Skip to main content
Erschienen in: Journal of Computational Neuroscience 3/2014

01.12.2014

Modelling fast forms of visual neural plasticity using a modified second-order motion energy model

verfasst von: Andrea Pavan, Adriano Contillo, George Mather

Erschienen in: Journal of Computational Neuroscience | Ausgabe 3/2014

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The Adelson-Bergen motion energy sensor is well established as the leading model of low-level visual motion sensing in human vision. However, the standard model cannot predict adaptation effects in motion perception. A previous paper Pavan et al.(Journal of Vision 10:1–17, 2013) presented an extension to the model which uses a first-order RC gain-control circuit (leaky integrator) to implement adaptation effects which can span many seconds, and showed that the extended model’s output is consistent with psychophysical data on the classic motion after-effect. Recent psychophysical research has reported adaptation over much shorter time periods, spanning just a few hundred milliseconds. The present paper further extends the sensor model to implement rapid adaptation, by adding a second-order RC circuit which causes the sensor to require a finite amount of time to react to a sudden change in stimulation. The output of the new sensor accounts accurately for psychophysical data on rapid forms of facilitation (rapid visual motion priming, rVMP) and suppression (rapid motion after-effect, rMAE). Changes in natural scene content occur over multiple time scales, and multi-stage leaky integrators of the kind proposed here offer a computational scheme for modelling adaptation over multiple time scales.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
Zurück zum Zitat Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A, 2, 284–299.CrossRef Adelson, E. H., & Bergen, J. R. (1985). Spatiotemporal energy models for the perception of motion. Journal of the Optical Society of America A, 2, 284–299.CrossRef
Zurück zum Zitat Amit, D. J. (1989). Modeling brain function. New York: Cambridge University Press.CrossRef Amit, D. J. (1989). Modeling brain function. New York: Cambridge University Press.CrossRef
Zurück zum Zitat Arnold, D. H., & Clifford, C. W. (2002). Determinants of asynchronous processing in vision. Proceedings of the Royal Society of London, B269, 579–583.CrossRef Arnold, D. H., & Clifford, C. W. (2002). Determinants of asynchronous processing in vision. Proceedings of the Royal Society of London, B269, 579–583.CrossRef
Zurück zum Zitat Bergen, J. R., & Wilson, H. R. (1985). Prediction of flicker sensitivities from temporal three pulse data. Vision Research, 25, 577–582.PubMedCrossRef Bergen, J. R., & Wilson, H. R. (1985). Prediction of flicker sensitivities from temporal three pulse data. Vision Research, 25, 577–582.PubMedCrossRef
Zurück zum Zitat Boudreau, C. E., & Ferster, D. (2005). Short-term depression in thalamocortical synapses of cat primary visual cortex. Journal of Neuroscience, 25, 7179–7190.PubMedCrossRef Boudreau, C. E., & Ferster, D. (2005). Short-term depression in thalamocortical synapses of cat primary visual cortex. Journal of Neuroscience, 25, 7179–7190.PubMedCrossRef
Zurück zum Zitat Buchel, C., Josephs, O., Rees, G., Turner, R., Frith, C. D., & Friston, K. J. (1998). The functional anatomy of attention to visual motion. A functional MRI study. Brain, 121, 1281–1294.PubMedCrossRef Buchel, C., Josephs, O., Rees, G., Turner, R., Frith, C. D., & Friston, K. J. (1998). The functional anatomy of attention to visual motion. A functional MRI study. Brain, 121, 1281–1294.PubMedCrossRef
Zurück zum Zitat Castro-Alamancos, M., & Connors, B. W. (1996). Short-term synaptic enhancement and long-term potentiation in neocortex. Proceedings of the National Academy of Sciences of the United States of America, 93, 1335–1339.PubMedCentralPubMedCrossRef Castro-Alamancos, M., & Connors, B. W. (1996). Short-term synaptic enhancement and long-term potentiation in neocortex. Proceedings of the National Academy of Sciences of the United States of America, 93, 1335–1339.PubMedCentralPubMedCrossRef
Zurück zum Zitat Challinor, K. L., & Mather, G. (2010). A motion-energy modelpredicts the direction discrimination and MAE duration of two-stroke apparent motion at high and low retinal illuminance. Vision Research, 50, 1109–1116.PubMedCentralPubMedCrossRef Challinor, K. L., & Mather, G. (2010). A motion-energy modelpredicts the direction discrimination and MAE duration of two-stroke apparent motion at high and low retinal illuminance. Vision Research, 50, 1109–1116.PubMedCentralPubMedCrossRef
Zurück zum Zitat Chance, F. S., Nelson, S. B., & Abbott, L. F. (1998). Synaptic depression and the temporal response characteristics of V1 cells. Journal of Neuroscience, 18, 4785–4799.PubMed Chance, F. S., Nelson, S. B., & Abbott, L. F. (1998). Synaptic depression and the temporal response characteristics of V1 cells. Journal of Neuroscience, 18, 4785–4799.PubMed
Zurück zum Zitat Culham, J., Verstraten, F. A. J., Ashida, H., & Cavanagh, P. (2000). Independent aftereffects of attention and motion. Neuron, 28, 607–615.PubMedCrossRef Culham, J., Verstraten, F. A. J., Ashida, H., & Cavanagh, P. (2000). Independent aftereffects of attention and motion. Neuron, 28, 607–615.PubMedCrossRef
Zurück zum Zitat Daelli, V., & Treves, A. (2010). Neural attractor dynamics in object recognition. Experimental Brain Research, 203, 241–248. Daelli, V., & Treves, A. (2010). Neural attractor dynamics in object recognition. Experimental Brain Research, 203, 241–248.
Zurück zum Zitat Daelli, V., van Rijsbergen, N., & Treves, A. (2010). How recent experience affects the perception of ambiguous objects. Brain Research, 1322, 81–91.PubMedCrossRef Daelli, V., van Rijsbergen, N., & Treves, A. (2010). How recent experience affects the perception of ambiguous objects. Brain Research, 1322, 81–91.PubMedCrossRef
Zurück zum Zitat Emerson, R. C., Bergen, J. R., & Adelson, E. H. (1992). Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Research, 32, 203–218.PubMedCrossRef Emerson, R. C., Bergen, J. R., & Adelson, E. H. (1992). Directionally selective complex cells and the computation of motion energy in cat visual cortex. Vision Research, 32, 203–218.PubMedCrossRef
Zurück zum Zitat Fuortes, M. G., & Hodgkin, A. L. (1964). Changes in time scaleand sensitivity in the ommatidia of Limulus. Journal of Physiology, 172, 239–263.PubMedCentralPubMed Fuortes, M. G., & Hodgkin, A. L. (1964). Changes in time scaleand sensitivity in the ommatidia of Limulus. Journal of Physiology, 172, 239–263.PubMedCentralPubMed
Zurück zum Zitat Georgeson, M. A., & Scott-Samuel, N. E. (1999). Motion contrast: a new metric for direction discrimination. Vision Research, 39, 4393–4402.PubMedCrossRef Georgeson, M. A., & Scott-Samuel, N. E. (1999). Motion contrast: a new metric for direction discrimination. Vision Research, 39, 4393–4402.PubMedCrossRef
Zurück zum Zitat Giaschi, D., Douglas, R., Marlin, S., & Cynader, M. (1993). The time course of direction-selective adaptation in simple and complex cells in cat striate cortex. Journal of Neurophysiology, 70, 2024–2034.PubMed Giaschi, D., Douglas, R., Marlin, S., & Cynader, M. (1993). The time course of direction-selective adaptation in simple and complex cells in cat striate cortex. Journal of Neurophysiology, 70, 2024–2034.PubMed
Zurück zum Zitat Glasser, D. M., Tsui, J. M. G., Pack, C. C., & Tadin, D. (2011). Perceptual and neural consequences of rapid motion adaptation. Proceedings of the National Academy of Sciences of the United States of America, 108(45). Glasser, D. M., Tsui, J. M. G., Pack, C. C., & Tadin, D. (2011). Perceptual and neural consequences of rapid motion adaptation. Proceedings of the National Academy of Sciences of the United States of America, 108(45).
Zurück zum Zitat Finlayson, P. G., & Cynader, M. S. (1995). Synaptic depression in visual cortex tissue slices: An in vitro model for cortical neuron adaptation. Experimental Brain Research, 106, 145–155.PubMedCrossRef Finlayson, P. G., & Cynader, M. S. (1995). Synaptic depression in visual cortex tissue slices: An in vitro model for cortical neuron adaptation. Experimental Brain Research, 106, 145–155.PubMedCrossRef
Zurück zum Zitat Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analysis of event-related brain potentials/fields I: A critical tutorial review. Psychophysiology, 48(12), 1711–1725.PubMedCentralPubMedCrossRef Groppe, D. M., Urbach, T. P., & Kutas, M. (2011). Mass univariate analysis of event-related brain potentials/fields I: A critical tutorial review. Psychophysiology, 48(12), 1711–1725.PubMedCentralPubMedCrossRef
Zurück zum Zitat Haug, B. A., Baudewig, J., & Paulus, W. (1998). Selective activation of human cortical area V5A by a rotating visual stimulus in fMRI; implication of attentional mechanisms. Neuroreport, 9, 611–614.PubMedCrossRef Haug, B. A., Baudewig, J., & Paulus, W. (1998). Selective activation of human cortical area V5A by a rotating visual stimulus in fMRI; implication of attentional mechanisms. Neuroreport, 9, 611–614.PubMedCrossRef
Zurück zum Zitat Hershenson, M. (1993). Linear and rotation motion aftereffects as a function of inspection duration. Vision Research, 33, 1913–1919.PubMedCrossRef Hershenson, M. (1993). Linear and rotation motion aftereffects as a function of inspection duration. Vision Research, 33, 1913–1919.PubMedCrossRef
Zurück zum Zitat Hempel, C. M., Hartman, K. H., Wang, X.-J., Turrigiano, G. G., & Nelson, S. B. (2000). Multiple forms of short-term plasticity at excitatory synapses in rat medial prefrontal cortex. Journal of Neurophysiology, 83, 3031–3941.PubMed Hempel, C. M., Hartman, K. H., Wang, X.-J., Turrigiano, G. G., & Nelson, S. B. (2000). Multiple forms of short-term plasticity at excitatory synapses in rat medial prefrontal cortex. Journal of Neurophysiology, 83, 3031–3941.PubMed
Zurück zum Zitat Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70. Holm, S. (1979). A simple sequentially rejective multiple test procedure. Scandinavian Journal of Statistics, 6, 65–70.
Zurück zum Zitat Huk, A. C., Ress, D., & Heeger, D. J. (2001). Neuronal basis of the motion aftereffect reconsidered. Neuron, 32, 161–172.PubMedCrossRef Huk, A. C., Ress, D., & Heeger, D. J. (2001). Neuronal basis of the motion aftereffect reconsidered. Neuron, 32, 161–172.PubMedCrossRef
Zurück zum Zitat Kanai, R., & Verstraten, F. A. (2005). Perceptual manifestations of fast neural plasticity: Motion priming, rapid motion aftereffect and perceptual sensitization. Vision Research, 45, 3109–3116.PubMedCrossRef Kanai, R., & Verstraten, F. A. (2005). Perceptual manifestations of fast neural plasticity: Motion priming, rapid motion aftereffect and perceptual sensitization. Vision Research, 45, 3109–3116.PubMedCrossRef
Zurück zum Zitat Lingnau, A., Ashida, H., Wall, M. B., & Smith, A. T. (2009). Speed encoding in human visual cortex revealed by fMRI adaptation. Journal of Vision, 9(13), 1–14. 3.PubMedCrossRef Lingnau, A., Ashida, H., Wall, M. B., & Smith, A. T. (2009). Speed encoding in human visual cortex revealed by fMRI adaptation. Journal of Vision, 9(13), 1–14. 3.PubMedCrossRef
Zurück zum Zitat Lisberger, S., & Movshon, J. (1999). Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. Journal of Neuroscience, 19, 2224–2246.PubMed Lisberger, S., & Movshon, J. (1999). Visual motion analysis for pursuit eye movements in area MT of macaque monkeys. Journal of Neuroscience, 19, 2224–2246.PubMed
Zurück zum Zitat Moutoussis, K., & Zeki, S. (1997). A direct demonstration of perceptual asynchrony in vision. Proceedings of the Royal Society of London B, 264(1380), 393–399.CrossRef Moutoussis, K., & Zeki, S. (1997). A direct demonstration of perceptual asynchrony in vision. Proceedings of the Royal Society of London B, 264(1380), 393–399.CrossRef
Zurück zum Zitat Nelson, S. B. (1991). Temporal interactions in the cat visual system: I. Orientation-selective suppression in the visual cortex. Journal of Neuroscience, 11, 344–356.PubMed Nelson, S. B. (1991). Temporal interactions in the cat visual system: I. Orientation-selective suppression in the visual cortex. Journal of Neuroscience, 11, 344–356.PubMed
Zurück zum Zitat Pavan, A., Campana, G., Guerreschi, M., Manassi, M., & Casco, C. (2009). Separate motion-detecting mechanisms for first- and second-order patterns revealed by rapid forms of visual motion priming and motion aftereffect. Journal of Vision, 27, 1–16. Pavan, A., Campana, G., Guerreschi, M., Manassi, M., & Casco, C. (2009). Separate motion-detecting mechanisms for first- and second-order patterns revealed by rapid forms of visual motion priming and motion aftereffect. Journal of Vision, 27, 1–16.
Zurück zum Zitat Pavan, A., Campana, G., Maniglia, M., & Casco, C. (2010). The role of high-level visual areas in short- and longer-lasting forms of neural plasticity. Neuropsychologia, 48, 3069–3079.PubMedCrossRef Pavan, A., Campana, G., Maniglia, M., & Casco, C. (2010). The role of high-level visual areas in short- and longer-lasting forms of neural plasticity. Neuropsychologia, 48, 3069–3079.PubMedCrossRef
Zurück zum Zitat Pavan, A., Contillo, A., & Mather, G. (2013). Modelling adaptation to directional motion using the Adelson-Bergen energy sensor. PloS One, 8(3), e59298.PubMedCentralPubMedCrossRef Pavan, A., Contillo, A., & Mather, G. (2013). Modelling adaptation to directional motion using the Adelson-Bergen energy sensor. PloS One, 8(3), e59298.PubMedCentralPubMedCrossRef
Zurück zum Zitat Pavan, A., & Skujevskis, M. (2013). The role of stationary and dynamic test patterns in rapid forms of motion aftereffect. Journal of Vision, 10, 1–17. Pavan, A., & Skujevskis, M. (2013). The role of stationary and dynamic test patterns in rapid forms of motion aftereffect. Journal of Vision, 10, 1–17.
Zurück zum Zitat Pinkus, A., & Pantle, A. (1997). Probing visual motion signals with a priming paradigm. Vision Research, 37, 541–552.PubMedCrossRef Pinkus, A., & Pantle, A. (1997). Probing visual motion signals with a priming paradigm. Vision Research, 37, 541–552.PubMedCrossRef
Zurück zum Zitat Priebe, N. J., Churchland, M. M., & Lisberger, S. G. (2002). Constraints on the source of short-term motion adaptation in macaque area MT: I. The role of input and intrinsic mechanisms. Journal of Neurophysiology, 88, 354–369.PubMedCentralPubMed Priebe, N. J., Churchland, M. M., & Lisberger, S. G. (2002). Constraints on the source of short-term motion adaptation in macaque area MT: I. The role of input and intrinsic mechanisms. Journal of Neurophysiology, 88, 354–369.PubMedCentralPubMed
Zurück zum Zitat Priebe, N. J., & Lisberger, S. G. (2002). Constraints on the source of short-term motion adaptation in macaque area MT II. Tuning of neural circuit mechanisms. Journal of Neurophysiology, 88, 370–382.PubMedCentralPubMed Priebe, N. J., & Lisberger, S. G. (2002). Constraints on the source of short-term motion adaptation in macaque area MT II. Tuning of neural circuit mechanisms. Journal of Neurophysiology, 88, 370–382.PubMedCentralPubMed
Zurück zum Zitat Rainville, S. J., Makous, W. L., & Scott-Samuel, N. E. (2005). Opponent-motion mechanisms are self-normalizing. Vision Research, 45, 1115–1127. Rainville, S. J., Makous, W. L., & Scott-Samuel, N. E. (2005). Opponent-motion mechanisms are self-normalizing. Vision Research, 45, 1115–1127.
Zurück zum Zitat Rainville, S. J., Scott-Samuel, N. E., & Makous, W. L. (2002). The spatial properties of opponent-motion normalization. Vision Research, 42, 1727–1738.PubMedCrossRef Rainville, S. J., Scott-Samuel, N. E., & Makous, W. L. (2002). The spatial properties of opponent-motion normalization. Vision Research, 42, 1727–1738.PubMedCrossRef
Zurück zum Zitat Rees, G., Frith, C. D., & Lavie, N. (1997). Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science, 278, 1616–1619.PubMedCrossRef Rees, G., Frith, C. D., & Lavie, N. (1997). Modulating irrelevant motion perception by varying attentional load in an unrelated task. Science, 278, 1616–1619.PubMedCrossRef
Zurück zum Zitat Rolls, E. T. (1989). The representation and storage of information in neuronal networks in the primate cerebral cortex and hippocampus. In R. Durbin, C. Miall, & G. Mitchison (Eds.), The computing neuron, Ch. 8 (pp. 125–159). England: Addison-Wesley, Wokingham. Rolls, E. T. (1989). The representation and storage of information in neuronal networks in the primate cerebral cortex and hippocampus. In R. Durbin, C. Miall, & G. Mitchison (Eds.), The computing neuron, Ch. 8 (pp. 125–159). England: Addison-Wesley, Wokingham.
Zurück zum Zitat Rushton, W. A. H. (1962). Visual adaptation. Proceedings of the Royal Society B, 986, 20–46. Rushton, W. A. H. (1962). Visual adaptation. Proceedings of the Royal Society B, 986, 20–46.
Zurück zum Zitat Seidemann, E., & Newsome, W. T. (1999). Effect of spatial attention on the responses of area MT neurons. Journal of Neurophysiology, 81, 1783–1794.PubMed Seidemann, E., & Newsome, W. T. (1999). Effect of spatial attention on the responses of area MT neurons. Journal of Neurophysiology, 81, 1783–1794.PubMed
Zurück zum Zitat Stratford, K. J., Tarczy-Hornuch, K., Martin, K. A. C., Bannister, N. J., & Jack, J. J. B. (1996). Excitatory synaptic inputs to spiny stellate cells in cat visual cortex. Nature, 382, 258–261.PubMedCrossRef Stratford, K. J., Tarczy-Hornuch, K., Martin, K. A. C., Bannister, N. J., & Jack, J. J. B. (1996). Excitatory synaptic inputs to spiny stellate cells in cat visual cortex. Nature, 382, 258–261.PubMedCrossRef
Zurück zum Zitat Strout, J. J., Pantle, A., & Mills, S. L. (1994). An energy model of interframe interval effects in single-step apparent motion. Vision Research, 34, 3223–3240.PubMedCrossRef Strout, J. J., Pantle, A., & Mills, S. L. (1994). An energy model of interframe interval effects in single-step apparent motion. Vision Research, 34, 3223–3240.PubMedCrossRef
Zurück zum Zitat Takeuchi, T., & De Valois, K. K. (1997). Motion-reversal reveals two motion mechanisms functioning in scotopic vision. Vision Research, 37, 745–755.PubMedCrossRef Takeuchi, T., & De Valois, K. K. (1997). Motion-reversal reveals two motion mechanisms functioning in scotopic vision. Vision Research, 37, 745–755.PubMedCrossRef
Zurück zum Zitat Taylor, M. M. (1963). Tracking the decay of the after-effect of seen rotary movement. Perceptual and Motor Skills, 16, 119–129.PubMedCrossRef Taylor, M. M. (1963). Tracking the decay of the after-effect of seen rotary movement. Perceptual and Motor Skills, 16, 119–129.PubMedCrossRef
Zurück zum Zitat Treue, S., & Maunsell, J. H. (1996). Attentional modulation of visual motion processing in cortical areas MT and MST. Nature, 382, 539–541.PubMedCrossRef Treue, S., & Maunsell, J. H. (1996). Attentional modulation of visual motion processing in cortical areas MT and MST. Nature, 382, 539–541.PubMedCrossRef
Zurück zum Zitat Treue, S., & Maunsell, J. H. (1999). Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. Journal of Neuroscience, 19, 7591–7602.PubMed Treue, S., & Maunsell, J. H. (1999). Effects of attention on the processing of motion in macaque middle temporal and medial superior temporal visual cortical areas. Journal of Neuroscience, 19, 7591–7602.PubMed
Zurück zum Zitat van de Grind, W. A., Lankheet, M. J. M., & Tao, R. (2003). A gain-control model relating nulling results to the duration of dynamic motion aftereffects. Vision Research, 43, 117–133.PubMedCrossRef van de Grind, W. A., Lankheet, M. J. M., & Tao, R. (2003). A gain-control model relating nulling results to the duration of dynamic motion aftereffects. Vision Research, 43, 117–133.PubMedCrossRef
Zurück zum Zitat Vautin, R. G., & Berkley, M. A. (1977). Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects. Journal of Neurophysiology, 40, 1051–1065.PubMed Vautin, R. G., & Berkley, M. A. (1977). Responses of single cells in cat visual cortex to prolonged stimulus movement: neural correlates of visual aftereffects. Journal of Neurophysiology, 40, 1051–1065.PubMed
Zurück zum Zitat Varela, J. A., Song, S., Turrigiano, G. G., & Nelson, S. B. (1999). Differential depression at excitatory and inhibitory synapses in visual cortex. Journal of Neuroscience, 19(11), 4293–4304.PubMed Varela, J. A., Song, S., Turrigiano, G. G., & Nelson, S. B. (1999). Differential depression at excitatory and inhibitory synapses in visual cortex. Journal of Neuroscience, 19(11), 4293–4304.PubMed
Zurück zum Zitat Verstraten, F. A. J., & Ashida, H. (2005). Attention-based motion perception and motion adaptation: What does attention contribute? Vision Research, 45, 1313–1319.PubMedCrossRef Verstraten, F. A. J., & Ashida, H. (2005). Attention-based motion perception and motion adaptation: What does attention contribute? Vision Research, 45, 1313–1319.PubMedCrossRef
Zurück zum Zitat Zengel, J. E., & Magleby, K. L. (1982). Augmentation and facilitation of transmitter release. A quantitative description at the frog neuromuscular junction. Journal of General Physiology, 80, 583–611.PubMedCrossRef Zengel, J. E., & Magleby, K. L. (1982). Augmentation and facilitation of transmitter release. A quantitative description at the frog neuromuscular junction. Journal of General Physiology, 80, 583–611.PubMedCrossRef
Metadaten
Titel
Modelling fast forms of visual neural plasticity using a modified second-order motion energy model
verfasst von
Andrea Pavan
Adriano Contillo
George Mather
Publikationsdatum
01.12.2014
Verlag
Springer US
Erschienen in
Journal of Computational Neuroscience / Ausgabe 3/2014
Print ISSN: 0929-5313
Elektronische ISSN: 1573-6873
DOI
https://doi.org/10.1007/s10827-014-0520-x

Weitere Artikel der Ausgabe 3/2014

Journal of Computational Neuroscience 3/2014 Zur Ausgabe

Premium Partner