Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2014

01.12.2014

Origins and suppression of oscillations in a computational model of Parkinson’s disease

verfasst von: Abbey B. Holt, Theoden I. Netoff

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Efficacy of deep brain stimulation (DBS) for motor signs of Parkinson’s disease (PD) depends in part on post-operative programming of stimulus parameters. There is a need for a systematic approach to tuning parameters based on patient physiology. We used a physiologically realistic computational model of the basal ganglia network to investigate the emergence of a 34 Hz oscillation in the PD state and its optimal suppression with DBS. Discrete time transfer functions were fit to post-stimulus time histograms (PSTHs) collected in open-loop, by simulating the pharmacological block of synaptic connections, to describe the behavior of the basal ganglia nuclei. These functions were then connected to create a mean-field model of the closed-loop system, which was analyzed to determine the origin of the emergent 34 Hz pathological oscillation. This analysis determined that the oscillation could emerge from the coupling between the globus pallidus external (GPe) and subthalamic nucleus (STN). When coupled, the two resonate with each other in the PD state but not in the healthy state. By characterizing how this oscillation is affected by subthreshold DBS pulses, we hypothesize that it is possible to predict stimulus frequencies capable of suppressing this oscillation. To characterize the response to the stimulus, we developed a new method for estimating phase response curves (PRCs) from population data. Using the population PRC we were able to predict frequencies that enhance and suppress the 34 Hz pathological oscillation. This provides a systematic approach to tuning DBS frequencies and could enable closed-loop tuning of stimulation parameters.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Adamchic, I., C. Hauptmann, U. B. Barnikol, N. Pawelczyk, O. Popovych, T. T. Barnikol, A. Silchenko, J. Volkmann, G. Deuschl, W. G. Meissner, M. Maarouf, V. Sturm, H. J. Freund, and P. A. Tass, (2014). Coordinated reset neuromodulation for Parkinson’s disease: Proof-of-concept study: Mov Disord. Adamchic, I., C. Hauptmann, U. B. Barnikol, N. Pawelczyk, O. Popovych, T. T. Barnikol, A. Silchenko, J. Volkmann, G. Deuschl, W. G. Meissner, M. Maarouf, V. Sturm, H. J. Freund, and P. A. Tass, (2014). Coordinated reset neuromodulation for Parkinson’s disease: Proof-of-concept study: Mov Disord.
Zurück zum Zitat Alberts, W. W., Wright, E. W., Jr., & Feinstein, B. (1969). Cortical potentials and Parkinsonian tremor. Nature, 221, 670–672.PubMedCrossRef Alberts, W. W., Wright, E. W., Jr., & Feinstein, B. (1969). Cortical potentials and Parkinsonian tremor. Nature, 221, 670–672.PubMedCrossRef
Zurück zum Zitat Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12, 366–75.PubMedCrossRef Albin, R. L., Young, A. B., & Penney, J. B. (1989). The functional anatomy of basal ganglia disorders. Trends in Neurosciences, 12, 366–75.PubMedCrossRef
Zurück zum Zitat Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–81.PubMedCrossRef Alexander, G. E., DeLong, M. R., & Strick, P. L. (1986). Parallel organization of functionally segregated circuits linking basal ganglia and cortex. Annual Review of Neuroscience, 9, 357–81.PubMedCrossRef
Zurück zum Zitat Bernheimer, H., Birkmeyer, W., Hornykiewicz, O., Jellinger, K., & Seitelberger, F. (1973). Brain dopamine and the syndromes of Parkinson and Huntington. Journal of Neurological Sciences, 20, 415–445.CrossRef Bernheimer, H., Birkmeyer, W., Hornykiewicz, O., Jellinger, K., & Seitelberger, F. (1973). Brain dopamine and the syndromes of Parkinson and Huntington. Journal of Neurological Sciences, 20, 415–445.CrossRef
Zurück zum Zitat Bevan, M. D., & Wilson, C. J. (1999). Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 19, 7617–7628. Bevan, M. D., & Wilson, C. J. (1999). Mechanisms underlying spontaneous oscillation and rhythmic firing in rat subthalamic neurons. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 19, 7617–7628.
Zurück zum Zitat Bevan, M. D., Magill, P. J., Terman, D., Bolam, J. P., & Wilson, C. J. (2002). Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends in Neurosciences, 25, 525–531.PubMedCrossRef Bevan, M. D., Magill, P. J., Terman, D., Bolam, J. P., & Wilson, C. J. (2002). Move to the rhythm: oscillations in the subthalamic nucleus-external globus pallidus network. Trends in Neurosciences, 25, 525–531.PubMedCrossRef
Zurück zum Zitat Bhidayasiri, R., & Truong, D. D. (2008). Motor complications in Parkinson disease: clinical manifestations and management. Journal of the Neurological Sciences, 266, 204–215.PubMedCrossRef Bhidayasiri, R., & Truong, D. D. (2008). Motor complications in Parkinson disease: clinical manifestations and management. Journal of the Neurological Sciences, 266, 204–215.PubMedCrossRef
Zurück zum Zitat Birdno, M. J., Kuncel, A. M., Dorval, A. D., Turner, D. A., & Grill, W. M. (2008). Tremor varies as a function of the temporal regularity of deep brain stimulation. Neuroreport, 19, 599–602.PubMedCentralPubMedCrossRef Birdno, M. J., Kuncel, A. M., Dorval, A. D., Turner, D. A., & Grill, W. M. (2008). Tremor varies as a function of the temporal regularity of deep brain stimulation. Neuroreport, 19, 599–602.PubMedCentralPubMedCrossRef
Zurück zum Zitat Bronte-Stewart, H., Barberini, C., Koop, M. M., Hill, B. C., Henderson, J. M., & Wingeier, B. (2009). The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation. Experimental Neurology, 215, 20–28.PubMedCrossRef Bronte-Stewart, H., Barberini, C., Koop, M. M., Hill, B. C., Henderson, J. M., & Wingeier, B. (2009). The STN beta-band profile in Parkinson’s disease is stationary and shows prolonged attenuation after deep brain stimulation. Experimental Neurology, 215, 20–28.PubMedCrossRef
Zurück zum Zitat Brown, P., (2006). Bad oscillations in Parkinson’s disease: J Neural Transm Suppl, p. 27-30. Brown, P., (2006). Bad oscillations in Parkinson’s disease: J Neural Transm Suppl, p. 27-30.
Zurück zum Zitat Brown, P., & Williams, D. (2005). Basal ganglia local field potential activity: character and functional significance in the human: clinical neurophysiology. Official Journal of the International Federation of Clinical Neurophysiology, 116, 2510–2519.CrossRef Brown, P., & Williams, D. (2005). Basal ganglia local field potential activity: character and functional significance in the human: clinical neurophysiology. Official Journal of the International Federation of Clinical Neurophysiology, 116, 2510–2519.CrossRef
Zurück zum Zitat Butson, C. R., & McIntyre, C. C. (2006). Role of electrode design on the volume of tissue activated during deep brain stimulation. Journal of Neural Engineering, 3, 1–8.PubMedCentralPubMedCrossRef Butson, C. R., & McIntyre, C. C. (2006). Role of electrode design on the volume of tissue activated during deep brain stimulation. Journal of Neural Engineering, 3, 1–8.PubMedCentralPubMedCrossRef
Zurück zum Zitat Chen, C. C., Litvak, V., Gilbertson, T., Kühn, A., Lu, C. S., Lee, S. T., Tsai, C. H., Tisch, S., Limousin, P., Hariz, M., & Brown, P. (2007). Excessive synchronization of basal ganglia neurons at 20 Hz slows movement in Parkinson’s disease. Experimental Neurology, 205, 214–21.PubMedCrossRef Chen, C. C., Litvak, V., Gilbertson, T., Kühn, A., Lu, C. S., Lee, S. T., Tsai, C. H., Tisch, S., Limousin, P., Hariz, M., & Brown, P. (2007). Excessive synchronization of basal ganglia neurons at 20 Hz slows movement in Parkinson’s disease. Experimental Neurology, 205, 214–21.PubMedCrossRef
Zurück zum Zitat Courtemanche, R., Fujii, N., & Graybiel, A. M. (2003). Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23, 11741–11752. Courtemanche, R., Fujii, N., & Graybiel, A. M. (2003). Synchronous, focally modulated beta-band oscillations characterize local field potential activity in the striatum of awake behaving monkeys. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23, 11741–11752.
Zurück zum Zitat Cui, J., Canavier, C. C., & Butera, R. J. (2009). Functional phase response curves: a method for understanding synchronization of adapting neurons. Journal of Neurophysiology, 102, 387–98.PubMedCentralPubMedCrossRef Cui, J., Canavier, C. C., & Butera, R. J. (2009). Functional phase response curves: a method for understanding synchronization of adapting neurons. Journal of Neurophysiology, 102, 387–98.PubMedCentralPubMedCrossRef
Zurück zum Zitat Dejean, C., Hyland, B., & Arbuthnott, G. (2009). Cortical effects of subthalamic stimulation correlate with behavioral recovery from dopamine antagonist induced akinesia. Cerebral Cortex, 19, 1055–63.PubMedCrossRef Dejean, C., Hyland, B., & Arbuthnott, G. (2009). Cortical effects of subthalamic stimulation correlate with behavioral recovery from dopamine antagonist induced akinesia. Cerebral Cortex, 19, 1055–63.PubMedCrossRef
Zurück zum Zitat DeLong, M. R., G. E. Alexander, W. C. Miller, and M. D. Crutcher, (1992). Anatomical and functional aspects of basal ganglia-thalamocortical circuits, in J. W. Ironside, R. H. S. Mindham, R. J. Smith, E. G. S. Spokes, and W. Winlow, eds., Function and dysfunction in the basal ganglia: OxfordNew YorkSeoulTokyo Rergamon Press, p. 3-32. DeLong, M. R., G. E. Alexander, W. C. Miller, and M. D. Crutcher, (1992). Anatomical and functional aspects of basal ganglia-thalamocortical circuits, in J. W. Ironside, R. H. S. Mindham, R. J. Smith, E. G. S. Spokes, and W. Winlow, eds., Function and dysfunction in the basal ganglia: OxfordNew YorkSeoulTokyo Rergamon Press, p. 3-32.
Zurück zum Zitat Devergnas, A., Pittard, D., Bliwise, D., & Wichmann, T. (2014). Relationship between oscillatory activity in the cortico-basal ganglia network and parkinsonism in MPTP-treated monkeys. Neurobiology of Disease, 68C, 156–166.CrossRef Devergnas, A., Pittard, D., Bliwise, D., & Wichmann, T. (2014). Relationship between oscillatory activity in the cortico-basal ganglia network and parkinsonism in MPTP-treated monkeys. Neurobiology of Disease, 68C, 156–166.CrossRef
Zurück zum Zitat Dorval, A. D., and W. M. Grill, (2014). Deep brain stimulation of the subthalamic nucleus reestablishes neuronal information transmission in the 6-OHDA Rat Model of Parkinsonism: J Neurophysiol. Dorval, A. D., and W. M. Grill, (2014). Deep brain stimulation of the subthalamic nucleus reestablishes neuronal information transmission in the 6-OHDA Rat Model of Parkinsonism: J Neurophysiol.
Zurück zum Zitat Dorval, A. D., Russo, G. S., Hashimoto, T., Xu, W., Grill, W. M., & Vitek, J. L. (2008). Deep brain stimulation reduces neuronal entropy in the MPTP-primate model of Parkinson’s disease. Journal of Neurophysiology, 100, 2807–2818.PubMedCentralPubMedCrossRef Dorval, A. D., Russo, G. S., Hashimoto, T., Xu, W., Grill, W. M., & Vitek, J. L. (2008). Deep brain stimulation reduces neuronal entropy in the MPTP-primate model of Parkinson’s disease. Journal of Neurophysiology, 100, 2807–2818.PubMedCentralPubMedCrossRef
Zurück zum Zitat Dorval, A. D., Kuncel, A. M., Birdno, M. J., Turner, D. A., & Grill, W. M. (2010). Deep brain stimulation alleviates parkinsonian bradykinesia by regularizing pallidal activity. Journal of Neurophysiology, 104, 911–921.PubMedCentralPubMedCrossRef Dorval, A. D., Kuncel, A. M., Birdno, M. J., Turner, D. A., & Grill, W. M. (2010). Deep brain stimulation alleviates parkinsonian bradykinesia by regularizing pallidal activity. Journal of Neurophysiology, 104, 911–921.PubMedCentralPubMedCrossRef
Zurück zum Zitat Ermentrout, G. B., Beverlin, B., 2nd, Troyer, T., & Netoff, T. I. (2011). The variance of phase-resetting curves. Journal of Computational Neuroscience, 31, 185–197.PubMedCrossRef Ermentrout, G. B., Beverlin, B., 2nd, Troyer, T., & Netoff, T. I. (2011). The variance of phase-resetting curves. Journal of Computational Neuroscience, 31, 185–197.PubMedCrossRef
Zurück zum Zitat Eusebio, A., & Brown, P. (2007). Oscillatory activity in the basal ganglia. Parkinsonism & Related Disorders, 13(Suppl 3), S434–6.CrossRef Eusebio, A., & Brown, P. (2007). Oscillatory activity in the basal ganglia. Parkinsonism & Related Disorders, 13(Suppl 3), S434–6.CrossRef
Zurück zum Zitat Feng, X. J., Greenwald, B., Rabitz, H., Shea-Brown, E., & Kosut, R. (2007). Toward closed-loop optimization of deep brain stimulation for Parkinson’s disease: concepts and lessons from a computational model. Journal of Neural Engineering, 4, L14–21.PubMedCrossRef Feng, X. J., Greenwald, B., Rabitz, H., Shea-Brown, E., & Kosut, R. (2007). Toward closed-loop optimization of deep brain stimulation for Parkinson’s disease: concepts and lessons from a computational model. Journal of Neural Engineering, 4, L14–21.PubMedCrossRef
Zurück zum Zitat Gillies, A., & Willshaw, D. (2007). Neuroinformatics and modeling of the basal ganglia: bridging pharmacology and physiology. Expert Review of Medical Devices, 4, 663–672.PubMedCrossRef Gillies, A., & Willshaw, D. (2007). Neuroinformatics and modeling of the basal ganglia: bridging pharmacology and physiology. Expert Review of Medical Devices, 4, 663–672.PubMedCrossRef
Zurück zum Zitat Glass, L., & Mackey, M. C. (1988). From clocks to chaos: the rhythms of life (p. 248). Princeton: Princeton University Press. Glass, L., & Mackey, M. C. (1988). From clocks to chaos: the rhythms of life (p. 248). Princeton: Princeton University Press.
Zurück zum Zitat Goldberg, J. A., T. Bourad, and H. Bergman, (2004). Microrecording in the primate MPTP Model, p. 46. Goldberg, J. A., T. Bourad, and H. Bergman, (2004). Microrecording in the primate MPTP Model, p. 46.
Zurück zum Zitat Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M., & Deisseroth, K. (2009). Optical deconstruction of parkinsonian neural circuitry. Science (New York, N.Y.), 324, 354–359.CrossRef Gradinaru, V., Mogri, M., Thompson, K. R., Henderson, J. M., & Deisseroth, K. (2009). Optical deconstruction of parkinsonian neural circuitry. Science (New York, N.Y.), 324, 354–359.CrossRef
Zurück zum Zitat Green, A. L., and T. Z. Aziz, (2014, Steering technology for deep brain stimulation: Brain. Green, A. L., and T. Z. Aziz, (2014, Steering technology for deep brain stimulation: Brain.
Zurück zum Zitat Hahn, P. J., & McIntyre, C. C. (2010). Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation. Journal of Computational Neuroscience, 28, 425–441.PubMedCentralPubMedCrossRef Hahn, P. J., & McIntyre, C. C. (2010). Modeling shifts in the rate and pattern of subthalamopallidal network activity during deep brain stimulation. Journal of Computational Neuroscience, 28, 425–441.PubMedCentralPubMedCrossRef
Zurück zum Zitat Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends in Neurosciences, 30, 357–364.PubMedCrossRef Hammond, C., Bergman, H., & Brown, P. (2007). Pathological synchronization in Parkinson’s disease: networks, models and treatments. Trends in Neurosciences, 30, 357–364.PubMedCrossRef
Zurück zum Zitat Hashimoto, T., Elder, C. M., Okun, M. S., Patrick, S. K., & Vitek, J. L. (2003). Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23, 1916–1923. Hashimoto, T., Elder, C. M., Okun, M. S., Patrick, S. K., & Vitek, J. L. (2003). Stimulation of the subthalamic nucleus changes the firing pattern of pallidal neurons. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 23, 1916–1923.
Zurück zum Zitat Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–209.PubMedCrossRef Hines, M. L., & Carnevale, N. T. (1997). The NEURON simulation environment. Neural Computation, 9, 1179–209.PubMedCrossRef
Zurück zum Zitat Hines, M. L., & Carnevale, N. T. (2001). NEURON: a tool for neuroscientists. The Neuroscientist, 7, 123–35.PubMedCrossRef Hines, M. L., & Carnevale, N. T. (2001). NEURON: a tool for neuroscientists. The Neuroscientist, 7, 123–35.PubMedCrossRef
Zurück zum Zitat Holgado, A. J., Terry, J. R., & Bogacz, R. (2010). Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30, 12340–12352.CrossRef Holgado, A. J., Terry, J. R., & Bogacz, R. (2010). Conditions for the generation of beta oscillations in the subthalamic nucleus-globus pallidus network. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 30, 12340–12352.CrossRef
Zurück zum Zitat Hunka, K., Suchowersky, O., Wood, S., Derwent, L., & Kiss, Z. H. (2005). Nursing time to program and assess deep brain stimulators in movement disorder patients. The Journal of Neuroscience Nursing: Journal of the American Association of Neuroscience Nurses, 37, 204–210.CrossRef Hunka, K., Suchowersky, O., Wood, S., Derwent, L., & Kiss, Z. H. (2005). Nursing time to program and assess deep brain stimulators in movement disorder patients. The Journal of Neuroscience Nursing: Journal of the American Association of Neuroscience Nurses, 37, 204–210.CrossRef
Zurück zum Zitat Jenner, P. (2003). The contribution of the MPTP-treated primate model to the development of new treatment strategies for Parkinson’s disease. Parkinsonism & Related Disorders, 9, 131–7.CrossRef Jenner, P. (2003). The contribution of the MPTP-treated primate model to the development of new treatment strategies for Parkinson’s disease. Parkinsonism & Related Disorders, 9, 131–7.CrossRef
Zurück zum Zitat Jenner, P. (2008). Functional models of Parkinson’s disease: a valuable tool in the development of novel therapies. Annals of Neurology, 64(Suppl 2), S16–29.PubMed Jenner, P. (2008). Functional models of Parkinson’s disease: a valuable tool in the development of novel therapies. Annals of Neurology, 64(Suppl 2), S16–29.PubMed
Zurück zum Zitat Kuhn, A. A., Trottenberg, T., Kivi, A., Kupsch, A., Schneider, G. H., & Brown, P. (2005). The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson’s disease. Experimental Neurology, 194, 212–20.PubMedCrossRef Kuhn, A. A., Trottenberg, T., Kivi, A., Kupsch, A., Schneider, G. H., & Brown, P. (2005). The relationship between local field potential and neuronal discharge in the subthalamic nucleus of patients with Parkinson’s disease. Experimental Neurology, 194, 212–20.PubMedCrossRef
Zurück zum Zitat Kuhn, A. A., Kupsch, A., Schneider, G. H., & Brown, P. (2006). Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. European Journal of Neuroscience, 23, 1956–60.PubMedCrossRef Kuhn, A. A., Kupsch, A., Schneider, G. H., & Brown, P. (2006). Reduction in subthalamic 8–35 Hz oscillatory activity correlates with clinical improvement in Parkinson’s disease. European Journal of Neuroscience, 23, 1956–60.PubMedCrossRef
Zurück zum Zitat Kuhn, A. A., Kempf, F., Brucke, C., Gaynor Doyle, L., Martinez-Torres, I., Pogosyan, A., Trottenberg, T., Kupsch, A., Schneider, G. H., Hariz, M. I., Vandenberghe, W., Nuttin, B., & Brown, P. (2008). High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28, 6165–6173.CrossRef Kuhn, A. A., Kempf, F., Brucke, C., Gaynor Doyle, L., Martinez-Torres, I., Pogosyan, A., Trottenberg, T., Kupsch, A., Schneider, G. H., Hariz, M. I., Vandenberghe, W., Nuttin, B., & Brown, P. (2008). High-frequency stimulation of the subthalamic nucleus suppresses oscillatory beta activity in patients with Parkinson’s disease in parallel with improvement in motor performance. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 28, 6165–6173.CrossRef
Zurück zum Zitat Kühn, A. A., Tsui, A., Aziz, T., Ray, N., Brücke, C., Kupsch, A., Schneider, G. H., & Brown, P. (2009). Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Experimental Neurology, 215, 380–7.PubMedCrossRef Kühn, A. A., Tsui, A., Aziz, T., Ray, N., Brücke, C., Kupsch, A., Schneider, G. H., & Brown, P. (2009). Pathological synchronisation in the subthalamic nucleus of patients with Parkinson’s disease relates to both bradykinesia and rigidity. Experimental Neurology, 215, 380–7.PubMedCrossRef
Zurück zum Zitat Langston, J. W., Ballard, P., Tetrud, J. W., & Irwin, I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219, 979–80.PubMedCrossRef Langston, J. W., Ballard, P., Tetrud, J. W., & Irwin, I. (1983). Chronic Parkinsonism in humans due to a product of meperidine-analog synthesis. Science, 219, 979–80.PubMedCrossRef
Zurück zum Zitat Leblois, A., Boraud, T., Meissner, W., Bergman, H., & Hansel, D. (2006). Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26, 3567–3583.CrossRef Leblois, A., Boraud, T., Meissner, W., Bergman, H., & Hansel, D. (2006). Competition between feedback loops underlies normal and pathological dynamics in the basal ganglia. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 26, 3567–3583.CrossRef
Zurück zum Zitat Lengyel, M., Kwag, J., Paulsen, O., & Dayan, P. (2005). Matching storage and recall: hippocampal spike timing-dependent plasticity and phase response curves. Nature Neuroscience, 8, 1677–83.PubMedCrossRef Lengyel, M., Kwag, J., Paulsen, O., & Dayan, P. (2005). Matching storage and recall: hippocampal spike timing-dependent plasticity and phase response curves. Nature Neuroscience, 8, 1677–83.PubMedCrossRef
Zurück zum Zitat Liang, G. S., Chou, K. L., Baltuch, G. H., Jaggi, J. L., Loveland-Jones, C., Leng, L., Maccarone, H., Hurtig, H. I., Colcher, A., Stern, M. B., Kleiner-Fisman, G., Simuni, T., & Siderowf, A. D. (2006). Long-term outcomes of bilateral subthalamic nucleus stimulation in patients with advanced Parkinson’s disease. Stereotactic and Functional Neurosurgery, 84, 221–227.PubMedCrossRef Liang, G. S., Chou, K. L., Baltuch, G. H., Jaggi, J. L., Loveland-Jones, C., Leng, L., Maccarone, H., Hurtig, H. I., Colcher, A., Stern, M. B., Kleiner-Fisman, G., Simuni, T., & Siderowf, A. D. (2006). Long-term outcomes of bilateral subthalamic nucleus stimulation in patients with advanced Parkinson’s disease. Stereotactic and Functional Neurosurgery, 84, 221–227.PubMedCrossRef
Zurück zum Zitat Limousin, P., Pollak, P., Benazzouz, A., Hoffmann, D., Le Bas, J. F., Broussolle, E., Perret, J. E., & Benabid, A. L. (1995). Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet, 345, 91–5.PubMedCrossRef Limousin, P., Pollak, P., Benazzouz, A., Hoffmann, D., Le Bas, J. F., Broussolle, E., Perret, J. E., & Benabid, A. L. (1995). Effect of parkinsonian signs and symptoms of bilateral subthalamic nucleus stimulation. Lancet, 345, 91–5.PubMedCrossRef
Zurück zum Zitat Mallet, N., Pogosyan, A., Marton, L. F., Bolam, J. P., Brown, P., & Magill, P. J. (2008). Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. Journal of Neuroscience, 28, 14245–58.PubMedCrossRef Mallet, N., Pogosyan, A., Marton, L. F., Bolam, J. P., Brown, P., & Magill, P. J. (2008). Parkinsonian beta oscillations in the external globus pallidus and their relationship with subthalamic nucleus activity. Journal of Neuroscience, 28, 14245–58.PubMedCrossRef
Zurück zum Zitat Marreiros, A. C., Cagnan, H., Moran, R. J., Friston, K. J., & Brown, P. (2012). Basal ganglia-cortical interactions in Parkinsonian patients. NeuroImage, 66c, 301–310. Marreiros, A. C., Cagnan, H., Moran, R. J., Friston, K. J., & Brown, P. (2012). Basal ganglia-cortical interactions in Parkinsonian patients. NeuroImage, 66c, 301–310.
Zurück zum Zitat McCarthy, M. M., Moore-Kochlacs, C., Gu, X., Boyden, E. S., Han, X., & Kopell, N. (2011). Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 108, 11620–5.PubMedCentralPubMedCrossRef McCarthy, M. M., Moore-Kochlacs, C., Gu, X., Boyden, E. S., Han, X., & Kopell, N. (2011). Striatal origin of the pathologic beta oscillations in Parkinson’s disease. Proceedings of the National Academy of Sciences of the United States of America, 108, 11620–5.PubMedCentralPubMedCrossRef
Zurück zum Zitat McClelland, S., 3rd, Ford, B., Senatus, P. B., Winfield, L. M., Du, Y. E., Pullman, S. L., Yu, Q., Frucht, S. J., McKhann, G. M., 2nd, & Goodman, R. R. (2005). Subthalamic stimulation for Parkinson disease: determination of electrode location necessary for clinical efficacy. Neurosurgical Focus, 19, E12.PubMed McClelland, S., 3rd, Ford, B., Senatus, P. B., Winfield, L. M., Du, Y. E., Pullman, S. L., Yu, Q., Frucht, S. J., McKhann, G. M., 2nd, & Goodman, R. R. (2005). Subthalamic stimulation for Parkinson disease: determination of electrode location necessary for clinical efficacy. Neurosurgical Focus, 19, E12.PubMed
Zurück zum Zitat McConnell, G. C., So, R. Q., Hilliard, J. D., Lopomo, P., & Grill, W. M. (2012). Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32, 15657–15668.CrossRef McConnell, G. C., So, R. Q., Hilliard, J. D., Lopomo, P., & Grill, W. M. (2012). Effective deep brain stimulation suppresses low-frequency network oscillations in the basal ganglia by regularizing neural firing patterns. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 32, 15657–15668.CrossRef
Zurück zum Zitat McIntyre, C. C., Grill, W. M., Sherman, D. L., & Thakor, N. V. (2004). Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. Journal of Neurophysiology, 91, 1457–1469.PubMedCrossRef McIntyre, C. C., Grill, W. M., Sherman, D. L., & Thakor, N. V. (2004). Cellular effects of deep brain stimulation: model-based analysis of activation and inhibition. Journal of Neurophysiology, 91, 1457–1469.PubMedCrossRef
Zurück zum Zitat Meissner, W., Leblois, A., Hansel, D., Bioulac, B., Gross, C. E., Benazzouz, A., & Boraud, T. (2005). Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain a Journal of Neurology, 128, 2372–2382.PubMedCrossRef Meissner, W., Leblois, A., Hansel, D., Bioulac, B., Gross, C. E., Benazzouz, A., & Boraud, T. (2005). Subthalamic high frequency stimulation resets subthalamic firing and reduces abnormal oscillations. Brain a Journal of Neurology, 128, 2372–2382.PubMedCrossRef
Zurück zum Zitat Mera, T., Vitek, J. L., Alberts, J. L., & Giuffrida, J. P. (2011). Kinematic optimization of deep brain stimulation across multiple motor symptoms in Parkinson’s disease. Journal of Neuroscience Methods, 198, 280–286.PubMedCentralPubMedCrossRef Mera, T., Vitek, J. L., Alberts, J. L., & Giuffrida, J. P. (2011). Kinematic optimization of deep brain stimulation across multiple motor symptoms in Parkinson’s disease. Journal of Neuroscience Methods, 198, 280–286.PubMedCentralPubMedCrossRef
Zurück zum Zitat Moran, R. J., Mallet, N., Litvak, V., Dolan, R. J., Magill, P. J., Friston, K. J., & Brown, P. (2011). Alterations in brain connectivity underlying beta oscillations in Parkinsonism. PLoS Computational Biology, 7, e1002124.PubMedCentralPubMedCrossRef Moran, R. J., Mallet, N., Litvak, V., Dolan, R. J., Magill, P. J., Friston, K. J., & Brown, P. (2011). Alterations in brain connectivity underlying beta oscillations in Parkinsonism. PLoS Computational Biology, 7, e1002124.PubMedCentralPubMedCrossRef
Zurück zum Zitat Moro, E., Esselink, R. J., Xie, J., Hommel, M., Benabid, A. L., & Pollak, P. (2002). The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology, 59, 706–13.PubMedCrossRef Moro, E., Esselink, R. J., Xie, J., Hommel, M., Benabid, A. L., & Pollak, P. (2002). The impact on Parkinson’s disease of electrical parameter settings in STN stimulation. Neurology, 59, 706–13.PubMedCrossRef
Zurück zum Zitat Netoff, T. I., Banks, M. I., Dorval, A. D., Acker, C. D., Haas, J. S., Kopell, N., & White, J. A. (2005). Synchronization in hybrid neuronal networks of the hippocampal formation. Journal of Neurophysiology, 93, 1197–1208.PubMedCrossRef Netoff, T. I., Banks, M. I., Dorval, A. D., Acker, C. D., Haas, J. S., Kopell, N., & White, J. A. (2005). Synchronization in hybrid neuronal networks of the hippocampal formation. Journal of Neurophysiology, 93, 1197–1208.PubMedCrossRef
Zurück zum Zitat Nevado-Holgado, A. J., Mallet, N., Magill, P. J., & Bogacz, R. (2014). Effective connectivity of the subthalamic nucleus-globus pallidus network during Parkinsonian oscillations. Journal of Physiology, 592, 1429–55.PubMedCentralPubMed Nevado-Holgado, A. J., Mallet, N., Magill, P. J., & Bogacz, R. (2014). Effective connectivity of the subthalamic nucleus-globus pallidus network during Parkinsonian oscillations. Journal of Physiology, 592, 1429–55.PubMedCentralPubMed
Zurück zum Zitat Oppenheim, A. V., A. S. Willsky, and S. H. Nawab, (1996). Signals & systems (2nd ed.), Prentice-Hall, Inc. Oppenheim, A. V., A. S. Willsky, and S. H. Nawab, (1996). Signals & systems (2nd ed.), Prentice-Hall, Inc.
Zurück zum Zitat Ota, K., Omori, T., & Aonishi, T. (2009). MAP estimation algorithm for phase response curves based on analysis of the observation process. Journal of Computational Neuroscience, 26, 185–202.PubMedCrossRef Ota, K., Omori, T., & Aonishi, T. (2009). MAP estimation algorithm for phase response curves based on analysis of the observation process. Journal of Computational Neuroscience, 26, 185–202.PubMedCrossRef
Zurück zum Zitat Pasillas-Lépine, W. (2013). Delay-induced oscillations in Wilson and Cowan’s model: an analysis of the subthalamo-pallidal feedback loop in healthy and parkinsonian subjects. Biological Cybernetics, 107, 289–308.PubMedCrossRef Pasillas-Lépine, W. (2013). Delay-induced oscillations in Wilson and Cowan’s model: an analysis of the subthalamo-pallidal feedback loop in healthy and parkinsonian subjects. Biological Cybernetics, 107, 289–308.PubMedCrossRef
Zurück zum Zitat Plenz, D., & Kital, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400, 677–682.PubMedCrossRef Plenz, D., & Kital, S. T. (1999). A basal ganglia pacemaker formed by the subthalamic nucleus and external globus pallidus. Nature, 400, 677–682.PubMedCrossRef
Zurück zum Zitat Rizzone, M., Lanotte, M., Bergamasco, B., Tavella, A., Torre, E., Faccani, G., Melcarne, A., & Lopiano, L. (2001). Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters. Journal of Neurology, Neurosurgery and Psychiatry, 71, 215–9.PubMedCentralPubMedCrossRef Rizzone, M., Lanotte, M., Bergamasco, B., Tavella, A., Torre, E., Faccani, G., Melcarne, A., & Lopiano, L. (2001). Deep brain stimulation of the subthalamic nucleus in Parkinson’s disease: effects of variation in stimulation parameters. Journal of Neurology, Neurosurgery and Psychiatry, 71, 215–9.PubMedCentralPubMedCrossRef
Zurück zum Zitat Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16, 211–235.PubMedCrossRef Rubin, J. E., & Terman, D. (2004). High frequency stimulation of the subthalamic nucleus eliminates pathological thalamic rhythmicity in a computational model. Journal of Computational Neuroscience, 16, 211–235.PubMedCrossRef
Zurück zum Zitat Ryapolova-Webb, E., Afshar, P., Stanslaski, S., Denison, T., de Hemptinne, C., Bankiewicz, K., & Starr, P. A. (2014). Chronic cortical and electromyographic recordings from a fully implantable device: preclinical experience in a nonhuman primate. Journal of Neural Engineering, 11, 016009.PubMedCrossRef Ryapolova-Webb, E., Afshar, P., Stanslaski, S., Denison, T., de Hemptinne, C., Bankiewicz, K., & Starr, P. A. (2014). Chronic cortical and electromyographic recordings from a fully implantable device: preclinical experience in a nonhuman primate. Journal of Neural Engineering, 11, 016009.PubMedCrossRef
Zurück zum Zitat Santaniello, S., Fiengo, G., Glielmo, L., & Grill, W. M. (2011). Closed-loop control of deep brain stimulation: a simulation study: IEEE transactions on neural systems and rehabilitation engineering. A Publication of the IEEE Engineering in Medicine and Biology Society, 19, 15–24. Santaniello, S., Fiengo, G., Glielmo, L., & Grill, W. M. (2011). Closed-loop control of deep brain stimulation: a simulation study: IEEE transactions on neural systems and rehabilitation engineering. A Publication of the IEEE Engineering in Medicine and Biology Society, 19, 15–24.
Zurück zum Zitat Schultheiss, N. W., Edgerton, J. R., & Jaeger, D. (2010). Phase response curve analysis of a full morphological globus pallidus neuron model reveals distinct perisomatic and dendritic modes of synaptic integration. Journal of Neuroscience, 30, 2767–82.PubMedCentralPubMedCrossRef Schultheiss, N. W., Edgerton, J. R., & Jaeger, D. (2010). Phase response curve analysis of a full morphological globus pallidus neuron model reveals distinct perisomatic and dendritic modes of synaptic integration. Journal of Neuroscience, 30, 2767–82.PubMedCentralPubMedCrossRef
Zurück zum Zitat Sharott, A., Magill, P. J., Harnack, D., Kupsch, A., Meissner, W., & Brown, P. (2005). Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. European Journal of Neuroscience, 21, 1413–22.PubMedCrossRef Sharott, A., Magill, P. J., Harnack, D., Kupsch, A., Meissner, W., & Brown, P. (2005). Dopamine depletion increases the power and coherence of beta-oscillations in the cerebral cortex and subthalamic nucleus of the awake rat. European Journal of Neuroscience, 21, 1413–22.PubMedCrossRef
Zurück zum Zitat Stiefel, K. M., Gutkin, B. S., & Sejnowski, T. J. (2008). Cholinergic neuromodulation changes phase response curve shape and type in cortical pyramidal neurons. PLoS One, 3, e3947.PubMedCentralPubMedCrossRef Stiefel, K. M., Gutkin, B. S., & Sejnowski, T. J. (2008). Cholinergic neuromodulation changes phase response curve shape and type in cortical pyramidal neurons. PLoS One, 3, e3947.PubMedCentralPubMedCrossRef
Zurück zum Zitat Tachibana, Y., Kita, H., Chiken, S., Takada, M., & Nambu, A. (2008). Motor cortical control of internal pallidal activity through glutamatergic and GABAergic inputs in awake monkeys. The European Journal of Neuroscience, 27, 238–253.PubMedCrossRef Tachibana, Y., Kita, H., Chiken, S., Takada, M., & Nambu, A. (2008). Motor cortical control of internal pallidal activity through glutamatergic and GABAergic inputs in awake monkeys. The European Journal of Neuroscience, 27, 238–253.PubMedCrossRef
Zurück zum Zitat Tass, P. A. (2003). A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biological Cybernetics, 89, 81–8.PubMedCrossRef Tass, P. A. (2003). A model of desynchronizing deep brain stimulation with a demand-controlled coordinated reset of neural subpopulations. Biological Cybernetics, 89, 81–8.PubMedCrossRef
Zurück zum Zitat Terman, D., Rubin, J. E., Yew, A. C., & Wilson, C. J. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22, 2963–2976. Terman, D., Rubin, J. E., Yew, A. C., & Wilson, C. J. (2002). Activity patterns in a model for the subthalamopallidal network of the basal ganglia. The Journal of Neuroscience: The Official Journal of the Society for Neuroscience, 22, 2963–2976.
Zurück zum Zitat Timmermann, L., Wojtecki, L., Gross, J., Lehrke, R., Voges, J., Maarouf, M., Treuer, H., Sturm, V., & Schnitzler, A. (2004). Ten-Hertz stimulation of subthalamic nucleus deteriorates motor symptoms in Parkinson’s disease. Movement Disorders, 19, 1328–33.PubMedCrossRef Timmermann, L., Wojtecki, L., Gross, J., Lehrke, R., Voges, J., Maarouf, M., Treuer, H., Sturm, V., & Schnitzler, A. (2004). Ten-Hertz stimulation of subthalamic nucleus deteriorates motor symptoms in Parkinson’s disease. Movement Disorders, 19, 1328–33.PubMedCrossRef
Zurück zum Zitat Torben-Nielsen, B., Uusisaari, M., & Stiefel, K. M. (2010). A comparison of methods to determine neuronal phase-response curves. Front Neuroinform, 4, 6.PubMedCentralPubMed Torben-Nielsen, B., Uusisaari, M., & Stiefel, K. M. (2010). A comparison of methods to determine neuronal phase-response curves. Front Neuroinform, 4, 6.PubMedCentralPubMed
Zurück zum Zitat Tsang, E. W., Hamani, C., Moro, E., Mazzella, F., Saha, U., Lozano, A. M., Hodaie, M., Chuang, R., Steeves, T., Lim, S. Y., Neagu, B., & Chen, R. (2012). Subthalamic deep brain stimulation at individualized frequencies for Parkinson disease. Neurology, 78, 1930–8.PubMedCentralPubMedCrossRef Tsang, E. W., Hamani, C., Moro, E., Mazzella, F., Saha, U., Lozano, A. M., Hodaie, M., Chuang, R., Steeves, T., Lim, S. Y., Neagu, B., & Chen, R. (2012). Subthalamic deep brain stimulation at individualized frequencies for Parkinson disease. Neurology, 78, 1930–8.PubMedCentralPubMedCrossRef
Zurück zum Zitat van Albada, S. J., & Robinson, P. A. (2009). Mean-field modeling of the basal ganglia-thalamocortical system. I Firing rates in healthy and parkinsonian states. Journal of Theoretical Biology, 257, 642–663.PubMedCrossRef van Albada, S. J., & Robinson, P. A. (2009). Mean-field modeling of the basal ganglia-thalamocortical system. I Firing rates in healthy and parkinsonian states. Journal of Theoretical Biology, 257, 642–663.PubMedCrossRef
Zurück zum Zitat van Albada, S. J., Gray, R. T., Drysdale, P. M., & Robinson, P. A. (2009). Mean-field modeling of the basal ganglia-thalamocortical system. II Dynamics of parkinsonian oscillations. Journal of Theoretical Biology, 257, 664–688.PubMedCrossRef van Albada, S. J., Gray, R. T., Drysdale, P. M., & Robinson, P. A. (2009). Mean-field modeling of the basal ganglia-thalamocortical system. II Dynamics of parkinsonian oscillations. Journal of Theoretical Biology, 257, 664–688.PubMedCrossRef
Zurück zum Zitat Volkmann, J., Herzog, J., Kopper, F., & Deuschl, G. (2002). Introduction to the programming of deep brain stimulators: Movement disorders. Official Journal of the Movement Disorder Society, 17(Suppl 3), S181–7.CrossRef Volkmann, J., Herzog, J., Kopper, F., & Deuschl, G. (2002). Introduction to the programming of deep brain stimulators: Movement disorders. Official Journal of the Movement Disorder Society, 17(Suppl 3), S181–7.CrossRef
Zurück zum Zitat Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1–24.PubMedCentralPubMedCrossRef Wilson, H. R., & Cowan, J. D. (1972). Excitatory and inhibitory interactions in localized populations of model neurons. Biophysical Journal, 12, 1–24.PubMedCentralPubMedCrossRef
Zurück zum Zitat Wilson, C. J., Beverlin, B., 2nd, & Netoff, T. (2011). Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation. Frontiers in Systems Neuroscience, 5, 50.PubMedCentralPubMedCrossRef Wilson, C. J., Beverlin, B., 2nd, & Netoff, T. (2011). Chaotic desynchronization as the therapeutic mechanism of deep brain stimulation. Frontiers in Systems Neuroscience, 5, 50.PubMedCentralPubMedCrossRef
Metadaten
Titel
Origins and suppression of oscillations in a computational model of Parkinson’s disease
verfasst von
Abbey B. Holt
Theoden I. Netoff
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2014
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-014-0523-7

Weitere Artikel der Ausgabe 3/2014

Journal of Computational Neuroscience 3/2014 Zur Ausgabe

Premium Partner