Skip to main content
Erschienen in: Journal of Materials Science 23/2018

02.08.2018 | Chemical routes to materials

Suzuki–Miyaura reaction and solventfree oxidation of benzyl alcohol by Pd/nitrogen-doped CNTs catalyst

verfasst von: Ayomide H. Labulo, Bernard Omondi, Vincent O. Nyamori

Erschienen in: Journal of Materials Science | Ausgabe 23/2018

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Suzuki–Miyaura C–C coupling reactions were investigated with Pd/nitrogen-doped carbon nanotubes (Pd/N-CNTs) as a catalyst. Also, the same catalyst was examined for the solventfree oxidation of benzyl alcohol to benzaldehyde. Nitrogen-doped carbon nanotubes (N-CNTs) were synthesized from 1-ferrocenylmethyl(2-methylimidazole) and benzophenone via a chemical vapour deposition technique. Acetonitrile was used as a solvent and source of both carbon and nitrogen constituents of N-CNTs. Pd nanoparticles (Pd NPs) were successfully dispersed on N-CNTs via a metal organic chemical vapour deposition method. SEM, TEM, XRD, elemental analysis and ICP-OES measurements were used to characterize the nanomaterials. From the TEM analysis, it was observed that Pd NPs were spherical and with particle sizes ranging from 3 to 8 nm. For Suzuki C–C coupling reactions, phenylboronic acid, aryl halide, Pd/N-CNTs catalyst and a base (NaOAc, K2PO4, K2CO3, NaOH, Et3N and Na2CO3) were used. The optimized experiments indicate that K2CO3, as the base, and ethanol/water (1:1 v/v, 10 mL) mixture, as a solvent, are the best reaction conditions. The solventfree oxidation reactions of benzyl alcohol were also done with Pd/N-CNTs catalyst and benzyl alcohol as a substrate. In both sets of reactions, C–C coupling and oxidation, the increase in pyrrolic nitrogen species was found to be responsible for higher catalytic activities of Pd/N-CNT catalysts, and this was attributed to the ease of Pd NP dispersion on N-CNTs, relative to pristine CNTs. Also, the higher catalytic activity of Pd/N-CNTs could be ascribed not only to the smaller Pd NP size or surface area, but to also the surface properties and the nature of the support when compared with the undoped counterpart, Pd/CNTs.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Harada T, Ikeda S, Hashimoto F, Sakata T, Ikeue K, Torimoto T et al (2010) Catalytic activity and regeneration property of a Pd nanoparticle encapsulated in a hollow porous carbon sphere for aerobic alcohol oxidation. Langmuir 26:17720–17725CrossRef Harada T, Ikeda S, Hashimoto F, Sakata T, Ikeue K, Torimoto T et al (2010) Catalytic activity and regeneration property of a Pd nanoparticle encapsulated in a hollow porous carbon sphere for aerobic alcohol oxidation. Langmuir 26:17720–17725CrossRef
2.
Zurück zum Zitat Koltunov KY, Walspurger S, Sommer J (2004) Superacid and H-zeolite mediated reactions of benzaldehyde with aromatic compounds and cyclohexane. The role of mono-and dicationic intermediates. Catal Lett 98:89–94CrossRef Koltunov KY, Walspurger S, Sommer J (2004) Superacid and H-zeolite mediated reactions of benzaldehyde with aromatic compounds and cyclohexane. The role of mono-and dicationic intermediates. Catal Lett 98:89–94CrossRef
3.
Zurück zum Zitat Della Pina C, Falletta E, Rossi M (2008) Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold–copper catalyst. J Catal 260:384–386CrossRef Della Pina C, Falletta E, Rossi M (2008) Highly selective oxidation of benzyl alcohol to benzaldehyde catalyzed by bimetallic gold–copper catalyst. J Catal 260:384–386CrossRef
4.
Zurück zum Zitat Canellas E, Aznar M, Nerín C, Mercea P (2010) Partition and diffusion of volatile compounds from acrylic adhesives used for food packaging multilayers manufacturing. J Mater Chem 20:5100–5109CrossRef Canellas E, Aznar M, Nerín C, Mercea P (2010) Partition and diffusion of volatile compounds from acrylic adhesives used for food packaging multilayers manufacturing. J Mater Chem 20:5100–5109CrossRef
5.
Zurück zum Zitat Siebel A, Gorlin Y, Durst J, Proux O, Fdr Hasché, Tromp M et al (2016) Identification of catalyst structure during the hydrogen oxidation reaction in an operating PEM fuel cell. ACS Catal 6:7326–7334CrossRef Siebel A, Gorlin Y, Durst J, Proux O, Fdr Hasché, Tromp M et al (2016) Identification of catalyst structure during the hydrogen oxidation reaction in an operating PEM fuel cell. ACS Catal 6:7326–7334CrossRef
6.
Zurück zum Zitat Goszewska I, Giziński D, Zienkiewicz-Machnik M, Lisovytskiy D, Nikiforov K, Masternak J et al (2017) A novel nano-palladium catalyst for continuous-flow chemoselective hydrogenation reactions. Catal Commun 94:65–68CrossRef Goszewska I, Giziński D, Zienkiewicz-Machnik M, Lisovytskiy D, Nikiforov K, Masternak J et al (2017) A novel nano-palladium catalyst for continuous-flow chemoselective hydrogenation reactions. Catal Commun 94:65–68CrossRef
7.
Zurück zum Zitat Saito Y, Ishitani H, Ueno M, Kobayashi S (2017) Selective hydrogenation of nitriles to primary amines catalyzed by a polysilane/SiO2-supported palladium catalyst under continuous-flow conditions. ChemistryOpen 6:211–215CrossRef Saito Y, Ishitani H, Ueno M, Kobayashi S (2017) Selective hydrogenation of nitriles to primary amines catalyzed by a polysilane/SiO2-supported palladium catalyst under continuous-flow conditions. ChemistryOpen 6:211–215CrossRef
8.
Zurück zum Zitat Choudhary H, Jia J, Nishimura S, Ebitani K (2017) Surfactant-assisted Suzuki–Miyaura coupling reaction of unreactive chlorobenzene over hydrotalcite-supported palladium catalyst. Asian J Org Chem 6:274–277CrossRef Choudhary H, Jia J, Nishimura S, Ebitani K (2017) Surfactant-assisted Suzuki–Miyaura coupling reaction of unreactive chlorobenzene over hydrotalcite-supported palladium catalyst. Asian J Org Chem 6:274–277CrossRef
9.
Zurück zum Zitat Kim Y-O, You JM, Jang H-S, Choi SK, Jung BY, Kang O et al (2017) Eumelanin as a support for efficient palladium nanoparticle catalyst for Suzuki coupling reaction of aryl chlorides in water. Tetrahedron Lett 22:2149–2152CrossRef Kim Y-O, You JM, Jang H-S, Choi SK, Jung BY, Kang O et al (2017) Eumelanin as a support for efficient palladium nanoparticle catalyst for Suzuki coupling reaction of aryl chlorides in water. Tetrahedron Lett 22:2149–2152CrossRef
10.
Zurück zum Zitat Choi J, Chan S, Yip G, Joo H, Yang H, Ko FK (2016) Palladium-zeolite nanofiber as an effective recyclable catalyst membrane for water treatment. Water Res 101:46–54CrossRef Choi J, Chan S, Yip G, Joo H, Yang H, Ko FK (2016) Palladium-zeolite nanofiber as an effective recyclable catalyst membrane for water treatment. Water Res 101:46–54CrossRef
11.
Zurück zum Zitat Choudhary M, Siwal S, Nandi D, Mallick K (2016) Catalytic performance of the in situ synthesized palladium–polymer nanocomposite. New J Chem 40:2296–2303CrossRef Choudhary M, Siwal S, Nandi D, Mallick K (2016) Catalytic performance of the in situ synthesized palladium–polymer nanocomposite. New J Chem 40:2296–2303CrossRef
12.
Zurück zum Zitat Gholinejad M, Bahrami M, Nájera C (2017) A fluorescence active catalyst support comprising carbon quantum dots and magnesium oxide doping for stabilization of palladium nanoparticles: Application as a recoverable catalyst for Suzuki reaction in water. Mol Catal 433:12–19CrossRef Gholinejad M, Bahrami M, Nájera C (2017) A fluorescence active catalyst support comprising carbon quantum dots and magnesium oxide doping for stabilization of palladium nanoparticles: Application as a recoverable catalyst for Suzuki reaction in water. Mol Catal 433:12–19CrossRef
13.
Zurück zum Zitat Freakley SJ, He Q, Harrhy JH, Lu L, Crole DA, Morgan DJ et al (2016) Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351:965–968CrossRef Freakley SJ, He Q, Harrhy JH, Lu L, Crole DA, Morgan DJ et al (2016) Palladium-tin catalysts for the direct synthesis of H2O2 with high selectivity. Science 351:965–968CrossRef
16.
Zurück zum Zitat Salvetat J-P, Bonard J-M, Thomson N, Kulik A, Forro L, Benoit W et al (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69:255–260CrossRef Salvetat J-P, Bonard J-M, Thomson N, Kulik A, Forro L, Benoit W et al (1999) Mechanical properties of carbon nanotubes. Appl Phys A 69:255–260CrossRef
17.
Zurück zum Zitat Nam DH, Cha SI, Lee KM, Jang JH, Park HM, Lee JK et al (2016) Thermal properties of carbon nanotubes reinforced aluminum-copper matrix nanocomposites. J Nanosci Nanotechnol 16:12013–12016CrossRef Nam DH, Cha SI, Lee KM, Jang JH, Park HM, Lee JK et al (2016) Thermal properties of carbon nanotubes reinforced aluminum-copper matrix nanocomposites. J Nanosci Nanotechnol 16:12013–12016CrossRef
18.
Zurück zum Zitat Qiu H, Shi Z, Guan L, You L, Gao M, Zhang S et al (2006) High-efficient synthesis of double-walled carbon nanotubes by arc discharge method using chloride as a promoter. Carbon 44:516–521CrossRef Qiu H, Shi Z, Guan L, You L, Gao M, Zhang S et al (2006) High-efficient synthesis of double-walled carbon nanotubes by arc discharge method using chloride as a promoter. Carbon 44:516–521CrossRef
19.
Zurück zum Zitat Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V et al (2011) Methods for carbon nanotubes synthesis. J Mater Chem 21:15872–15884CrossRef Prasek J, Drbohlavova J, Chomoucka J, Hubalek J, Jasek O, Adam V et al (2011) Methods for carbon nanotubes synthesis. J Mater Chem 21:15872–15884CrossRef
20.
Zurück zum Zitat Maruyama T, Kondo H, Ghosh R, Kozawa A, Naritsuka S, Iizumi Y et al (2016) Single-walled carbon nanotube synthesis using Pt catalysts under low ethanol pressure via cold-wall chemical vapor deposition in high vacuum. Carbon 96:6–13CrossRef Maruyama T, Kondo H, Ghosh R, Kozawa A, Naritsuka S, Iizumi Y et al (2016) Single-walled carbon nanotube synthesis using Pt catalysts under low ethanol pressure via cold-wall chemical vapor deposition in high vacuum. Carbon 96:6–13CrossRef
21.
Zurück zum Zitat Zheng C, Huang L, Zhang H, Sun Z, Zhang Z, Zhang G-J (2015) Fabrication of ultrasensitive field-effect transistor DNA biosensors by a directional transfer technique based on CVD-grown graphene. ACS Appl Mater Interfaces 7:16953–16959CrossRef Zheng C, Huang L, Zhang H, Sun Z, Zhang Z, Zhang G-J (2015) Fabrication of ultrasensitive field-effect transistor DNA biosensors by a directional transfer technique based on CVD-grown graphene. ACS Appl Mater Interfaces 7:16953–16959CrossRef
22.
Zurück zum Zitat Chen D, Holmen A, Sui Z, Zhou X (2014) Carbon mediated catalysis: a review on oxidative dehydrogenation. Chin J Catal 35:824–841CrossRef Chen D, Holmen A, Sui Z, Zhou X (2014) Carbon mediated catalysis: a review on oxidative dehydrogenation. Chin J Catal 35:824–841CrossRef
23.
Zurück zum Zitat Meemken F, Baiker A (2017) Recent progress in heterogeneous asymmetric hydrogenation of C=O and C=C bonds on supported noble metal catalysts. Chem Rev 117:11522–11569CrossRef Meemken F, Baiker A (2017) Recent progress in heterogeneous asymmetric hydrogenation of C=O and C=C bonds on supported noble metal catalysts. Chem Rev 117:11522–11569CrossRef
24.
Zurück zum Zitat Martin-Martinez M, Ribeiro RS, Machado BF, Serp P, Morales-Torres S, Silva AM et al (2016) Role of nitrogen doping on the performance of carbon nanotube catalysts: a catalytic wet peroxide oxidation application. ChemCatChem 8:2068–2078CrossRef Martin-Martinez M, Ribeiro RS, Machado BF, Serp P, Morales-Torres S, Silva AM et al (2016) Role of nitrogen doping on the performance of carbon nanotube catalysts: a catalytic wet peroxide oxidation application. ChemCatChem 8:2068–2078CrossRef
25.
Zurück zum Zitat Florea I, Ersen O, Arenal R, Ihiawakrim D, Messaoudi Cd, Chizari K et al (2012) 3D analysis of the morphology and spatial distribution of nitrogen in nitrogen-doped carbon nanotubes by energy-filtered transmission electron microscopy tomography. J Am Chem Soc 134:9672–9680CrossRef Florea I, Ersen O, Arenal R, Ihiawakrim D, Messaoudi Cd, Chizari K et al (2012) 3D analysis of the morphology and spatial distribution of nitrogen in nitrogen-doped carbon nanotubes by energy-filtered transmission electron microscopy tomography. J Am Chem Soc 134:9672–9680CrossRef
26.
Zurück zum Zitat Xia W (2016) Interactions between metal species and nitrogen-functionalized carbon nanotubes. Catal Sci Technol 6:630–644CrossRef Xia W (2016) Interactions between metal species and nitrogen-functionalized carbon nanotubes. Catal Sci Technol 6:630–644CrossRef
27.
Zurück zum Zitat Old DW, Wolfe JP, Buchwald SL (1998) A highly active catalyst for palladium-catalyzed cross-coupling reactions: room-temperature Suzuki couplings and amination of unactivated aryl chlorides. J Am Chem Soc 120:9722–9723CrossRef Old DW, Wolfe JP, Buchwald SL (1998) A highly active catalyst for palladium-catalyzed cross-coupling reactions: room-temperature Suzuki couplings and amination of unactivated aryl chlorides. J Am Chem Soc 120:9722–9723CrossRef
28.
Zurück zum Zitat Heidenreich RG, Krauter JG, Pietsch J, Köhler K (2002) Control of Pd leaching in Heck reactions of bromoarenes catalyzed by Pd supported on activated carbon. J Mol Catal A: Chem 182:499–509CrossRef Heidenreich RG, Krauter JG, Pietsch J, Köhler K (2002) Control of Pd leaching in Heck reactions of bromoarenes catalyzed by Pd supported on activated carbon. J Mol Catal A: Chem 182:499–509CrossRef
29.
Zurück zum Zitat Kim E, Jeong HS, Kim BM (2014) Studies on the functionalization of MWNTs and their application as a recyclable catalyst for C–C bond coupling reactions. Catal Commun 46:71–74CrossRef Kim E, Jeong HS, Kim BM (2014) Studies on the functionalization of MWNTs and their application as a recyclable catalyst for C–C bond coupling reactions. Catal Commun 46:71–74CrossRef
30.
Zurück zum Zitat Yan Y, Jia X, Yang Y (2016) Palladium nanoparticles supported on CNT functionalized by rare-earth oxides for solventfree aerobic oxidation of benzyl alcohol. Catal Today 259:292–302CrossRef Yan Y, Jia X, Yang Y (2016) Palladium nanoparticles supported on CNT functionalized by rare-earth oxides for solventfree aerobic oxidation of benzyl alcohol. Catal Today 259:292–302CrossRef
31.
Zurück zum Zitat Maniam KK, Chetty R (2015) Electrochemical synthesis of palladium dendrites on carbon support and their enhanced electrocatalytic activity towards formic acid oxidation. J Appl Electrochem 45:953–962CrossRef Maniam KK, Chetty R (2015) Electrochemical synthesis of palladium dendrites on carbon support and their enhanced electrocatalytic activity towards formic acid oxidation. J Appl Electrochem 45:953–962CrossRef
32.
Zurück zum Zitat He L, Weniger F, Neumann H, Beller M (2016) Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry. Angew Chem Int Ed 55:12582–12594CrossRef He L, Weniger F, Neumann H, Beller M (2016) Synthesis, characterization, and application of metal nanoparticles supported on nitrogen-doped carbon: catalysis beyond electrochemistry. Angew Chem Int Ed 55:12582–12594CrossRef
33.
34.
Zurück zum Zitat Ding Y, Zhang L, Wu K-H, Feng Z, Shi W, Gao Q et al (2016) The influence of carbon surface chemistry on supported palladium nanoparticles in heterogeneous reactions. J Colloid Interface Sci 480:175–183CrossRef Ding Y, Zhang L, Wu K-H, Feng Z, Shi W, Gao Q et al (2016) The influence of carbon surface chemistry on supported palladium nanoparticles in heterogeneous reactions. J Colloid Interface Sci 480:175–183CrossRef
35.
Zurück zum Zitat L-l Wang, L-p Zhu, N-c Bing, L-j Wang (2017) Facile green synthesis of Pd/N-doped carbon nanotubes catalysts and their application in Heck reaction and oxidation of benzyl alcohol. J Phys Chem Solids 107:125–130CrossRef L-l Wang, L-p Zhu, N-c Bing, L-j Wang (2017) Facile green synthesis of Pd/N-doped carbon nanotubes catalysts and their application in Heck reaction and oxidation of benzyl alcohol. J Phys Chem Solids 107:125–130CrossRef
36.
Zurück zum Zitat Li M, Xu F, Li H, Wang Y (2016) Nitrogen-doped porous carbon materials: promising catalysts or catalyst supports for heterogeneous hydrogenation and oxidation. Catal Sci Technol 6:3670–3693CrossRef Li M, Xu F, Li H, Wang Y (2016) Nitrogen-doped porous carbon materials: promising catalysts or catalyst supports for heterogeneous hydrogenation and oxidation. Catal Sci Technol 6:3670–3693CrossRef
37.
Zurück zum Zitat Zhang L, Dong W-H, Shang N-Z, Feng C, Gao S-T, Wang C (2016) N-Doped porous carbon supported palladium nanoparticles as a highly efficient and recyclable catalyst for the Suzuki coupling reaction. Chin Chem Lett 27:149–154CrossRef Zhang L, Dong W-H, Shang N-Z, Feng C, Gao S-T, Wang C (2016) N-Doped porous carbon supported palladium nanoparticles as a highly efficient and recyclable catalyst for the Suzuki coupling reaction. Chin Chem Lett 27:149–154CrossRef
38.
Zurück zum Zitat Zuo P, Duan J, Fan H, Qu S, Shen W (2018) Facile synthesis high nitrogen-doped porous carbon nanosheet from pomelo peel and as catalyst support for nitrobenzene hydrogenation. Appl Surf Sci 435:1020–1028CrossRef Zuo P, Duan J, Fan H, Qu S, Shen W (2018) Facile synthesis high nitrogen-doped porous carbon nanosheet from pomelo peel and as catalyst support for nitrobenzene hydrogenation. Appl Surf Sci 435:1020–1028CrossRef
39.
Zurück zum Zitat Ding S, Zhang C, Liu Y, Jiang H, Chen R (2017) Selective hydrogenation of phenol to cyclohexanone in water over Pd@ N-doped carbons derived from ZIF-67: role of dicyandiamide. Appl Surf Sci 425:484–491CrossRef Ding S, Zhang C, Liu Y, Jiang H, Chen R (2017) Selective hydrogenation of phenol to cyclohexanone in water over Pd@ N-doped carbons derived from ZIF-67: role of dicyandiamide. Appl Surf Sci 425:484–491CrossRef
40.
Zurück zum Zitat Deng D-S, Han G-Q, Zhu X, Xu X, Gong Y-T, Wang Y (2015) Selective hydrogenation of unprotected indole to indoline over N-doped carbon supported palladium catalyst. Chin Chem Lett 26:277–281CrossRef Deng D-S, Han G-Q, Zhu X, Xu X, Gong Y-T, Wang Y (2015) Selective hydrogenation of unprotected indole to indoline over N-doped carbon supported palladium catalyst. Chin Chem Lett 26:277–281CrossRef
41.
Zurück zum Zitat Ombaka LM, Ndungu PG, Nyamori VO (2015) Pyrrolic nitrogen-doped carbon nanotubes: physicochemical properties, interactions with Pd and their role in the selective hydrogenation of nitrobenzophenone. RSC Adv 5:109–122CrossRef Ombaka LM, Ndungu PG, Nyamori VO (2015) Pyrrolic nitrogen-doped carbon nanotubes: physicochemical properties, interactions with Pd and their role in the selective hydrogenation of nitrobenzophenone. RSC Adv 5:109–122CrossRef
42.
Zurück zum Zitat Chizari K, Janowska I, Houllé M, Florea I, Ersen O, Romero T et al (2010) Tuning of nitrogen-doped carbon nanotubes as catalyst support for liquid-phase reaction. Appl Catal A Gen 380:72–80CrossRef Chizari K, Janowska I, Houllé M, Florea I, Ersen O, Romero T et al (2010) Tuning of nitrogen-doped carbon nanotubes as catalyst support for liquid-phase reaction. Appl Catal A Gen 380:72–80CrossRef
43.
Zurück zum Zitat Amama PB, Pint CL, McJilton L, Kim SM, Stach EA, Murray PT et al (2008) Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett 9:44–49CrossRef Amama PB, Pint CL, McJilton L, Kim SM, Stach EA, Murray PT et al (2008) Role of water in super growth of single-walled carbon nanotube carpets. Nano Lett 9:44–49CrossRef
44.
Zurück zum Zitat Futaba DN, Hata K, Namai T, Yamada T, Mizuno K, Hayamizu Y et al (2006) 84% catalyst activity of water-assisted growth of single walled carbon nanotube forest characterization by a statistical and macroscopic approach. J Phys Chem B 110:8035–8038CrossRef Futaba DN, Hata K, Namai T, Yamada T, Mizuno K, Hayamizu Y et al (2006) 84% catalyst activity of water-assisted growth of single walled carbon nanotube forest characterization by a statistical and macroscopic approach. J Phys Chem B 110:8035–8038CrossRef
45.
Zurück zum Zitat Duan X, Xiao M, Liang S, Zhang Z, Zeng Y, Xi J et al (2017) Ultrafine palladium nanoparticles supported on nitrogen-doped carbon microtubes as a high-performance organocatalyst. Carbon 119:326–331CrossRef Duan X, Xiao M, Liang S, Zhang Z, Zeng Y, Xi J et al (2017) Ultrafine palladium nanoparticles supported on nitrogen-doped carbon microtubes as a high-performance organocatalyst. Carbon 119:326–331CrossRef
46.
Zurück zum Zitat He P, Du Y, Wang S, Cao C, Wang X, Pang G et al (2013) Synthesis, structure, and reactivity of ferrocenyl-NHC palladium complexes. Z Anorg Allg Chem 639:1004–1010CrossRef He P, Du Y, Wang S, Cao C, Wang X, Pang G et al (2013) Synthesis, structure, and reactivity of ferrocenyl-NHC palladium complexes. Z Anorg Allg Chem 639:1004–1010CrossRef
47.
Zurück zum Zitat Oosthuizen RS, Nyamori VO (2012) Heteroatom-containing ferrocene derivatives as catalysts for MWCNTs and other shaped carbon nanomaterials. Appl Organomet Chem 26:536–545CrossRef Oosthuizen RS, Nyamori VO (2012) Heteroatom-containing ferrocene derivatives as catalysts for MWCNTs and other shaped carbon nanomaterials. Appl Organomet Chem 26:536–545CrossRef
48.
Zurück zum Zitat Naidoo Q-L, Naidoo S, Petrik L, Nechaev A, Ndungu P (2012) The influence of carbon based supports and the role of synthesis procedures on the formation of platinum and platinum-ruthenium clusters and nanoparticles for the development of highly active fuel cell catalysts. Int J Hydrogen Energy 37:9459–9469CrossRef Naidoo Q-L, Naidoo S, Petrik L, Nechaev A, Ndungu P (2012) The influence of carbon based supports and the role of synthesis procedures on the formation of platinum and platinum-ruthenium clusters and nanoparticles for the development of highly active fuel cell catalysts. Int J Hydrogen Energy 37:9459–9469CrossRef
49.
Zurück zum Zitat Saleh TA (2011) The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4. Appl Surf Sci 257:7746–7751CrossRef Saleh TA (2011) The influence of treatment temperature on the acidity of MWCNT oxidized by HNO3 or a mixture of HNO3/H2SO4. Appl Surf Sci 257:7746–7751CrossRef
51.
Zurück zum Zitat Dubal DP, Chodankar NR, Caban-Huertas Z, Wolfart F, Vidotti M, Holze R et al (2016) Synthetic approach from polypyrrole nanotubes to nitrogen doped pyrolyzed carbon nanotubes for asymmetric supercapacitors. J Power Sources 308:158–165CrossRef Dubal DP, Chodankar NR, Caban-Huertas Z, Wolfart F, Vidotti M, Holze R et al (2016) Synthetic approach from polypyrrole nanotubes to nitrogen doped pyrolyzed carbon nanotubes for asymmetric supercapacitors. J Power Sources 308:158–165CrossRef
52.
Zurück zum Zitat Mao H, Shen Y, Zhang Q, Ulaganathan M, Zhao S, Yang Y et al (2016) Highly active and stable heterogeneous catalysts based on the entrapment of noble metal nanoparticles in 3D ordered porous carbon. Carbon 96:75–82CrossRef Mao H, Shen Y, Zhang Q, Ulaganathan M, Zhao S, Yang Y et al (2016) Highly active and stable heterogeneous catalysts based on the entrapment of noble metal nanoparticles in 3D ordered porous carbon. Carbon 96:75–82CrossRef
53.
Zurück zum Zitat Arrigo R, Schuster ME, Xie Z, Yi Y, Wowsnick G, Sun LL et al (2015) Nature of the N–Pd interaction in nitrogen-doped carbon nanotube catalysts. ACS Catal 5:2740–2753CrossRef Arrigo R, Schuster ME, Xie Z, Yi Y, Wowsnick G, Sun LL et al (2015) Nature of the N–Pd interaction in nitrogen-doped carbon nanotube catalysts. ACS Catal 5:2740–2753CrossRef
54.
Zurück zum Zitat Dibandjo P, Bois L, Chassagneux F, Cornu D, Letoffe JM, Toury B et al (2005) Synthesis of boron nitride with ordered mesostructure. Adv Mater 17:571–574CrossRef Dibandjo P, Bois L, Chassagneux F, Cornu D, Letoffe JM, Toury B et al (2005) Synthesis of boron nitride with ordered mesostructure. Adv Mater 17:571–574CrossRef
55.
Zurück zum Zitat Vanyorek L, Meszaros R, Barany S (2014) Surface and electrosurface characterization of surface-oxidized multi-walled N-doped carbon nanotubes. Colloids Surf A Physicochem Eng Asp 448:140–146CrossRef Vanyorek L, Meszaros R, Barany S (2014) Surface and electrosurface characterization of surface-oxidized multi-walled N-doped carbon nanotubes. Colloids Surf A Physicochem Eng Asp 448:140–146CrossRef
56.
Zurück zum Zitat Misra A, Tyagi PK, Singh MK, Misra D (2006) FTIR studies of nitrogen doped carbon nanotubes. Diamond Rel Mater 15:385–388CrossRef Misra A, Tyagi PK, Singh MK, Misra D (2006) FTIR studies of nitrogen doped carbon nanotubes. Diamond Rel Mater 15:385–388CrossRef
57.
Zurück zum Zitat Vinu A, Srinivasu P, Sawant DP, Mori T, Ariga K, Chang J-S et al (2007) Three-dimensional cage type mesoporous CN-based hybrid material with very high surface area and pore volume. Chem Mater 19:4367–4372CrossRef Vinu A, Srinivasu P, Sawant DP, Mori T, Ariga K, Chang J-S et al (2007) Three-dimensional cage type mesoporous CN-based hybrid material with very high surface area and pore volume. Chem Mater 19:4367–4372CrossRef
58.
Zurück zum Zitat Mane GP, Talapaneni SN, Lakhi KS, Ilbeygi H, Ravon U, Al-Bahily K et al (2017) Highly ordered nitrogen-rich mesoporous carbon nitrides and their superior performance for sensing and photocatalytic hydrogen generation. Angew Chem Int Ed 56:8481–8485CrossRef Mane GP, Talapaneni SN, Lakhi KS, Ilbeygi H, Ravon U, Al-Bahily K et al (2017) Highly ordered nitrogen-rich mesoporous carbon nitrides and their superior performance for sensing and photocatalytic hydrogen generation. Angew Chem Int Ed 56:8481–8485CrossRef
59.
Zurück zum Zitat Lazar G, Lazar I (2003) IR characterization of a C:H:N films sputtered in Ar/CH4/N2 plasma. J Non-Cryst Solids 331:70–78CrossRef Lazar G, Lazar I (2003) IR characterization of a C:H:N films sputtered in Ar/CH4/N2 plasma. J Non-Cryst Solids 331:70–78CrossRef
60.
Zurück zum Zitat Vikkisk M, Kruusenberg I, Ratso S, Joost U, Shulga E, Kink I et al (2015) Enhanced electrocatalytic activity of nitrogen-doped multi-walled carbon nanotubes towards the oxygen reduction reaction in alkaline media. RSC Adv 5:59495–59505CrossRef Vikkisk M, Kruusenberg I, Ratso S, Joost U, Shulga E, Kink I et al (2015) Enhanced electrocatalytic activity of nitrogen-doped multi-walled carbon nanotubes towards the oxygen reduction reaction in alkaline media. RSC Adv 5:59495–59505CrossRef
61.
Zurück zum Zitat Tan X, Wu X, Hu Z, Ma D, Shi Z (2017) Synthesis and catalytic activity of palladium supported on heteroatom doped single-wall carbon nanohorns. RSC Adv 7:29985–29991CrossRef Tan X, Wu X, Hu Z, Ma D, Shi Z (2017) Synthesis and catalytic activity of palladium supported on heteroatom doped single-wall carbon nanohorns. RSC Adv 7:29985–29991CrossRef
62.
Zurück zum Zitat Koós AA, Dowling M, Jurkschat K, Crossley A, Grobert N (2009) Effect of the experimental parameters on the structure of nitrogen-doped carbon nanotubes produced by aerosol chemical vapour deposition. Carbon 47:30–37CrossRef Koós AA, Dowling M, Jurkschat K, Crossley A, Grobert N (2009) Effect of the experimental parameters on the structure of nitrogen-doped carbon nanotubes produced by aerosol chemical vapour deposition. Carbon 47:30–37CrossRef
63.
Zurück zum Zitat Xie K, Xia W, Masa J, Yang F, Weide P, Schuhmann W et al (2016) Promoting effect of nitrogen doping on carbon nanotube-supported RuO2 applied in the electrocatalytic oxygen evolution reaction. J Energy Chem 25:282–288CrossRef Xie K, Xia W, Masa J, Yang F, Weide P, Schuhmann W et al (2016) Promoting effect of nitrogen doping on carbon nanotube-supported RuO2 applied in the electrocatalytic oxygen evolution reaction. J Energy Chem 25:282–288CrossRef
64.
Zurück zum Zitat Xiao M, Zhu J, Feng L, Liu C, Xing W (2015) Meso/macroporous nitrogen-doped carbon architectures with Iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv Mater 27:2521–2527CrossRef Xiao M, Zhu J, Feng L, Liu C, Xing W (2015) Meso/macroporous nitrogen-doped carbon architectures with Iron carbide encapsulated in graphitic layers as an efficient and robust catalyst for the oxygen reduction reaction in both acidic and alkaline solutions. Adv Mater 27:2521–2527CrossRef
65.
Zurück zum Zitat Kotakoski J, Krasheninnikov A, Ma Y, Foster AS, Nordlund K, Nieminen RM (2005) B and N ion implantation into carbon nanotubes: insight from atomistic simulations. Phys Rev B 71:205408CrossRef Kotakoski J, Krasheninnikov A, Ma Y, Foster AS, Nordlund K, Nieminen RM (2005) B and N ion implantation into carbon nanotubes: insight from atomistic simulations. Phys Rev B 71:205408CrossRef
66.
Zurück zum Zitat Sjöström H, Stafström S, Boman M, Sundgren J-E (1995) Superhard and elastic carbon nitride thin films having fullerenelike microstructure. Phys Rev Lett 75:1336CrossRef Sjöström H, Stafström S, Boman M, Sundgren J-E (1995) Superhard and elastic carbon nitride thin films having fullerenelike microstructure. Phys Rev Lett 75:1336CrossRef
67.
Zurück zum Zitat Ewels C, Glerup M (2005) Nitrogen doping in carbon nanotubes. J Nanosci Nanotechnol 5:1345–1363CrossRef Ewels C, Glerup M (2005) Nitrogen doping in carbon nanotubes. J Nanosci Nanotechnol 5:1345–1363CrossRef
68.
Zurück zum Zitat Chizari K, Sundararaj U (2014) The effects of catalyst on the morphology and physicochemical properties of nitrogen-doped carbon nanotubes. Mater Lett 116:289–292CrossRef Chizari K, Sundararaj U (2014) The effects of catalyst on the morphology and physicochemical properties of nitrogen-doped carbon nanotubes. Mater Lett 116:289–292CrossRef
69.
Zurück zum Zitat Sharifi T, Nitze F, Barzegar HR, Tai C-W, Mazurkiewicz M, Malolepszy A et al (2012) Nitrogen doped multi walled carbon nanotubes produced by CVD-correlating XPS and Raman spectroscopy for the study of nitrogen inclusion. Carbon 50:3535–3541CrossRef Sharifi T, Nitze F, Barzegar HR, Tai C-W, Mazurkiewicz M, Malolepszy A et al (2012) Nitrogen doped multi walled carbon nanotubes produced by CVD-correlating XPS and Raman spectroscopy for the study of nitrogen inclusion. Carbon 50:3535–3541CrossRef
70.
Zurück zum Zitat Shan C, Zhao W, Lu XL, O’Brien DJ, Li Y, Cao Z et al (2013) Three-dimensional nitrogen-doped multiwall carbon nanotube sponges with tunable properties. Nano Lett 13:5514–5520CrossRef Shan C, Zhao W, Lu XL, O’Brien DJ, Li Y, Cao Z et al (2013) Three-dimensional nitrogen-doped multiwall carbon nanotube sponges with tunable properties. Nano Lett 13:5514–5520CrossRef
71.
Zurück zum Zitat Latorre N, Romeo E, Cazana F, Ubieto T, Royo C, Villacampa J et al (2010) Carbon nanotube growth by catalytic chemical vapor deposition: a phenomenological kinetic model. J Phys Chem C 114:4773–4782CrossRef Latorre N, Romeo E, Cazana F, Ubieto T, Royo C, Villacampa J et al (2010) Carbon nanotube growth by catalytic chemical vapor deposition: a phenomenological kinetic model. J Phys Chem C 114:4773–4782CrossRef
72.
Zurück zum Zitat Li R, Zhang P, Huang Y, Zhang P, Zhong H, Chen Q (2012) Pd–Fe3O4@ C hybrid nanoparticles: preparation, characterization, and their high catalytic activity toward Suzuki coupling reactions. J Mater Chem 22:22750–22755CrossRef Li R, Zhang P, Huang Y, Zhang P, Zhong H, Chen Q (2012) Pd–Fe3O4@ C hybrid nanoparticles: preparation, characterization, and their high catalytic activity toward Suzuki coupling reactions. J Mater Chem 22:22750–22755CrossRef
73.
Zurück zum Zitat Chen X, Hou Y, Wang H, Cao Y, He J (2008) Facile deposition of Pd nanoparticles on carbon nanotube microparticles and their catalytic activity for Suzuki coupling reactions. J Phys Chem C 112:8172–8176CrossRef Chen X, Hou Y, Wang H, Cao Y, He J (2008) Facile deposition of Pd nanoparticles on carbon nanotube microparticles and their catalytic activity for Suzuki coupling reactions. J Phys Chem C 112:8172–8176CrossRef
74.
Zurück zum Zitat Radkevich V, Senko T, Wilson K, Grishenko L, Zaderko A, Diyuk V (2008) The influence of surface functionalization of activated carbon on palladium dispersion and catalytic activity in hydrogen oxidation. Appl Catal A Gen 335:241–251CrossRef Radkevich V, Senko T, Wilson K, Grishenko L, Zaderko A, Diyuk V (2008) The influence of surface functionalization of activated carbon on palladium dispersion and catalytic activity in hydrogen oxidation. Appl Catal A Gen 335:241–251CrossRef
75.
Zurück zum Zitat Chen Y, Wang J, Liu H, Banis MN, Li R, Sun X et al (2011) Nitrogen doping effects on carbon nanotubes and the origin of the enhanced electrocatalytic activity of supported Pt for proton-exchange membrane fuel cells. J Phys Chem C 115:3769–3776CrossRef Chen Y, Wang J, Liu H, Banis MN, Li R, Sun X et al (2011) Nitrogen doping effects on carbon nanotubes and the origin of the enhanced electrocatalytic activity of supported Pt for proton-exchange membrane fuel cells. J Phys Chem C 115:3769–3776CrossRef
76.
Zurück zum Zitat Hachimi A, Merzougui B, Hakeem A, Laoui T, Swain GM, Chang Q et al (2015) Synthesis of nitrogen-doped carbon nanotubes using injection-vertical chemical vapor deposition: effects of synthesis parameters on the nitrogen content. J Nanomater 16:425 Hachimi A, Merzougui B, Hakeem A, Laoui T, Swain GM, Chang Q et al (2015) Synthesis of nitrogen-doped carbon nanotubes using injection-vertical chemical vapor deposition: effects of synthesis parameters on the nitrogen content. J Nanomater 16:425
77.
Zurück zum Zitat Morjan I, Morjan I, Ilie A, Scarisoreanu M, Gavrila L, Dumitrache F et al (2017) The study of nitrogen inclusion in carbon nanotubes obtained by catalytic laser-induced chemical vapour deposition (C-LCVD). Appl Surf Sci 425:440–447CrossRef Morjan I, Morjan I, Ilie A, Scarisoreanu M, Gavrila L, Dumitrache F et al (2017) The study of nitrogen inclusion in carbon nanotubes obtained by catalytic laser-induced chemical vapour deposition (C-LCVD). Appl Surf Sci 425:440–447CrossRef
78.
Zurück zum Zitat Hsiao C-H, Lin J-H (2017) Growth of a superhydrophobic multi-walled carbon nanotube forest on quartz using flow-vapor-deposited copper catalysts. Carbon 124:637–641CrossRef Hsiao C-H, Lin J-H (2017) Growth of a superhydrophobic multi-walled carbon nanotube forest on quartz using flow-vapor-deposited copper catalysts. Carbon 124:637–641CrossRef
79.
Zurück zum Zitat Bulusheva L, Okotrub A, Fedoseeva YV, Kurenya A, Asanov I, Vilkov O et al (2015) Controlling pyridinic, pyrrolic, graphitic, and molecular nitrogen in multi-wall carbon nanotubes using precursors with different N/C ratios in aerosol assisted chemical vapor deposition. Phys Chem Chem Phys 17:23741–23747CrossRef Bulusheva L, Okotrub A, Fedoseeva YV, Kurenya A, Asanov I, Vilkov O et al (2015) Controlling pyridinic, pyrrolic, graphitic, and molecular nitrogen in multi-wall carbon nanotubes using precursors with different N/C ratios in aerosol assisted chemical vapor deposition. Phys Chem Chem Phys 17:23741–23747CrossRef
80.
Zurück zum Zitat Sing KS, Williams RT (2004) Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt Sci Technol 22:773–782CrossRef Sing KS, Williams RT (2004) Physisorption hysteresis loops and the characterization of nanoporous materials. Adsorpt Sci Technol 22:773–782CrossRef
81.
Zurück zum Zitat ALOthman ZA (2012) A review: fundamental aspects of silicate mesoporous materials. Mater 5:2874–2902CrossRef ALOthman ZA (2012) A review: fundamental aspects of silicate mesoporous materials. Mater 5:2874–2902CrossRef
82.
Zurück zum Zitat Du J, Zhao R, Jiao G (2013) The short-channel function of hollow carbon nanoparticles as support in the dehydrogenation of cyclohexane. Int J Hydrogen Energy 38:5789–5795CrossRef Du J, Zhao R, Jiao G (2013) The short-channel function of hollow carbon nanoparticles as support in the dehydrogenation of cyclohexane. Int J Hydrogen Energy 38:5789–5795CrossRef
83.
Zurück zum Zitat Zhao Y, Li C-H, Yu Z-X, Yao K-F, Ji S-F, Liang J (2007) Effect of microstructures of Pt catalysts supported on carbon nanotubes (CNTs) and activated carbon (AC) for nitrobenzene hydrogenation. Mater Chem Phys 103:225–229CrossRef Zhao Y, Li C-H, Yu Z-X, Yao K-F, Ji S-F, Liang J (2007) Effect of microstructures of Pt catalysts supported on carbon nanotubes (CNTs) and activated carbon (AC) for nitrobenzene hydrogenation. Mater Chem Phys 103:225–229CrossRef
84.
Zurück zum Zitat Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Ghani K (2009) Alkene epoxidation catalyzed by molybdenum supported on functionalized MCM-41 containing N–S chelating Schiff base ligand. Catal Commun 10:853–858CrossRef Tangestaninejad S, Moghadam M, Mirkhani V, Mohammadpoor-Baltork I, Ghani K (2009) Alkene epoxidation catalyzed by molybdenum supported on functionalized MCM-41 containing N–S chelating Schiff base ligand. Catal Commun 10:853–858CrossRef
85.
Zurück zum Zitat Kotal M, Bhowmick AK (2013) Multifunctional hybrid materials based on carbon nanotube chemically bonded to reduced graphene oxide. J Phys Chem C 117:25865–25875CrossRef Kotal M, Bhowmick AK (2013) Multifunctional hybrid materials based on carbon nanotube chemically bonded to reduced graphene oxide. J Phys Chem C 117:25865–25875CrossRef
86.
Zurück zum Zitat Huang H, Leung DY (2011) Complete oxidation of formaldehyde at room temperature using TiO2 supported metallic Pd nanoparticles. ACS Catal 1:348–354CrossRef Huang H, Leung DY (2011) Complete oxidation of formaldehyde at room temperature using TiO2 supported metallic Pd nanoparticles. ACS Catal 1:348–354CrossRef
87.
Zurück zum Zitat H-q Song, Zhu Q, X-j Zheng, X-g Chen (2015) One-step synthesis of three-dimensional graphene/multiwalled carbon nanotubes/Pd composite hydrogels: an efficient recyclable catalyst for Suzuki coupling reactions. J Mater Chem A 3:10368–10377CrossRef H-q Song, Zhu Q, X-j Zheng, X-g Chen (2015) One-step synthesis of three-dimensional graphene/multiwalled carbon nanotubes/Pd composite hydrogels: an efficient recyclable catalyst for Suzuki coupling reactions. J Mater Chem A 3:10368–10377CrossRef
88.
Zurück zum Zitat Xu Y, Wang T, He Z, Zhong A, Huang K (2016) Carboxyl-containing microporous organic nanotube networks as a platform for Pd catalysts. RSC Adv 6:39933–39939CrossRef Xu Y, Wang T, He Z, Zhong A, Huang K (2016) Carboxyl-containing microporous organic nanotube networks as a platform for Pd catalysts. RSC Adv 6:39933–39939CrossRef
89.
Zurück zum Zitat Artok L, Bulut H (2004) Heterogeneous Suzuki reactions catalyzed by Pd (0)–Y zeolite. Tetrahedron Lett 45:3881–3884CrossRef Artok L, Bulut H (2004) Heterogeneous Suzuki reactions catalyzed by Pd (0)–Y zeolite. Tetrahedron Lett 45:3881–3884CrossRef
90.
Zurück zum Zitat Pourkhosravani M, Dehghanpour S, Farzaneh F (2016) Palladium nanoparticles supported on zirconium metal organic framework as an efficient heterogeneous catalyst for the Suzuki–Miyaura coupling reaction. Catal Lett 6:499–508CrossRef Pourkhosravani M, Dehghanpour S, Farzaneh F (2016) Palladium nanoparticles supported on zirconium metal organic framework as an efficient heterogeneous catalyst for the Suzuki–Miyaura coupling reaction. Catal Lett 6:499–508CrossRef
91.
Zurück zum Zitat Primo A, Liebel M, Fo Quignard (2009) Palladium coordination biopolymer: a versatile access to highly porous dispersed catalyst for Suzuki reaction. Chem Mater 21:621–627CrossRef Primo A, Liebel M, Fo Quignard (2009) Palladium coordination biopolymer: a versatile access to highly porous dispersed catalyst for Suzuki reaction. Chem Mater 21:621–627CrossRef
92.
Zurück zum Zitat Arrigo R, Wrabetz S, Schuster ME, Wang D, Villa A, Rosenthal D et al (2012) Tailoring the morphology of Pd nanoparticles on CNTs by nitrogen and oxygen functionalization. Phys Chem Chem Phys 14:10523–10532CrossRef Arrigo R, Wrabetz S, Schuster ME, Wang D, Villa A, Rosenthal D et al (2012) Tailoring the morphology of Pd nanoparticles on CNTs by nitrogen and oxygen functionalization. Phys Chem Chem Phys 14:10523–10532CrossRef
93.
Zurück zum Zitat Deraedt C, Astruc D (2013) “Homeopathic” palladium nanoparticle catalysis of cross carbon–carbon coupling reactions. Acc Chem Res 47:494–503CrossRef Deraedt C, Astruc D (2013) “Homeopathic” palladium nanoparticle catalysis of cross carbon–carbon coupling reactions. Acc Chem Res 47:494–503CrossRef
94.
Zurück zum Zitat Corma A, Garcia H, Leyva A (2005) Catalytic activity of palladium supported on single wall carbon nanotubes compared to palladium supported on activated carbon: study of the Heck and Suzuki couplings, aerobic alcohol oxidation and selective hydrogenation. J Mol Catal A: Chem 230:97–105CrossRef Corma A, Garcia H, Leyva A (2005) Catalytic activity of palladium supported on single wall carbon nanotubes compared to palladium supported on activated carbon: study of the Heck and Suzuki couplings, aerobic alcohol oxidation and selective hydrogenation. J Mol Catal A: Chem 230:97–105CrossRef
95.
Zurück zum Zitat Alonso-Morales N, Ruiz-Garcia C, Palomar J, Heras F, Calvo L, Rodriguez JJ et al (2017) Hollow nitrogen-or boron-doped carbon submicrospheres with a porous shell: preparation and application as supports for hydrodechlorination catalysts. Ind Eng Chem Res 56:7665–7674CrossRef Alonso-Morales N, Ruiz-Garcia C, Palomar J, Heras F, Calvo L, Rodriguez JJ et al (2017) Hollow nitrogen-or boron-doped carbon submicrospheres with a porous shell: preparation and application as supports for hydrodechlorination catalysts. Ind Eng Chem Res 56:7665–7674CrossRef
96.
Zurück zum Zitat Bidabehere CM, García JR, Sedran U (2017) Transient effectiveness factor in porous catalyst particles. Application to kinetic studies with batch reactors. Chem Eng Res Des 118:41–50CrossRef Bidabehere CM, García JR, Sedran U (2017) Transient effectiveness factor in porous catalyst particles. Application to kinetic studies with batch reactors. Chem Eng Res Des 118:41–50CrossRef
97.
Zurück zum Zitat Dong Y, Wu X, Chen X, Wei Y (2017) N-Methylimidazole functionalized carboxymethycellulose-supported Pd catalyst and its applications in Suzuki cross-coupling reaction. Carbohydr Polym 160:106–114CrossRef Dong Y, Wu X, Chen X, Wei Y (2017) N-Methylimidazole functionalized carboxymethycellulose-supported Pd catalyst and its applications in Suzuki cross-coupling reaction. Carbohydr Polym 160:106–114CrossRef
98.
Zurück zum Zitat Dong W, Zhang L, Wang C, Feng C, Shang N, Gao S et al (2016) Palladium nanoparticles embedded in metal–organic framework derived porous carbon: synthesis and application for efficient Suzuki–Miyaura coupling reactions. RSC Adv 6:37118–37123CrossRef Dong W, Zhang L, Wang C, Feng C, Shang N, Gao S et al (2016) Palladium nanoparticles embedded in metal–organic framework derived porous carbon: synthesis and application for efficient Suzuki–Miyaura coupling reactions. RSC Adv 6:37118–37123CrossRef
99.
Zurück zum Zitat Kwon TH, Cho KY, Baek K-Y, Yoon HG, Kim BM (2017) Recyclable palladium–graphene nanocomposite catalysts containing ionic polymers: efficient Suzuki coupling reactions. RSC Adv 7:11684–11690CrossRef Kwon TH, Cho KY, Baek K-Y, Yoon HG, Kim BM (2017) Recyclable palladium–graphene nanocomposite catalysts containing ionic polymers: efficient Suzuki coupling reactions. RSC Adv 7:11684–11690CrossRef
100.
Zurück zum Zitat Veisi H, Azadbakht R, Saeidifar F, Abdi MR (2017) Schiff base-functionalized multi walled carbon nano tubes to immobilization of palladium nanoparticles as heterogeneous and recyclable nanocatalyst for Suzuki reaction in aqueous media under mild conditions. Catal Lett 147:976–986CrossRef Veisi H, Azadbakht R, Saeidifar F, Abdi MR (2017) Schiff base-functionalized multi walled carbon nano tubes to immobilization of palladium nanoparticles as heterogeneous and recyclable nanocatalyst for Suzuki reaction in aqueous media under mild conditions. Catal Lett 147:976–986CrossRef
101.
Zurück zum Zitat Hajighorbani M, Hekmati M (2016) Pd nanoparticles deposited on isoniazid grafted multi walled carbon nanotubes: synthesis, characterization and application for Suzuki reaction in aqueous media. RSC Adv 6:88916–88924CrossRef Hajighorbani M, Hekmati M (2016) Pd nanoparticles deposited on isoniazid grafted multi walled carbon nanotubes: synthesis, characterization and application for Suzuki reaction in aqueous media. RSC Adv 6:88916–88924CrossRef
102.
Zurück zum Zitat Zhang A, Liu M, Liu M, Xiao Y, Li Z, Chen J et al (2014) Homogeneous Pd nanoparticles produced in direct reactions: green synthesis, formation mechanism and catalysis properties. J Mater Chem A 2:1369–1374CrossRef Zhang A, Liu M, Liu M, Xiao Y, Li Z, Chen J et al (2014) Homogeneous Pd nanoparticles produced in direct reactions: green synthesis, formation mechanism and catalysis properties. J Mater Chem A 2:1369–1374CrossRef
103.
Zurück zum Zitat Yu L, Han Z (2016) Palladium nanoparticles on polyaniline (Pd@ PANI): a practical catalyst for Suzuki cross-couplings. Mater Lett 184:312–314CrossRef Yu L, Han Z (2016) Palladium nanoparticles on polyaniline (Pd@ PANI): a practical catalyst for Suzuki cross-couplings. Mater Lett 184:312–314CrossRef
104.
Zurück zum Zitat Ji R, Zhai S-R, Meng Y-Y, Xiao Z-Y, An Q-D (2017) Deposition of N-doped carbon layers inside acidic ZrSBA-15: significant enhancement of catalytic performance of Pd NPs toward benzyl alcohol aerobic oxidation. J Sol-Gel Sci Technol 84:180–191CrossRef Ji R, Zhai S-R, Meng Y-Y, Xiao Z-Y, An Q-D (2017) Deposition of N-doped carbon layers inside acidic ZrSBA-15: significant enhancement of catalytic performance of Pd NPs toward benzyl alcohol aerobic oxidation. J Sol-Gel Sci Technol 84:180–191CrossRef
105.
Zurück zum Zitat Li Y, Huang J, Hu X, Lam FL-Y, Wang W, Luque R (2016) Heterogeneous Pd catalyst for mild solventfree oxidation of benzyl alcohol. J Mol Catal A: Chem 425:61–67CrossRef Li Y, Huang J, Hu X, Lam FL-Y, Wang W, Luque R (2016) Heterogeneous Pd catalyst for mild solventfree oxidation of benzyl alcohol. J Mol Catal A: Chem 425:61–67CrossRef
106.
Zurück zum Zitat Hao Y, Wang S, Sun Q, Shi L, Lu A-H (2015) Uniformly dispersed Pd nanoparticles on nitrogen-doped carbon nanospheres for aerobic benzyl alcohol oxidation. Chin J Catal 36:612–619CrossRef Hao Y, Wang S, Sun Q, Shi L, Lu A-H (2015) Uniformly dispersed Pd nanoparticles on nitrogen-doped carbon nanospheres for aerobic benzyl alcohol oxidation. Chin J Catal 36:612–619CrossRef
107.
Zurück zum Zitat Dimitratos N, Villa A, Wang D, Porta F, Su D, Prati L (2006) Pd and Pt catalysts modified by alloying with Au in the selective oxidation of alcohols. J Catal 244:113–121CrossRef Dimitratos N, Villa A, Wang D, Porta F, Su D, Prati L (2006) Pd and Pt catalysts modified by alloying with Au in the selective oxidation of alcohols. J Catal 244:113–121CrossRef
108.
Zurück zum Zitat Marco Y, Roldán L, Armenise S, García-Bordejé E (2013) Support-induced oxidation state of catalytic Ru nanoparticles on carbon nanofibers that were doped with heteroatoms (O, N) for the decomposition of NH3. ChemCatChem 5:3829–3834CrossRef Marco Y, Roldán L, Armenise S, García-Bordejé E (2013) Support-induced oxidation state of catalytic Ru nanoparticles on carbon nanofibers that were doped with heteroatoms (O, N) for the decomposition of NH3. ChemCatChem 5:3829–3834CrossRef
109.
Zurück zum Zitat Puthiaraj P, Pitchumani K (2014) Palladium nanoparticles supported on triazine functionalised mesoporous covalent organic polymers as efficient catalysts for Mizoroki–Heck cross coupling reaction. Green Chem 16:4223–4233CrossRef Puthiaraj P, Pitchumani K (2014) Palladium nanoparticles supported on triazine functionalised mesoporous covalent organic polymers as efficient catalysts for Mizoroki–Heck cross coupling reaction. Green Chem 16:4223–4233CrossRef
110.
Zurück zum Zitat Chang F, Guo J, Wu G, Liu L, Zhang M, He T et al (2015) Covalent triazine-based framework as an efficient catalyst support for ammonia decomposition. RSC Adv 5:3605–3610CrossRef Chang F, Guo J, Wu G, Liu L, Zhang M, He T et al (2015) Covalent triazine-based framework as an efficient catalyst support for ammonia decomposition. RSC Adv 5:3605–3610CrossRef
111.
Zurück zum Zitat Bell TE, Zhan G, Wu K, Zeng HC, Torrente-Murciano L (2017) Modification of ammonia decomposition activity of ruthenium nanoparticles by N-doping of CNT supports. Top Catal 60:1251–1259CrossRef Bell TE, Zhan G, Wu K, Zeng HC, Torrente-Murciano L (2017) Modification of ammonia decomposition activity of ruthenium nanoparticles by N-doping of CNT supports. Top Catal 60:1251–1259CrossRef
112.
Zurück zum Zitat Tessonnier J-P, Rosenthal D, Hansen TW, Hess C, Schuster ME, Blume R et al (2009) Analysis of the structure and chemical properties of some commercial carbon nanostructures. Carbon 47:1779–1798CrossRef Tessonnier J-P, Rosenthal D, Hansen TW, Hess C, Schuster ME, Blume R et al (2009) Analysis of the structure and chemical properties of some commercial carbon nanostructures. Carbon 47:1779–1798CrossRef
113.
Zurück zum Zitat Hao Y, Qingwen L, Jin Z, Zhongfan L (2003) The effect of hydrogen on the formation of nitrogen-doped carbon nanotubes via catalytic pyrolysis of acetonitrile. Chem Phys Lett 380:347–351CrossRef Hao Y, Qingwen L, Jin Z, Zhongfan L (2003) The effect of hydrogen on the formation of nitrogen-doped carbon nanotubes via catalytic pyrolysis of acetonitrile. Chem Phys Lett 380:347–351CrossRef
114.
Zurück zum Zitat Wang J, Huang R, Feng Z, Liu H, Su D (2016) Multi-walled carbon nanotubes as a catalyst for gas-phase oxidation of ethanol to acetaldehyde. Chemsuschem 9:1820–1826CrossRef Wang J, Huang R, Feng Z, Liu H, Su D (2016) Multi-walled carbon nanotubes as a catalyst for gas-phase oxidation of ethanol to acetaldehyde. Chemsuschem 9:1820–1826CrossRef
115.
Zurück zum Zitat Abdullahi I, Davis TJ, Yun DM, Herrera JE (2014) Partial oxidation of ethanol to acetaldehyde over surface-modified single-walled carbon nanotubes. Appl Catal A Gen 469:8–17CrossRef Abdullahi I, Davis TJ, Yun DM, Herrera JE (2014) Partial oxidation of ethanol to acetaldehyde over surface-modified single-walled carbon nanotubes. Appl Catal A Gen 469:8–17CrossRef
116.
Zurück zum Zitat Shinde VM, Skupien E, Makkee M (2015) Synthesis of highly dispersed Pd nanoparticles supported on multi-walled carbon nanotubes and their excellent catalytic performance for oxidation of benzyl alcohol. Catal Sci Technol 5:4144–4153CrossRef Shinde VM, Skupien E, Makkee M (2015) Synthesis of highly dispersed Pd nanoparticles supported on multi-walled carbon nanotubes and their excellent catalytic performance for oxidation of benzyl alcohol. Catal Sci Technol 5:4144–4153CrossRef
117.
Zurück zum Zitat Wilson D, Langell M (2014) XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature. Appl Surf Sci 303:6–13CrossRef Wilson D, Langell M (2014) XPS analysis of oleylamine/oleic acid capped Fe3O4 nanoparticles as a function of temperature. Appl Surf Sci 303:6–13CrossRef
Metadaten
Titel
Suzuki–Miyaura reaction and solventfree oxidation of benzyl alcohol by Pd/nitrogen-doped CNTs catalyst
verfasst von
Ayomide H. Labulo
Bernard Omondi
Vincent O. Nyamori
Publikationsdatum
02.08.2018
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 23/2018
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-018-2748-8

Weitere Artikel der Ausgabe 23/2018

Journal of Materials Science 23/2018 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.