoride–hexafluoropropylene)/graphene composite via gelation. Langmuir 27:8943–8949CrossRef
14.
Zurück zum Zitat Dong XC, Chen J, Ma YW, Wang J, Chan-Park MB, Liu XM, Wang LH, Huang W, Chen P (2012) Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. Chem Commun 48:10660–10662CrossRef Dong XC, Chen J, Ma YW, Wang J, Chan-Park MB, Liu XM, Wang LH, Huang W, Chen P (2012) Superhydrophobic and superoleophilic hybrid foam of graphene and carbon nanotube for selective removal of oils or organic solvents from the surface of water. Chem Commun 48:10660–10662CrossRef
15.
Zurück zum Zitat Cong HP, Ren XC, Wang P, Yu SH (2012) Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6:2693–2703CrossRef Cong HP, Ren XC, Wang P, Yu SH (2012) Macroscopic multifunctional graphene-based hydrogels and aerogels by a metal ion induced self-assembly process. ACS Nano 6:2693–2703CrossRef
16.
Zurück zum Zitat Singh E, Chen ZP, Houshmand F, Ren WC, Peles Y, Cheng HM, Koratkar N (2013) Superhydrophobic graphene foams. Small 9:75–80CrossRef Singh E, Chen ZP, Houshmand F, Ren WC, Peles Y, Cheng HM, Koratkar N (2013) Superhydrophobic graphene foams. Small 9:75–80CrossRef
17.
Zurück zum Zitat Jin J, Wang X, Song M (2011) Graphene-based nanostructured hybrid materials for conductive and superhydrophobic functional coatings. J Nanosci Nanotech 11:7715–7722CrossRef Jin J, Wang X, Song M (2011) Graphene-based nanostructured hybrid materials for conductive and superhydrophobic functional coatings. J Nanosci Nanotech 11:7715–7722CrossRef
18.
Zurück zum Zitat Zhang XQ, Wan SH, Pu JB, Wang LP, Liu XQ (2011) Highly hydrophobic and adhesive performance of graphene films. J Mater Chem 21:12251–12258CrossRef Zhang XQ, Wan SH, Pu JB, Wang LP, Liu XQ (2011) Highly hydrophobic and adhesive performance of graphene films. J Mater Chem 21:12251–12258CrossRef
19.
Zurück zum Zitat Lee JS, Yoon JC, Jang JH (2013) A route towards superhydrophobic graphene surfaces: surface-treated reduced graphene oxide spheres. J Mater Chem A 1:7312–7315CrossRef Lee JS, Yoon JC, Jang JH (2013) A route towards superhydrophobic graphene surfaces: surface-treated reduced graphene oxide spheres. J Mater Chem A 1:7312–7315CrossRef
20.
Zurück zum Zitat Chen ZX, Dong L, Yang D, Lu HB (2013) Superhydrophobic graphene-based materials: surface construction and functional applications. Adv Mater 25:5352–5359CrossRef Chen ZX, Dong L, Yang D, Lu HB (2013) Superhydrophobic graphene-based materials: surface construction and functional applications. Adv Mater 25:5352–5359CrossRef
21.
Zurück zum Zitat Han JT, Kim JS, Kim SH, Lim HS, Jeong HJ, Jeong SY, Lee GW (2010) Nanocarbon-induced rapid transformation of polymer surfaces into superhydrophobic surfaces. ACS Appl Mater Interfaces 2:3378–3383CrossRef Han JT, Kim JS, Kim SH, Lim HS, Jeong HJ, Jeong SY, Lee GW (2010) Nanocarbon-induced rapid transformation of polymer surfaces into superhydrophobic surfaces. ACS Appl Mater Interfaces 2:3378–3383CrossRef
22.
Zurück zum Zitat Gui XC, Wei JQ, Wang KL, Cao AY, Zhu HW, Jia Y, Shu QK, Wu DH (2010) Carbon nanotube sponges. Adv Mater 22:617–621CrossRef Gui XC, Wei JQ, Wang KL, Cao AY, Zhu HW, Jia Y, Shu QK, Wu DH (2010) Carbon nanotube sponges. Adv Mater 22:617–621CrossRef
23.
Zurück zum Zitat Lee CH, Johnson N, Drelich J, Yap YK (2011) The performance of superhydrophobic and superoleophilic carbon nanotube meshes in water–oil filtration. Carbon 49:669–676CrossRef Lee CH, Johnson N, Drelich J, Yap YK (2011) The performance of superhydrophobic and superoleophilic carbon nanotube meshes in water–oil filtration. Carbon 49:669–676CrossRef
24.
Zurück zum Zitat Yuan JK, Liu XG, Akbulut O, Hu JQ, Suib SL, Kong J, Stellaaai F (2008) Superwetting nanowire membranes for selective absorption. Nat Nanotechnol 3:332–336CrossRef Yuan JK, Liu XG, Akbulut O, Hu JQ, Suib SL, Kong J, Stellaaai F (2008) Superwetting nanowire membranes for selective absorption. Nat Nanotechnol 3:332–336CrossRef
25.
Zurück zum Zitat Zhang JP, Seeger S (2011) Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv Funct Mater 21:4699–4704CrossRef Zhang JP, Seeger S (2011) Polyester materials with superwetting silicone nanofilaments for oil/water separation and selective oil absorption. Adv Funct Mater 21:4699–4704CrossRef
26.
Zurück zum Zitat Darmanin T, Nicolas M, Guittard F (2008) Electrodeposited polymer films with both superhydrophobicity and superoleophilicity. Phys Chem Chem Phys 10:4322–4326CrossRef Darmanin T, Nicolas M, Guittard F (2008) Electrodeposited polymer films with both superhydrophobicity and superoleophilicity. Phys Chem Chem Phys 10:4322–4326CrossRef
27.
Zurück zum Zitat Yang J, Zhang ZZ, Xu XH, Zhu XT, Men XH, Zhou XY (2012) Superhydrophilic–superoleophobic coatings. J Mater Chem 22:2834–2837CrossRef Yang J, Zhang ZZ, Xu XH, Zhu XT, Men XH, Zhou XY (2012) Superhydrophilic–superoleophobic coatings. J Mater Chem 22:2834–2837CrossRef
28.
Zurück zum Zitat Crick CR, Gibbins JA, Parkin IP (2013) Superhydrophobic polymer-coated copper-mesh membranes for highly efficient oil–water separation. J Mater Chem A 1:5943–5948CrossRef Crick CR, Gibbins JA, Parkin IP (2013) Superhydrophobic polymer-coated copper-mesh membranes for highly efficient oil–water separation. J Mater Chem A 1:5943–5948CrossRef
29.
Zurück zum Zitat Cao YZ, Zhang XY, Tao L, Li K, Xue ZX, Feng L, Wei Y (2013) Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation. ACS Appl Mater Interfaces 5:4438–4442 Cao YZ, Zhang XY, Tao L, Li K, Xue ZX, Feng L, Wei Y (2013) Mussel-inspired chemistry and michael addition reaction for efficient oil/water separation. ACS Appl Mater Interfaces 5:4438–4442
30.
Zurück zum Zitat Basu BBJ, Paranthaman AK (2009) A simple method for the preparation of superhydrophobic PVDF–HMFS hybrid composite coatings. Appl Surf Sci 255:4479–4483CrossRef Basu BBJ, Paranthaman AK (2009) A simple method for the preparation of superhydrophobic PVDF–HMFS hybrid composite coatings. Appl Surf Sci 255:4479–4483CrossRef
31.
Zurück zum Zitat Feng L, Song YL, Zhai J, Liu BQ, Xu J, Jiang L, Zhu DB (2003) Creation of a superhydrophobic surface from an amphiphilic polymer. Angew Chem Int Ed 115:824–826CrossRef Feng L, Song YL, Zhai J, Liu BQ, Xu J, Jiang L, Zhu DB (2003) Creation of a superhydrophobic surface from an amphiphilic polymer. Angew Chem Int Ed 115:824–826CrossRef
32.
Zurück zum Zitat Hayase G, Kanamori K, Fukuchi M, Kaji H, Nakanishi K (2013) Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. Angew Chem Int Ed 52:1986–1989CrossRef Hayase G, Kanamori K, Fukuchi M, Kaji H, Nakanishi K (2013) Facile synthesis of marshmallow-like macroporous gels usable under harsh conditions for the separation of oil and water. Angew Chem Int Ed 52:1986–1989CrossRef
33.
Zurück zum Zitat Ono T, Sugimoto T, Shinkai S, Sada K (2007) Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents. Nat Mater 6:429–433CrossRef Ono T, Sugimoto T, Shinkai S, Sada K (2007) Lipophilic polyelectrolyte gels as super-absorbent polymers for nonpolar organic solvents. Nat Mater 6:429–433CrossRef
34.
Zurück zum Zitat Sonmez HB, Wudl F (2005) Cross-linked poly(orthocarbonate)s as organic solvent sorbents. Macromolecules 38:1623–1626CrossRef Sonmez HB, Wudl F (2005) Cross-linked poly(orthocarbonate)s as organic solvent sorbents. Macromolecules 38:1623–1626CrossRef
35.
Zurück zum Zitat Su C (2009) Highly hydrophobic and oleophilic foam for selective absorption. Appl Surf Sci 256:1413–1418CrossRef Su C (2009) Highly hydrophobic and oleophilic foam for selective absorption. Appl Surf Sci 256:1413–1418CrossRef
36.
Zurück zum Zitat Zhang X, Li Z, Liu K, Jiang L (2013) Bioinspired multifunctional foam with self-cleaning and oil/water separation. Adv Funct Mater 23:2881–2886CrossRef Zhang X, Li Z, Liu K, Jiang L (2013) Bioinspired multifunctional foam with self-cleaning and oil/water separation. Adv Funct Mater 23:2881–2886CrossRef
37.
Zurück zum Zitat Liu H, Liu Z, Yang M, He Q (2013) Surperhydrophobic polyurethane foam modified by graphene oxide. J Appl Polym Sci 130:3530–3536CrossRef Liu H, Liu Z, Yang M, He Q (2013) Surperhydrophobic polyurethane foam modified by graphene oxide. J Appl Polym Sci 130:3530–3536CrossRef
38.
Zurück zum Zitat Li A, Sun HX, Tan DZ, Fan WJ, Wen SH, Qing XJ, Li GX, Li SY, Deng WQ (2011) Superhydrophobic conjugated microporous polymers for separation and adsorption. Energy Environ Sci 4:2062–2065CrossRef Li A, Sun HX, Tan DZ, Fan WJ, Wen SH, Qing XJ, Li GX, Li SY, Deng WQ (2011) Superhydrophobic conjugated microporous polymers for separation and adsorption. Energy Environ Sci 4:2062–2065CrossRef
39.
Zurück zum Zitat Sun HX, Li A, Zhu ZQ, Liang WD, Zhao XH, La PQ, Deng WQ (2013) Superhydrophobic activated carbon-coated sponges for separation and absorption. ChemSusChem 6:1057–1062CrossRef Sun HX, Li A, Zhu ZQ, Liang WD, Zhao XH, La PQ, Deng WQ (2013) Superhydrophobic activated carbon-coated sponges for separation and absorption. ChemSusChem 6:1057–1062CrossRef
40.
Zurück zum Zitat Fan ZL, Qin XJ, Sun HX, Zhu ZQ, Pei CJ, Liang WD, Bao XM, An J, La PQ, Li A, Deng WQ (2013) Superhydrophobic mesoporous graphene for separation and absorption. ChemPlusChem 78:1282–1287CrossRef Fan ZL, Qin XJ, Sun HX, Zhu ZQ, Pei CJ, Liang WD, Bao XM, An J, La PQ, Li A, Deng WQ (2013) Superhydrophobic mesoporous graphene for separation and absorption. ChemPlusChem 78:1282–1287CrossRef
41.
Zurück zum Zitat Sun HX, Li A, Qin XJ, Zhu ZQ, Liang WD, La PQ, Deng WQ (2013) Three-dimensional superwetting mesh film based on graphene assembly for liquid transportation and selective absorption. ChemSusChem 6:2377–2381CrossRef Sun HX, Li A, Qin XJ, Zhu ZQ, Liang WD, La PQ, Deng WQ (2013) Three-dimensional superwetting mesh film based on graphene assembly for liquid transportation and selective absorption. ChemSusChem 6:2377–2381CrossRef
42.
Zurück zum Zitat Arbatan T, Fang XY, Shen W (2011) Superhydrophobic and oleophilic calcium carbonate powder as a selective oil sorbent with potential use in oil spill clean-ups. Chem Eng J 166:787–791CrossRef Arbatan T, Fang XY, Shen W (2011) Superhydrophobic and oleophilic calcium carbonate powder as a selective oil sorbent with potential use in oil spill clean-ups. Chem Eng J 166:787–791CrossRef
43.
Zurück zum Zitat Su CH, Xu YQ, Zhang W, Liu Y, Li J (2012) Porous ceramic membrane with superhydrophobic and superoleophilic surface for reclaiming oil from oily water. Appl Surf Sci 258:2319–2323CrossRef Su CH, Xu YQ, Zhang W, Liu Y, Li J (2012) Porous ceramic membrane with superhydrophobic and superoleophilic surface for reclaiming oil from oily water. Appl Surf Sci 258:2319–2323CrossRef
44.
Zurück zum Zitat Lin JJ, Chu CC, Chiang ML, Tsai WC (2006) Manipulating assemblies of high-aspect-ratio clays and fatty amine salts to form surfaces exhibiting a lotus effect. Adv Mater 18:3248–3252CrossRef Lin JJ, Chu CC, Chiang ML, Tsai WC (2006) Manipulating assemblies of high-aspect-ratio clays and fatty amine salts to form surfaces exhibiting a lotus effect. Adv Mater 18:3248–3252CrossRef
45.
Zurück zum Zitat Zhong WB, Liu SM, Chen XH, Wang YX, Yang WT (2006) High-yield synthesis of superhydrophilic polypyrrole nanowire networks. Macromolecules 39:3224–3230CrossRef Zhong WB, Liu SM, Chen XH, Wang YX, Yang WT (2006) High-yield synthesis of superhydrophilic polypyrrole nanowire networks. Macromolecules 39:3224–3230CrossRef
46.
Zurück zum Zitat Xu LB, Chen W, Mulchandani A, Yan YS (2005) Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic. Angew Chem Int Ed 44:6009–6012CrossRef Xu LB, Chen W, Mulchandani A, Yan YS (2005) Reversible conversion of conducting polymer films from superhydrophobic to superhydrophilic. Angew Chem Int Ed 44:6009–6012CrossRef
47.
Zurück zum Zitat Chang JH, Hunter IW (2011) A superhydrophobic to superhydrophilic in situ wettability switch of microstructured polypyrrole surfaces. Macromol Rapid Commun 32:718–723CrossRef Chang JH, Hunter IW (2011) A superhydrophobic to superhydrophilic in situ wettability switch of microstructured polypyrrole surfaces. Macromol Rapid Commun 32:718–723CrossRef
48.
Zurück zum Zitat Li M, Wei ZX, Jiang L (2008) Polypyrrole nanofiber arrays synthesized by a biphasic electrochemical strategy. J Mater Chem 18:2276–2280CrossRef Li M, Wei ZX, Jiang L (2008) Polypyrrole nanofiber arrays synthesized by a biphasic electrochemical strategy. J Mater Chem 18:2276–2280CrossRef
49.
Zurück zum Zitat Jiang L, Zhao Y, Zhai J (2004) A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew Chem Int Ed 116:4438–4441CrossRef Jiang L, Zhao Y, Zhai J (2004) A lotus-leaf-like superhydrophobic surface: a porous microsphere/nanofiber composite film prepared by electrohydrodynamics. Angew Chem Int Ed 116:4438–4441CrossRef
50.
Zurück zum Zitat Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860CrossRef Feng L, Li S, Li Y, Li H, Zhang L, Zhai J, Song Y, Liu B, Jiang L, Zhu D (2002) Super-hydrophobic surfaces: from natural to artificial. Adv Mater 14:1857–1860CrossRef
51.
Zurück zum Zitat Gao L, McCarthy TJ (2006) A perfectly hydrophobic surface (θA/θR = 180/180). J Am Chem Soc 128:9052–9053CrossRef Gao L, McCarthy TJ (2006) A perfectly hydrophobic surface (θA/θR = 180/180). J Am Chem Soc 128:9052–9053CrossRef
52.
Zurück zum Zitat Lau KKS, Bico J, Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, McKinley GH, Gleason KK (2003) Superhydrophobic carbon nanotube Forests. Nano Lett 3:1701–1705CrossRef Lau KKS, Bico J, Teo KBK, Chhowalla M, Amaratunga GAJ, Milne WI, McKinley GH, Gleason KK (2003) Superhydrophobic carbon nanotube Forests. Nano Lett 3:1701–1705CrossRef
53.
Zurück zum Zitat Motornov M, Sheparovych R, Lupitskyy R, MacWilliams E, Minko S (2008) Superhydrophobic surfaces generated from water-borne dispersions of hierarchically assembled nanoparticles coated with a reversibly switchable shell. Adv Mater 20:200–205CrossRef Motornov M, Sheparovych R, Lupitskyy R, MacWilliams E, Minko S (2008) Superhydrophobic surfaces generated from water-borne dispersions of hierarchically assembled nanoparticles coated with a reversibly switchable shell. Adv Mater 20:200–205CrossRef
54.
Zurück zum Zitat Yang H, Pi PH, Cai ZQ, Wen XF, Wang XB, Cheng J, Yang ZR (2010) Facile preparation of super-hydrophobic and super-oleophilic silica film on stainless steel mesh via sol-gel process. Appl Surf Sci 256:4095–4102CrossRef Yang H, Pi PH, Cai ZQ, Wen XF, Wang XB, Cheng J, Yang ZR (2010) Facile preparation of super-hydrophobic and super-oleophilic silica film on stainless steel mesh via sol-gel process. Appl Surf Sci 256:4095–4102CrossRef
55.
Zurück zum Zitat Cui JF, Bao XM, Sun HX, An J, Guo JH, Yang BP, Li A (2014) Preparation of superhydrophobic surfaces by cauliflower-like polyaniline. J Appl Poly Sci. doi:10.1002/app.39767 Cui JF, Bao XM, Sun HX, An J, Guo JH, Yang BP, Li A (2014) Preparation of superhydrophobic surfaces by cauliflower-like polyaniline. J Appl Poly Sci. doi:10.​1002/​app.​39767
56.
Zurück zum Zitat Tian B, Zerbi G (1990) Lattice dynamics and vibrational spectra of polypyrrole. J Chem Phys 92:3886–3892CrossRef Tian B, Zerbi G (1990) Lattice dynamics and vibrational spectra of polypyrrole. J Chem Phys 92:3886–3892CrossRef
57.
Zurück zum Zitat Münstedt H (1986) Properties of polypyrroles treated with base and acid. Polymer 27:899–904CrossRef Münstedt H (1986) Properties of polypyrroles treated with base and acid. Polymer 27:899–904CrossRef
58.
Zurück zum Zitat Marco ADP, Waltman RJ, Diaz AF, Bargon J (1985) An electrically conductive plastic composite derived from polypyrrole and poly(vinyl chloride). J Poly Sci Chem Ed 23:1687–1689CrossRef Marco ADP, Waltman RJ, Diaz AF, Bargon J (1985) An electrically conductive plastic composite derived from polypyrrole and poly(vinyl chloride). J Poly Sci Chem Ed 23:1687–1689CrossRef
59.
Zurück zum Zitat He YJ, Lu JH (2007) Synthesis of polyaniline nanostructures with controlled morphology by a two-phase strategy. React Funct Polym 67:476–480CrossRef He YJ, Lu JH (2007) Synthesis of polyaniline nanostructures with controlled morphology by a two-phase strategy. React Funct Polym 67:476–480CrossRef
60.
Zurück zum Zitat Chen SG, Chen Y, Lei YH, Yin YS (2009) Novel strategy in enhancing stability and corrosion resistance for hydrophobic functional films on copper surfaces. Electrochem Commun 11:1675–1679CrossRef Chen SG, Chen Y, Lei YH, Yin YS (2009) Novel strategy in enhancing stability and corrosion resistance for hydrophobic functional films on copper surfaces. Electrochem Commun 11:1675–1679CrossRef
61.
Zurück zum Zitat Hong R, Pan T, Qian J, Li H (2006) Synthesis and surface modification of ZnO nanoparticles. Chem Eng J 119:71–81CrossRef Hong R, Pan T, Qian J, Li H (2006) Synthesis and surface modification of ZnO nanoparticles. Chem Eng J 119:71–81CrossRef
62.
Zurück zum Zitat Shin H, Kim KK, Benayad A, Yoon S, Park HK, Jung I, Jin MH, Jeong H, Kim JM, Choi J, Lee YH (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19:1987–1992CrossRef Shin H, Kim KK, Benayad A, Yoon S, Park HK, Jung I, Jin MH, Jeong H, Kim JM, Choi J, Lee YH (2009) Efficient reduction of graphite oxide by sodium borohydride and its effect on electrical conductance. Adv Funct Mater 19:1987–1992CrossRef
63.
Zurück zum Zitat Chen H, Wang A (2007) Kinetic and isothermal studies of lead ion adsorption onto palygorskite clay. J Colloid Interface Sci 307:309–316CrossRef Chen H, Wang A (2007) Kinetic and isothermal studies of lead ion adsorption onto palygorskite clay. J Colloid Interface Sci 307:309–316CrossRef
Metadaten
Titel
Surface modification of polypyrrole-coated foam for the capture of organic solvents and oils
verfasst von
Jin An
Hanxue Sun
Jinfeng Cui
Zhaoqi Zhu
Weidong Liang
Chunjuan Pei
Baoping Yang
An Li
Publikationsdatum
01.07.2014
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 13/2014
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-014-8157-8

Weitere Artikel der Ausgabe 13/2014

Journal of Materials Science 13/2014 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.