Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2014

01.12.2014

Switching neuronal state: optimal stimuli revealed using a stochastically-seeded gradient algorithm

verfasst von: Joshua Chang, David Paydarfar

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Inducing a switch in neuronal state using energy optimal stimuli is relevant to a variety of problems in neuroscience. Analytical techniques from optimal control theory can identify such stimuli; however, solutions to the optimization problem using indirect variational approaches can be elusive in models that describe neuronal behavior. Here we develop and apply a direct gradient-based optimization algorithm to find stimulus waveforms that elicit a change in neuronal state while minimizing energy usage. We analyze standard models of neuronal behavior, the Hodgkin-Huxley and FitzHugh-Nagumo models, to show that the gradient-based algorithm: 1) enables automated exploration of a wide solution space, using stochastically generated initial waveforms that converge to multiple locally optimal solutions; and 2) finds optimal stimulus waveforms that achieve a physiological outcome condition, without a priori knowledge of the optimal terminal condition of all state variables. Analysis of biological systems using stochastically-seeded gradient methods can reveal salient dynamical mechanisms underlying the optimal control of system behavior. The gradient algorithm may also have practical applications in future work, for example, finding energy optimal waveforms for therapeutic neural stimulation that minimizes power usage and diminishes off-target effects and damage to neighboring tissue.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Aghababa, M. P., Amrollahi, M. H., & Borjkhani, M. (2012). Application of GA, PSO, and ACO algorithms to path planning of autonomous underwater vehicles. Journal of Marine Science and Application, 11(3), 378–386.CrossRef Aghababa, M. P., Amrollahi, M. H., & Borjkhani, M. (2012). Application of GA, PSO, and ACO algorithms to path planning of autonomous underwater vehicles. Journal of Marine Science and Application, 11(3), 378–386.CrossRef
Zurück zum Zitat Aliev, R. R., & Panfilov, A. V. (1996). A simple two-variable model of cardiac excitation. Chaos, Solitons & Fractals, 7(3), 293–301.CrossRef Aliev, R. R., & Panfilov, A. V. (1996). A simple two-variable model of cardiac excitation. Chaos, Solitons & Fractals, 7(3), 293–301.CrossRef
Zurück zum Zitat Alle, H., Roth, A., & Geiger, J. R. P. (2009). Energy-efficient action potentials in hippocampal mossy fibers. Science, 325, 1405–1408.PubMedCrossRef Alle, H., Roth, A., & Geiger, J. R. P. (2009). Energy-efficient action potentials in hippocampal mossy fibers. Science, 325, 1405–1408.PubMedCrossRef
Zurück zum Zitat Alon, U. (2006). An introduction to systems biology - design principles of biological circuits. Boca Raton: CRC Press, Taylor & Francis Group, LLC. Alon, U. (2006). An introduction to systems biology - design principles of biological circuits. Boca Raton: CRC Press, Taylor & Francis Group, LLC.
Zurück zum Zitat Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow and Metabolism, 21(10), 1133–45.PubMedCrossRef Attwell, D., & Laughlin, S. B. (2001). An energy budget for signaling in the grey matter of the brain. Journal of Cerebral Blood Flow and Metabolism, 21(10), 1133–45.PubMedCrossRef
Zurück zum Zitat Barnett, W., O’Brien, G., & Cymbalyuk, G. (2013). Bistability of silence and seizure-like bursting. Journal of Neuroscience Methods, 220(2), 179–89.PubMedCrossRef Barnett, W., O’Brien, G., & Cymbalyuk, G. (2013). Bistability of silence and seizure-like bursting. Journal of Neuroscience Methods, 220(2), 179–89.PubMedCrossRef
Zurück zum Zitat Betts, J. J. T. (1998). Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics, 21(2), 193–207.CrossRef Betts, J. J. T. (1998). Survey of numerical methods for trajectory optimization. Journal of Guidance, Control, and Dynamics, 21(2), 193–207.CrossRef
Zurück zum Zitat Bryson, A. E., & Ho, Y.-C. (1975). Applied Optimal Control (Revised Pr.). Hemisphere Publishing Corporation. Bryson, A. E., & Ho, Y.-C. (1975). Applied Optimal Control (Revised Pr.). Hemisphere Publishing Corporation.
Zurück zum Zitat Butera, R. J., Rinzel, J., & Smith, J. C. (1999). Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. Journal of Neurophysiology, 82(1), 382–97.PubMed Butera, R. J., Rinzel, J., & Smith, J. C. (1999). Models of respiratory rhythm generation in the pre-Bötzinger complex. I. Bursting pacemaker neurons. Journal of Neurophysiology, 82(1), 382–97.PubMed
Zurück zum Zitat Chen, Y., Wang, J., Wei, X., Deng, B., & Che, Y. (2011). Particle swarm optimization of periodic deep brain stimulation waveforms. Proceedings of the 30th Chinese Control Conference, 754–757. Chen, Y., Wang, J., Wei, X., Deng, B., & Che, Y. (2011). Particle swarm optimization of periodic deep brain stimulation waveforms. Proceedings of the 30th Chinese Control Conference, 754–757.
Zurück zum Zitat Clay, J. R., Paydarfar, D., & Forger, D. B. (2008). A simple modification of the Hodgkin and Huxley equations explains type 3 excitability in squid giant axons. Journal of the Royal Society Interface, 5, 1421–1428.PubMedCentralCrossRef Clay, J. R., Paydarfar, D., & Forger, D. B. (2008). A simple modification of the Hodgkin and Huxley equations explains type 3 excitability in squid giant axons. Journal of the Royal Society Interface, 5, 1421–1428.PubMedCentralCrossRef
Zurück zum Zitat Clay, J. R., Forger, D., & Paydarfar, D. (2012). Ionic mechanism underlying optimal stimuli for neuronal excitation: role of Na + channel inactivation. PLoS One, 7(9), e45983.PubMedCentralPubMedCrossRef Clay, J. R., Forger, D., & Paydarfar, D. (2012). Ionic mechanism underlying optimal stimuli for neuronal excitation: role of Na + channel inactivation. PLoS One, 7(9), e45983.PubMedCentralPubMedCrossRef
Zurück zum Zitat Danzl, P., Nabi, A., & Moehlis, J. (2010). Charge-balanced spike timing control for phase models of spiking neurons. Discrete and Continuous Dynamical Systems, 28(4), 1413–1435.CrossRef Danzl, P., Nabi, A., & Moehlis, J. (2010). Charge-balanced spike timing control for phase models of spiking neurons. Discrete and Continuous Dynamical Systems, 28(4), 1413–1435.CrossRef
Zurück zum Zitat Dean, D. A., Forger, D. B., & Klerman, E. B. (2009). Taking the lag out of jet lag through model-based schedule design. PLoS Computational Biology, 5(6), e1000418.PubMedCentralPubMedCrossRef Dean, D. A., Forger, D. B., & Klerman, E. B. (2009). Taking the lag out of jet lag through model-based schedule design. PLoS Computational Biology, 5(6), e1000418.PubMedCentralPubMedCrossRef
Zurück zum Zitat Doležal, J. (1978). A gradient-type algorithm for the numerical solution of two-player zero-sum differential game problems. Kybernetika, 14(6), 429–446. Doležal, J. (1978). A gradient-type algorithm for the numerical solution of two-player zero-sum differential game problems. Kybernetika, 14(6), 429–446.
Zurück zum Zitat Durand, D. M., & Warman, E. N. (1994). Desynchronization of epileptiform activity by extracellular current pulses in rat hippocampal slices. Journal of Physiology, 480(3), 527–537.PubMedCentralPubMed Durand, D. M., & Warman, E. N. (1994). Desynchronization of epileptiform activity by extracellular current pulses in rat hippocampal slices. Journal of Physiology, 480(3), 527–537.PubMedCentralPubMed
Zurück zum Zitat Feng, X., Greenwald, B., & Rabitz, H. (2007). Toward closed-loop optimization of deep brain stimulation for Parkinson’s disease: concepts and lessons from a computational model. Journal of Neural Engineering, 4(2), L14–L21.PubMedCrossRef Feng, X., Greenwald, B., & Rabitz, H. (2007). Toward closed-loop optimization of deep brain stimulation for Parkinson’s disease: concepts and lessons from a computational model. Journal of Neural Engineering, 4(2), L14–L21.PubMedCrossRef
Zurück zum Zitat Forger, D. B., & Paydarfar, D. (2004). Starting, stopping, and resetting biological oscillators: in search of optimum perturbations. Journal of Theoretical Biology, 230, 521–532.PubMedCrossRef Forger, D. B., & Paydarfar, D. (2004). Starting, stopping, and resetting biological oscillators: in search of optimum perturbations. Journal of Theoretical Biology, 230, 521–532.PubMedCrossRef
Zurück zum Zitat Gelfand IM & Fomin SV (2000). Calculus of Variations. Courier Dover Publications Gelfand IM & Fomin SV (2000). Calculus of Variations. Courier Dover Publications
Zurück zum Zitat Glass, L. (2001). Synchronization and rhythmic processes in physiology. Nature, 410(6825), 277–284.PubMedCrossRef Glass, L. (2001). Synchronization and rhythmic processes in physiology. Nature, 410(6825), 277–284.PubMedCrossRef
Zurück zum Zitat Golfetto, W. A., Fernandes, S., & da, S. (2012). A review of gradient algorithms for numerical computation of optimal trajectories. Journal of Aerospace Technology and Management, 4(2), 131–143.CrossRef Golfetto, W. A., Fernandes, S., & da, S. (2012). A review of gradient algorithms for numerical computation of optimal trajectories. Journal of Aerospace Technology and Management, 4(2), 131–143.CrossRef
Zurück zum Zitat Gupta, N., & Rink, R. (1973). Optimum control of epidemics. Mathematical Biosciences, 18, 383–396.CrossRef Gupta, N., & Rink, R. (1973). Optimum control of epidemics. Mathematical Biosciences, 18, 383–396.CrossRef
Zurück zum Zitat Hauptmann, C., Popovych, O., & Tass, P. A. (2005). Effectively desynchronizing deep brain stimulation based on a coordinated delayed feedback stimulation via several sites: a computational study. Biological Cybernetics, 93(6), 463–470.PubMedCrossRef Hauptmann, C., Popovych, O., & Tass, P. A. (2005). Effectively desynchronizing deep brain stimulation based on a coordinated delayed feedback stimulation via several sites: a computational study. Biological Cybernetics, 93(6), 463–470.PubMedCrossRef
Zurück zum Zitat Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4), 500–544.PubMedCentralPubMed Hodgkin, A. L., & Huxley, A. F. (1952). A quantitative description of membrane current and its application to conduction and excitation in nerve. Journal of Physiology, 117(4), 500–544.PubMedCentralPubMed
Zurück zum Zitat Howalski, C. H., da Silva, G. A., Poppi, R. J., Godoy, H. T., & Augusto, F. (2007). Neuro-genetic multioptimization of the determination of polychlorinated biphenyl congeners in human milk by headspace solid phase microextraction coupled to gas chromatography with electron capture detection. Analytica Chimica Acta, 585, 66–75.CrossRef Howalski, C. H., da Silva, G. A., Poppi, R. J., Godoy, H. T., & Augusto, F. (2007). Neuro-genetic multioptimization of the determination of polychlorinated biphenyl congeners in human milk by headspace solid phase microextraction coupled to gas chromatography with electron capture detection. Analytica Chimica Acta, 585, 66–75.CrossRef
Zurück zum Zitat Iasemidis, L. D. (2003). Epileptic seizure prediction and control. IEEE Transactions on Biomedical Engineering, 50(5), 549–558.PubMedCrossRef Iasemidis, L. D. (2003). Epileptic seizure prediction and control. IEEE Transactions on Biomedical Engineering, 50(5), 549–558.PubMedCrossRef
Zurück zum Zitat Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos, 10(6), 1171–1266.CrossRef Izhikevich, E. M. (2000). Neural excitability, spiking and bursting. International Journal of Bifurcation and Chaos, 10(6), 1171–1266.CrossRef
Zurück zum Zitat Izhikevich EM (2007). Dynamical systems in neuroscience: the geometry of excitability and bursting. (TJ Sejnowski & TA Poggio, Eds.). Cambridge, Massachusetts: MIT Press Izhikevich EM (2007). Dynamical systems in neuroscience: the geometry of excitability and bursting. (TJ Sejnowski & TA Poggio, Eds.). Cambridge, Massachusetts: MIT Press
Zurück zum Zitat Jezernik, S., & Morari, M. (2005). Energy-optimal electrical excitation of nerve fibers. IEEE Transactions on Biomedical Engineering, 52(4), 740–743.PubMedCrossRef Jezernik, S., & Morari, M. (2005). Energy-optimal electrical excitation of nerve fibers. IEEE Transactions on Biomedical Engineering, 52(4), 740–743.PubMedCrossRef
Zurück zum Zitat Joshi, H. R. (2002). Optimal control of an HIV immunology model. Optimal Control Applications and Methods, 23(4), 199–213.CrossRef Joshi, H. R. (2002). Optimal control of an HIV immunology model. Optimal Control Applications and Methods, 23(4), 199–213.CrossRef
Zurück zum Zitat Kawato, M., & Suzuki, R. (1980). Two coupled neural oscillators as a model of the circadian pacemaker. Journal of Theoretical Biology, 86(3), 547–575.PubMedCrossRef Kawato, M., & Suzuki, R. (1980). Two coupled neural oscillators as a model of the circadian pacemaker. Journal of Theoretical Biology, 86(3), 547–575.PubMedCrossRef
Zurück zum Zitat Kelley, H. J. (1962). Methods of Gradients. In G. Leitmann (Ed.), Optimization Techniques (5th ed., pp. 206–254). New York: Academic Press, Inc. Kelley, H. J. (1962). Methods of Gradients. In G. Leitmann (Ed.), Optimization Techniques (5th ed., pp. 206–254). New York: Academic Press, Inc.
Zurück zum Zitat Kepler, T. B., & Perelson, a. S. (1993). Somatic hypermutation in B cells: an optimal control treatment. Journal of Theoretical Biology, 164(1), 37–64.PubMedCrossRef Kepler, T. B., & Perelson, a. S. (1993). Somatic hypermutation in B cells: an optimal control treatment. Journal of Theoretical Biology, 164(1), 37–64.PubMedCrossRef
Zurück zum Zitat Kirschner, D., Lenhart, S., & Serbin, S. (1997). Optimal control of the chemotherapy of HIV. Journal of Mathematical Biology, 35(7), 775–792.PubMedCrossRef Kirschner, D., Lenhart, S., & Serbin, S. (1997). Optimal control of the chemotherapy of HIV. Journal of Mathematical Biology, 35(7), 775–792.PubMedCrossRef
Zurück zum Zitat Koelling, M. E., & Nykamp, D. Q. (2012). Searching for optimal stimuli: ascending a neuron’s response function. Journal of Computational Neuroscience, 33(3), 449–473.PubMedCrossRef Koelling, M. E., & Nykamp, D. Q. (2012). Searching for optimal stimuli: ascending a neuron’s response function. Journal of Computational Neuroscience, 33(3), 449–473.PubMedCrossRef
Zurück zum Zitat Lee, E. S. (1964). Optimization by a gradient technique. Industrial & Engineering Chemistry Fundamentals, 3(4), 373–380.CrossRef Lee, E. S. (1964). Optimization by a gradient technique. Industrial & Engineering Chemistry Fundamentals, 3(4), 373–380.CrossRef
Zurück zum Zitat Lian, J., Bikson, M., Sciortino, C., Stacey, W. C., & Durand, D. M. (2003). Local suppression of epileptiform activity by electrical stimulation in rat hippocampus in vitro. Journal of Physiology, 547(2), 427–434.PubMedCentralPubMedCrossRef Lian, J., Bikson, M., Sciortino, C., Stacey, W. C., & Durand, D. M. (2003). Local suppression of epileptiform activity by electrical stimulation in rat hippocampus in vitro. Journal of Physiology, 547(2), 427–434.PubMedCentralPubMedCrossRef
Zurück zum Zitat Loddenkemper, T., & Pan, A. (2001). Deep brain stimulation in epilepsy. Journal of Clinical Neurophysiology, 116(6), 217–34. Loddenkemper, T., & Pan, A. (2001). Deep brain stimulation in epilepsy. Journal of Clinical Neurophysiology, 116(6), 217–34.
Zurück zum Zitat Lozano, A. M. (2010). Deep brain stimulation for Parkinson’s disease. Journal of Neurosurgery, 112(3), 199–203.CrossRef Lozano, A. M. (2010). Deep brain stimulation for Parkinson’s disease. Journal of Neurosurgery, 112(3), 199–203.CrossRef
Zurück zum Zitat Machens, C. K., Gollisch, T., Kolesnikova, O., & Herz, A. V. M. (2005). Testing the efficiency of sensory coding with optimal stimulus ensembles. Neuron, 47(3), 447–456.PubMedCrossRef Machens, C. K., Gollisch, T., Kolesnikova, O., & Herz, A. V. M. (2005). Testing the efficiency of sensory coding with optimal stimulus ensembles. Neuron, 47(3), 447–456.PubMedCrossRef
Zurück zum Zitat Moehlis, J., Shea-Brown, E., & Rabitz, H. (2006). Optimal inputs for phase models of spiking neurons. Journal of Computational and Nonlinear Dynamics, 1(4), 358–367.CrossRef Moehlis, J., Shea-Brown, E., & Rabitz, H. (2006). Optimal inputs for phase models of spiking neurons. Journal of Computational and Nonlinear Dynamics, 1(4), 358–367.CrossRef
Zurück zum Zitat Nabi, A., & Moehlis, J. (2012). Time optimal control of spiking neurons. Journal of Mathematical Biology, 64(6), 981–1004.PubMedCrossRef Nabi, A., & Moehlis, J. (2012). Time optimal control of spiking neurons. Journal of Mathematical Biology, 64(6), 981–1004.PubMedCrossRef
Zurück zum Zitat Nagumo, J., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 2061–2070. Nagumo, J., Arimoto, S., & Yoshizawa, S. (1962). An active pulse transmission line simulating nerve axon. Proceedings of the IRE, 2061–2070.
Zurück zum Zitat Offner, F. (1946). Stimulation with minimum power. Journal of Neurophysiology, 9(5), 387–390.PubMed Offner, F. (1946). Stimulation with minimum power. Journal of Neurophysiology, 9(5), 387–390.PubMed
Zurück zum Zitat Osborne, M. R. (1969). On shooting methods for boundary value problems. Journal of Mathematical Analysis and Applications, 27, 417–433.CrossRef Osborne, M. R. (1969). On shooting methods for boundary value problems. Journal of Mathematical Analysis and Applications, 27, 417–433.CrossRef
Zurück zum Zitat Paydarfar, D., & Buerkel, D. D. (1995). Dysrhythmias of the respiratory oscillator. Chaos, 5(1), 18–29.PubMedCrossRef Paydarfar, D., & Buerkel, D. D. (1995). Dysrhythmias of the respiratory oscillator. Chaos, 5(1), 18–29.PubMedCrossRef
Zurück zum Zitat Paydarfar, D., Forger, D. B., & Clay, J. R. (2006). Noisy inputs and the induction of on-off switching behavior in a neuronal pacemaker. Journal of Neurophysiology, 96(6), 3338–48.PubMedCrossRef Paydarfar, D., Forger, D. B., & Clay, J. R. (2006). Noisy inputs and the induction of on-off switching behavior in a neuronal pacemaker. Journal of Neurophysiology, 96(6), 3338–48.PubMedCrossRef
Zurück zum Zitat Raivo, T. (2000). Computational Methods for Dynamic Optimization and Pursuit-Evasion Games. Helsinki University of Technology. Raivo, T. (2000). Computational Methods for Dynamic Optimization and Pursuit-Evasion Games. Helsinki University of Technology.
Zurück zum Zitat Rao, A. (2010). A survey of numerical methods for optimal control. Advances in the Astronautical Sciences, 135, 497–528. Rao, A. (2010). A survey of numerical methods for optimal control. Advances in the Astronautical Sciences, 135, 497–528.
Zurück zum Zitat Rinzel, J., & Ermentrout, G. B. (1998). Analysis of neural excitability and oscillations. In Methods in Neuronal Modeling (2nd ed., pp. 251–292). Rinzel, J., & Ermentrout, G. B. (1998). Analysis of neural excitability and oscillations. In Methods in Neuronal Modeling (2nd ed., pp. 251–292).
Zurück zum Zitat Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16(3), 211–235.PubMedCrossRef Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16(3), 211–235.PubMedCrossRef
Zurück zum Zitat Schiff, S. J. (2010). Towards model-based control of Parkinson’s disease. Philosophical Transactions of the Royal Society A, 368, 2269–2308.CrossRef Schiff, S. J. (2010). Towards model-based control of Parkinson’s disease. Philosophical Transactions of the Royal Society A, 368, 2269–2308.CrossRef
Zurück zum Zitat Sengupta, B., Stemmler, M., Laughlin, S. B., & Niven, J. E. (2010). Action potential energy efficiency varies among neuron types in vertebrates and invertebrates. PLoS Computational Biology, 6(7), e1000840.PubMedCentralPubMedCrossRef Sengupta, B., Stemmler, M., Laughlin, S. B., & Niven, J. E. (2010). Action potential energy efficiency varies among neuron types in vertebrates and invertebrates. PLoS Computational Biology, 6(7), e1000840.PubMedCentralPubMedCrossRef
Zurück zum Zitat Serkh, K., & Forger, D. B. (2014). Optimal schedules of light exposure for rapidly correcting circadian misalignment. PLoS Computational Biology, 10(4), e1003523.PubMedCentralPubMedCrossRef Serkh, K., & Forger, D. B. (2014). Optimal schedules of light exposure for rapidly correcting circadian misalignment. PLoS Computational Biology, 10(4), e1003523.PubMedCentralPubMedCrossRef
Zurück zum Zitat Sunderam, S., Gluckman, B., Reato, D., & Bikson, M. (2010). Toward rational design of electrical stimulation strategies for epilepsy control. Epilepsy & Behavior, 17(1), 6–22.CrossRef Sunderam, S., Gluckman, B., Reato, D., & Bikson, M. (2010). Toward rational design of electrical stimulation strategies for epilepsy control. Epilepsy & Behavior, 17(1), 6–22.CrossRef
Zurück zum Zitat Tahayori, B., & Dokos, S. (2012). Optimal stimulus current waveshape for a Hodgkin-Huxley model neuron. 34th Annual International Conference of the IEEE EBS, 4627–4630. Tahayori, B., & Dokos, S. (2012). Optimal stimulus current waveshape for a Hodgkin-Huxley model neuron. 34th Annual International Conference of the IEEE EBS, 4627–4630.
Zurück zum Zitat Tass, P. A. (2003). A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biological Cybernetics, 89(2), 81–88.PubMedCrossRef Tass, P. A. (2003). A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biological Cybernetics, 89(2), 81–88.PubMedCrossRef
Zurück zum Zitat Torrealdea, F. F., D’Anjou, A., Graña, M., Sarasola, C., & D’Anjou, A. (2006). Energy aspects of the synchronization of model neurons. Physical Review E, 74(1), 011905.CrossRef Torrealdea, F. F., D’Anjou, A., Graña, M., Sarasola, C., & D’Anjou, A. (2006). Energy aspects of the synchronization of model neurons. Physical Review E, 74(1), 011905.CrossRef
Zurück zum Zitat Watson, A., Barlow, H., & Robson, J. (1983). What does the eye see best? Nature, 302(5907), 419–422.PubMedCrossRef Watson, A., Barlow, H., & Robson, J. (1983). What does the eye see best? Nature, 302(5907), 419–422.PubMedCrossRef
Zurück zum Zitat Winfree, A. T. (2001). The Geometry of Biological Time. (J. E. Marsden, L. Sirovich, & S. Wiggins, Eds.) (2nd ed.). New York: Springer. Winfree, A. T. (2001). The Geometry of Biological Time. (J. E. Marsden, L. Sirovich, & S. Wiggins, Eds.) (2nd ed.). New York: Springer.
Zurück zum Zitat Ypma, T. J. (1995). Historical development of the Newton–Raphson method. SIAM Review, 37(4), 531–551.CrossRef Ypma, T. J. (1995). Historical development of the Newton–Raphson method. SIAM Review, 37(4), 531–551.CrossRef
Metadaten
Titel
Switching neuronal state: optimal stimuli revealed using a stochastically-seeded gradient algorithm
verfasst von
Joshua Chang
David Paydarfar
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2014
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-014-0525-5

Weitere Artikel der Ausgabe 3/2014

Journal of Computational Neuroscience 3/2014 Zur Ausgabe

Premium Partner