Skip to main content
Erschienen in: Cognitive Neurodynamics 2/2013

01.04.2013 | Research Article

Synaptic activity slows vesicular replenishment at excitatory synapses of rat hippocampus

verfasst von: Loc Bui, Mladen I. Glavinović

Erschienen in: Cognitive Neurodynamics | Ausgabe 2/2013

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Short-term synaptic depression mainly reflects the depletion of the readily releasable pool (RRP) of quanta. Its dynamics, and especially the replenishment rate of the RRP, are still not well characterized in spite of decades of investigation. Main reason is that the vesicular storage and release system is treated as time-independent. If it is time-dependent all parameters thus estimated become problematic. Indeed the reports about how prolonged stimulation affects the dynamics are contradictory. To study this, we used patterned stimulation on the Schaeffer collateral fiber pathway and model-fitting of the excitatory post-synaptic currents (EPSC) recorded from CA1 neurons in rat hippocampal slices. The parameters of a vesicular storage and release model with two pools were estimated by minimizing the squared difference between the ESPC amplitudes and simulated model output. This yields the ‘basic’ parameters (release coupling, replenishment coupling and RRP size) that underlie the ‘derived’ and commonly used parameters (fractional release and replenishment rate). The fractional release increases when [Ca++]o is raised, whereas the replenishment rate is [Ca++]o independent. Fractional release rises because release coupling increases, and the RRP becomes less able to contain quanta. During prolonged stimulation, the fractional release remains generally unaltered, whereas the replenishment rate decreases down to ~10 % of its initial value with a decay time of ~15 s, and this decrease in the replenishment rate significantly contributes to synaptic depression. In conclusion, the fractional release is [Ca++]o-dependent and stimulation-independent, whereas the replenishment rate is [Ca++]o-independent and stimulation-dependent.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Aihara T, Abiru Y, Yamazaki Y, Watanabe H, Fukushima Y, Tsukada M (2007) The relation between spike-timing dependent plasticity and Ca2+ dynamics in the hippocampal CA1 network. J Neurosci 145:80–87CrossRef Aihara T, Abiru Y, Yamazaki Y, Watanabe H, Fukushima Y, Tsukada M (2007) The relation between spike-timing dependent plasticity and Ca2+ dynamics in the hippocampal CA1 network. J Neurosci 145:80–87CrossRef
Zurück zum Zitat Apodaca G (2002) Modulation of membrane traffic by mechanical stimuli. Am J Physiol Ren Physiol 282:F179–F190 Apodaca G (2002) Modulation of membrane traffic by mechanical stimuli. Am J Physiol Ren Physiol 282:F179–F190
Zurück zum Zitat Aravanis AM, Pyle JL, Tsien RW (2003) Single synaptic vesicles fusing transiently and successively without loss of identity. Nature 423:643–647PubMedCrossRef Aravanis AM, Pyle JL, Tsien RW (2003) Single synaptic vesicles fusing transiently and successively without loss of identity. Nature 423:643–647PubMedCrossRef
Zurück zum Zitat Aristizabal F, Glavinovic MI (2004) Simulation and parameter estimation of dynamics of synaptic depression. Biol Cybern 90:3–18PubMedCrossRef Aristizabal F, Glavinovic MI (2004) Simulation and parameter estimation of dynamics of synaptic depression. Biol Cybern 90:3–18PubMedCrossRef
Zurück zum Zitat Benfenati F, Bahler M, Jahn R, Greengard P (1989) Interactions of synapsin I with small synaptic vesicles: distinct sites in synapsin I bind to vesicle phospholipids and vesicle proteins. J Cell Biol 108:1863–1872PubMedCrossRef Benfenati F, Bahler M, Jahn R, Greengard P (1989) Interactions of synapsin I with small synaptic vesicles: distinct sites in synapsin I bind to vesicle phospholipids and vesicle proteins. J Cell Biol 108:1863–1872PubMedCrossRef
Zurück zum Zitat Bielecki A, Kalita P, Lewandowski M, Skomorowski M (2008) Compartment model of neuropeptide synaptic transport with impulse control. Biol Cybern 99:443–458PubMedCrossRef Bielecki A, Kalita P, Lewandowski M, Skomorowski M (2008) Compartment model of neuropeptide synaptic transport with impulse control. Biol Cybern 99:443–458PubMedCrossRef
Zurück zum Zitat Birks R, MacIntosh FC (1961) Acetylcholine metabolism of a sympathetic ganglion. Can J Biochem Physiol 39:787–827CrossRef Birks R, MacIntosh FC (1961) Acetylcholine metabolism of a sympathetic ganglion. Can J Biochem Physiol 39:787–827CrossRef
Zurück zum Zitat Blanton MG, Lo Turco JJ, Kriegstein AR (1989) Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex. J Neurosci Methods 30:203–210PubMedCrossRef Blanton MG, Lo Turco JJ, Kriegstein AR (1989) Whole cell recording from neurons in slices of reptilian and mammalian cerebral cortex. J Neurosci Methods 30:203–210PubMedCrossRef
Zurück zum Zitat Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356PubMed Bliss TV, Lomo T (1973) Long-lasting potentiation of synaptic transmission in the dentate area of the anaesthetized rabbit following stimulation of the perforant path. J Physiol 232:331–356PubMed
Zurück zum Zitat Brehm P, Eckert R (1978) Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202:1203–1206PubMedCrossRef Brehm P, Eckert R (1978) Calcium entry leads to inactivation of calcium channel in Paramecium. Science 202:1203–1206PubMedCrossRef
Zurück zum Zitat Brown TH, Perkel DH, Feldman MW (1976) Evoked neurotransmitter release: statistical effects of nonuniformity and nonstationarity. Proc Natl Acad Sci USA 73:2913–2917PubMedCrossRef Brown TH, Perkel DH, Feldman MW (1976) Evoked neurotransmitter release: statistical effects of nonuniformity and nonstationarity. Proc Natl Acad Sci USA 73:2913–2917PubMedCrossRef
Zurück zum Zitat Ceccarelli B, Hurlbut WP, Mauro A (1973) Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol 57:499–524PubMedCrossRef Ceccarelli B, Hurlbut WP, Mauro A (1973) Turnover of transmitter and synaptic vesicles at the frog neuromuscular junction. J Cell Biol 57:499–524PubMedCrossRef
Zurück zum Zitat Chi P, Greengard P, Ryan TA (2001) Synapsin dispersion and reclustering during synaptic activity. Nat Neurosci 4:1187–1193PubMedCrossRef Chi P, Greengard P, Ryan TA (2001) Synapsin dispersion and reclustering during synaptic activity. Nat Neurosci 4:1187–1193PubMedCrossRef
Zurück zum Zitat Chi P, Greengard P, Ryan TA (2003) Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron 38:69–78PubMedCrossRef Chi P, Greengard P, Ryan TA (2003) Synaptic vesicle mobilization is regulated by distinct synapsin I phosphorylation pathways at different frequencies. Neuron 38:69–78PubMedCrossRef
Zurück zum Zitat Christensen BN, Martin AR (1970) Estimates of probability of transmitter release at the mammalian neuromuscular junction. J Physiol 210:933–945PubMed Christensen BN, Martin AR (1970) Estimates of probability of transmitter release at the mammalian neuromuscular junction. J Physiol 210:933–945PubMed
Zurück zum Zitat Chuhma N, Ohmori H (1998) Postnatal development of phase-locked high-fidelity synaptic transmission in the medial nucleus of the trapezoid body of the rat. J Neurosci 18:512–520PubMed Chuhma N, Ohmori H (1998) Postnatal development of phase-locked high-fidelity synaptic transmission in the medial nucleus of the trapezoid body of the rat. J Neurosci 18:512–520PubMed
Zurück zum Zitat Coleman TF, Li Y (1996a) A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM J Optim 6:1040–1058CrossRef Coleman TF, Li Y (1996a) A reflective Newton method for minimizing a quadratic function subject to bounds on some of the variables. SIAM J Optim 6:1040–1058CrossRef
Zurück zum Zitat Coleman TF, Li Y (1996b) An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J Optim 6:418–445CrossRef Coleman TF, Li Y (1996b) An interior, trust region approach for nonlinear minimization subject to bounds. SIAM J Optim 6:418–445CrossRef
Zurück zum Zitat Del Castillo J, Katz B (1954) Statistical factors involved in neuromuscular facilitation and depression. J Physiol 124:574–585 Del Castillo J, Katz B (1954) Statistical factors involved in neuromuscular facilitation and depression. J Physiol 124:574–585
Zurück zum Zitat Dittman JS, Regehr WG (1998) Calcium dependence and recovery kinetics of presynaptic depression at the climbing fiber to Purkinje cell synapse. J Neurosci 18:6147–6162PubMed Dittman JS, Regehr WG (1998) Calcium dependence and recovery kinetics of presynaptic depression at the climbing fiber to Purkinje cell synapse. J Neurosci 18:6147–6162PubMed
Zurück zum Zitat Dresbach T, Qualmann B, Kessels MM, Garner CC, Gundelfinger ED (2001) The presynaptic cytomatrix of brain synapses. Cell Mol Life Sci 58:94–116PubMedCrossRef Dresbach T, Qualmann B, Kessels MM, Garner CC, Gundelfinger ED (2001) The presynaptic cytomatrix of brain synapses. Cell Mol Life Sci 58:94–116PubMedCrossRef
Zurück zum Zitat Evans LL, Lee AJ, Bridgman PC, Mooseker MS (1998) Vesicle-associated brain myosin-V can be activated to catalyze actin-based transport. J Cell Sci 111(Pt 14):2055–2066PubMed Evans LL, Lee AJ, Bridgman PC, Mooseker MS (1998) Vesicle-associated brain myosin-V can be activated to catalyze actin-based transport. J Cell Sci 111(Pt 14):2055–2066PubMed
Zurück zum Zitat Friedlander MJ, Sayer RJ, Redman SJ (1990) Evaluation of long-term potentiation of small compound and unitary EPSPs at the hippocampal CA3-CA1 synapse. J Neurosci 10:814–825PubMed Friedlander MJ, Sayer RJ, Redman SJ (1990) Evaluation of long-term potentiation of small compound and unitary EPSPs at the hippocampal CA3-CA1 synapse. J Neurosci 10:814–825PubMed
Zurück zum Zitat Gaffield MA, Betz WJ (2007) Synaptic vesicle mobility in mouse motor nerve terminals with and without synapsin. J Neurosci 27:13691–13700PubMedCrossRef Gaffield MA, Betz WJ (2007) Synaptic vesicle mobility in mouse motor nerve terminals with and without synapsin. J Neurosci 27:13691–13700PubMedCrossRef
Zurück zum Zitat Gaffield MA, Rizzoli SO, Betz WJ (2006) Mobility of synaptic vesicles in different pools in resting and stimulated frog motor nerve terminals. Neuron 51:317–325PubMedCrossRef Gaffield MA, Rizzoli SO, Betz WJ (2006) Mobility of synaptic vesicles in different pools in resting and stimulated frog motor nerve terminals. Neuron 51:317–325PubMedCrossRef
Zurück zum Zitat Glavinovic MI (1979) Change of statistical parameters of transmitter release during various kinetic tests in unparalysed voltage-clamped rat diaphragm. J Physiol 290:481–497PubMed Glavinovic MI (1979) Change of statistical parameters of transmitter release during various kinetic tests in unparalysed voltage-clamped rat diaphragm. J Physiol 290:481–497PubMed
Zurück zum Zitat Glavinovic MI, Narahashi T (1988) Depression, recovery and facilitation of neuromuscular transmission during prolonged tetanic stimulation. Neuroscience 25:271–281PubMedCrossRef Glavinovic MI, Narahashi T (1988) Depression, recovery and facilitation of neuromuscular transmission during prolonged tetanic stimulation. Neuroscience 25:271–281PubMedCrossRef
Zurück zum Zitat Glavinovic MI, Rabie HR (2001) Monte Carlo evaluation of quantal analysis in the light of Ca2+ dynamics and the geometry of secretion. Pflugers Arch 443:132–145PubMedCrossRef Glavinovic MI, Rabie HR (2001) Monte Carlo evaluation of quantal analysis in the light of Ca2+ dynamics and the geometry of secretion. Pflugers Arch 443:132–145PubMedCrossRef
Zurück zum Zitat Goda Y, Stevens CF (1998) Readily releasable pool size changes associated with long term depression. Proc Natl Acad Sci USA 95:1283–1288PubMedCrossRef Goda Y, Stevens CF (1998) Readily releasable pool size changes associated with long term depression. Proc Natl Acad Sci USA 95:1283–1288PubMedCrossRef
Zurück zum Zitat Greengard P, Valtorta F, Czernik AJ, Benfenati F (1993) Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259:780–785PubMedCrossRef Greengard P, Valtorta F, Czernik AJ, Benfenati F (1993) Synaptic vesicle phosphoproteins and regulation of synaptic function. Science 259:780–785PubMedCrossRef
Zurück zum Zitat Heinemann C, von Riiden L, Chow RH, Neher E (1993) A two-step model of secretion control in neuroendocrine cells. Pflugers Arch 424:105–112PubMedCrossRef Heinemann C, von Riiden L, Chow RH, Neher E (1993) A two-step model of secretion control in neuroendocrine cells. Pflugers Arch 424:105–112PubMedCrossRef
Zurück zum Zitat Highstein SM, Bennett MV (1975) Fatigue and recovery of transmission at the Mauthner fiber-giant fiber synapse of the hatchetfish. Brain Res 98:229–242PubMedCrossRef Highstein SM, Bennett MV (1975) Fatigue and recovery of transmission at the Mauthner fiber-giant fiber synapse of the hatchetfish. Brain Res 98:229–242PubMedCrossRef
Zurück zum Zitat Horrigan FT, Bookman RJ (1994) Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells. Neuron 13:1119–1129PubMedCrossRef Horrigan FT, Bookman RJ (1994) Releasable pools and the kinetics of exocytosis in adrenal chromaffin cells. Neuron 13:1119–1129PubMedCrossRef
Zurück zum Zitat Kaneki K, Araki O, Tsukada M (2009) Dual synaptic plasticity in the hippocampus: Hebbian and spatiotemporal learning dynamics. Cogn Neurodyn 3:153–163PubMedCrossRef Kaneki K, Araki O, Tsukada M (2009) Dual synaptic plasticity in the hippocampus: Hebbian and spatiotemporal learning dynamics. Cogn Neurodyn 3:153–163PubMedCrossRef
Zurück zum Zitat Kasai H (1999) Comparative biology of Ca2+-dependent exocytosis: implications of kinetic diversity for secretory function. Trends Neurosci 22:88–93PubMedCrossRef Kasai H (1999) Comparative biology of Ca2+-dependent exocytosis: implications of kinetic diversity for secretory function. Trends Neurosci 22:88–93PubMedCrossRef
Zurück zum Zitat Kavalali ET (2007) Multiple vesicle recycling pathways in central synapses and their impact on neurotransmission. J Physiol 585:669–679PubMedCrossRef Kavalali ET (2007) Multiple vesicle recycling pathways in central synapses and their impact on neurotransmission. J Physiol 585:669–679PubMedCrossRef
Zurück zum Zitat Krnjevic K, Miledi R (1958) Failure of neuromuscular propagation in rats. J Physiol 140:440–461PubMed Krnjevic K, Miledi R (1958) Failure of neuromuscular propagation in rats. J Physiol 140:440–461PubMed
Zurück zum Zitat Krnjevic K, Bui L, Glavinovic MI (2007) Vesicular replenishment in excitatory synapses of rat hippocampus. Soc Neurosci Abstr 33:684.10/H16 Krnjevic K, Bui L, Glavinovic MI (2007) Vesicular replenishment in excitatory synapses of rat hippocampus. Soc Neurosci Abstr 33:684.10/H16
Zurück zum Zitat Kron G (1948) Electric circuit models of partial differential equations. Elec Engr 67:672–684 Kron G (1948) Electric circuit models of partial differential equations. Elec Engr 67:672–684
Zurück zum Zitat Kruckenberg P, Sandweg R (1968) An analog model for acetylcholine release by motor nerve endings. J Theor Biol 19:327–332PubMedCrossRef Kruckenberg P, Sandweg R (1968) An analog model for acetylcholine release by motor nerve endings. J Theor Biol 19:327–332PubMedCrossRef
Zurück zum Zitat Larkman A, Stratford K, Jack J (1991) Quantal analysis of excitatory synaptic action and depression in hippocampal slices. Nature 350:344–347PubMedCrossRef Larkman A, Stratford K, Jack J (1991) Quantal analysis of excitatory synaptic action and depression in hippocampal slices. Nature 350:344–347PubMedCrossRef
Zurück zum Zitat Li J, Schwarz TL (1999) Genetic evidence for an equilibrium between docked and undocked vesicles. Philos Trans R Soc Lond B Biol Sci 354:299–306PubMedCrossRef Li J, Schwarz TL (1999) Genetic evidence for an equilibrium between docked and undocked vesicles. Philos Trans R Soc Lond B Biol Sci 354:299–306PubMedCrossRef
Zurück zum Zitat Lynch GS, Dunwiddie T, Gribkoff V (1977) Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature 266:737–739PubMedCrossRef Lynch GS, Dunwiddie T, Gribkoff V (1977) Heterosynaptic depression: a postsynaptic correlate of long-term potentiation. Nature 266:737–739PubMedCrossRef
Zurück zum Zitat Mandell JW, Townes-Anderson E, Czernik AJ, Cameron R, Greengard P, De CP (1990) Synapsins in the vertebrate retina: absence from ribbon synapses and heterogeneous distribution among conventional synapses. Neuron 5:19–33PubMedCrossRef Mandell JW, Townes-Anderson E, Czernik AJ, Cameron R, Greengard P, De CP (1990) Synapsins in the vertebrate retina: absence from ribbon synapses and heterogeneous distribution among conventional synapses. Neuron 5:19–33PubMedCrossRef
Zurück zum Zitat Martin AR (1955) A further study of the statistical composition on the end-plate potential. J Physiol 130:114–122PubMed Martin AR (1955) A further study of the statistical composition on the end-plate potential. J Physiol 130:114–122PubMed
Zurück zum Zitat Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711PubMedCrossRef Martin SJ, Grimwood PD, Morris RG (2000) Synaptic plasticity and memory: an evaluation of the hypothesis. Annu Rev Neurosci 23:649–711PubMedCrossRef
Zurück zum Zitat Miyamoto S (1995) Changes in mobility of synaptic vesicles with assembly and disassembly of actin network. Biochim Biophys Acta 1244:85–91PubMedCrossRef Miyamoto S (1995) Changes in mobility of synaptic vesicles with assembly and disassembly of actin network. Biochim Biophys Acta 1244:85–91PubMedCrossRef
Zurück zum Zitat Mochida S, Few AP, Scheuer T, Catterall WA (2008) Regulation of presynaptic Ca(V)2.1 channels by Ca2+ sensor proteins mediates short-term synaptic plasticity. Neuron 57:210–216PubMedCrossRef Mochida S, Few AP, Scheuer T, Catterall WA (2008) Regulation of presynaptic Ca(V)2.1 channels by Ca2+ sensor proteins mediates short-term synaptic plasticity. Neuron 57:210–216PubMedCrossRef
Zurück zum Zitat Morales M, Colicos MA, Goda Y (2000) Actin-dependent regulation of neurotransmitter release at central synapses. Neuron 27:539–550PubMedCrossRef Morales M, Colicos MA, Goda Y (2000) Actin-dependent regulation of neurotransmitter release at central synapses. Neuron 27:539–550PubMedCrossRef
Zurück zum Zitat Nistri A, Cherubini E (1991) Depression of a sustained calcium current by kainate in rat hippocampal neurones in vitro. J Physiol 435:465–481PubMed Nistri A, Cherubini E (1991) Depression of a sustained calcium current by kainate in rat hippocampal neurones in vitro. J Physiol 435:465–481PubMed
Zurück zum Zitat Oheim M, Loerke D, Stuhmer W, Chow RH (1999) Multiple stimulation-dependent processes regulate the size of the releasable pool of vesicles. Eur Biophys J 28:91–101PubMedCrossRef Oheim M, Loerke D, Stuhmer W, Chow RH (1999) Multiple stimulation-dependent processes regulate the size of the releasable pool of vesicles. Eur Biophys J 28:91–101PubMedCrossRef
Zurück zum Zitat Parsons TD, Coorssen JR, Horstmann H, Almers W (1995) Docked granules, the exocytic burst, and the need for ATP hydrolysis in endocrine cells. Neuron 15:1085–1096PubMedCrossRef Parsons TD, Coorssen JR, Horstmann H, Almers W (1995) Docked granules, the exocytic burst, and the need for ATP hydrolysis in endocrine cells. Neuron 15:1085–1096PubMedCrossRef
Zurück zum Zitat Pieribone VA, Shupliakov O, Brodin L, Hilfiker-Rothenfluh S, Czernik AJ, Greengard P (1995) Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375:493–497PubMedCrossRef Pieribone VA, Shupliakov O, Brodin L, Hilfiker-Rothenfluh S, Czernik AJ, Greengard P (1995) Distinct pools of synaptic vesicles in neurotransmitter release. Nature 375:493–497PubMedCrossRef
Zurück zum Zitat Prekeris R, Terrian DM (1997) Brain myosin V is a synaptic vesicle-associated motor protein: evidence for a Ca2+-dependent interaction with the synaptobrevin-synaptophysin complex. J Cell Biol 137:1589–1601PubMedCrossRef Prekeris R, Terrian DM (1997) Brain myosin V is a synaptic vesicle-associated motor protein: evidence for a Ca2+-dependent interaction with the synaptobrevin-synaptophysin complex. J Cell Biol 137:1589–1601PubMedCrossRef
Zurück zum Zitat Pyle JL, Kavalali ET, Piedras-Renteria ES, Tsien RW (2000) Rapid reuse of readily releasable pool vesicles at hippocampal synapses. Neuron 28:221–231PubMedCrossRef Pyle JL, Kavalali ET, Piedras-Renteria ES, Tsien RW (2000) Rapid reuse of readily releasable pool vesicles at hippocampal synapses. Neuron 28:221–231PubMedCrossRef
Zurück zum Zitat Rosahl TW, Spillane D, Missler M, Herz J, Selig DK, Wolff JR, Hammer RE, Malenka RC, Sudhof TC (1995) Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375:488–493PubMedCrossRef Rosahl TW, Spillane D, Missler M, Herz J, Selig DK, Wolff JR, Hammer RE, Malenka RC, Sudhof TC (1995) Essential functions of synapsins I and II in synaptic vesicle regulation. Nature 375:488–493PubMedCrossRef
Zurück zum Zitat Ryan TA (1999) Inhibitors of myosin light chain kinase block synaptic vesicle pool mobilization during action potential firing. J Neurosci 19:1317–1323PubMed Ryan TA (1999) Inhibitors of myosin light chain kinase block synaptic vesicle pool mobilization during action potential firing. J Neurosci 19:1317–1323PubMed
Zurück zum Zitat Schneggenburger R, Sakaba T, Neher E (2002) Vesicle pools and short-term synaptic depression: lessons from a large synapse. Trends Neurosci 25:206–212PubMedCrossRef Schneggenburger R, Sakaba T, Neher E (2002) Vesicle pools and short-term synaptic depression: lessons from a large synapse. Trends Neurosci 25:206–212PubMedCrossRef
Zurück zum Zitat Sen K, Jorge-Rivera JC, Marder E, Abbott LF (1996) Decoding synapses. J Neurosci 16:6307–6318PubMed Sen K, Jorge-Rivera JC, Marder E, Abbott LF (1996) Decoding synapses. J Neurosci 16:6307–6318PubMed
Zurück zum Zitat Shakiryanova D, Klose MK, Zhou Y, Gu T, Deitcher DL, Atwood HL, Hewes RS, Levitan ES (2007) Presynaptic ryanodine receptor-activated calmodulin kinase II increases vesicle mobility and potentiates neuropeptide release. J Neurosci 27:7799–7806PubMedCrossRef Shakiryanova D, Klose MK, Zhou Y, Gu T, Deitcher DL, Atwood HL, Hewes RS, Levitan ES (2007) Presynaptic ryanodine receptor-activated calmodulin kinase II increases vesicle mobility and potentiates neuropeptide release. J Neurosci 27:7799–7806PubMedCrossRef
Zurück zum Zitat Stevens CF, Wesseling JF (1998) Activity-dependent modulation of the rate at which synaptic vesicles become available to undergo exocytosis. Neuron 21:415–424PubMedCrossRef Stevens CF, Wesseling JF (1998) Activity-dependent modulation of the rate at which synaptic vesicles become available to undergo exocytosis. Neuron 21:415–424PubMedCrossRef
Zurück zum Zitat Trussell LO, Thio LL, Zorumski CF, Fischbach GD (1988) Rapid desensitization of glutamate receptors in vertebrate central neurons. Proc Natl Acad Sci USA 85:4562–4566PubMedCrossRef Trussell LO, Thio LL, Zorumski CF, Fischbach GD (1988) Rapid desensitization of glutamate receptors in vertebrate central neurons. Proc Natl Acad Sci USA 85:4562–4566PubMedCrossRef
Zurück zum Zitat Tsukada M, Yamazaki Y, Kojima H (2007) Interaction between the Spatiotemporal Learning Rule (STLR) and Hebb type (HEBB) in single pyramidal cells in the hippocampal CA1. Cogn Neurodyn 1:157–167PubMedCrossRef Tsukada M, Yamazaki Y, Kojima H (2007) Interaction between the Spatiotemporal Learning Rule (STLR) and Hebb type (HEBB) in single pyramidal cells in the hippocampal CA1. Cogn Neurodyn 1:157–167PubMedCrossRef
Zurück zum Zitat Wang LY, Kaczmarek LK (1998) High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature 394:384–388PubMedCrossRef Wang LY, Kaczmarek LK (1998) High-frequency firing helps replenish the readily releasable pool of synaptic vesicles. Nature 394:384–388PubMedCrossRef
Zurück zum Zitat Wang Y, Manis PB (2008) Short-term synaptic depression and recovery at the mature mammalian endbulb of Held synapse in mice. J Neurophysiol 100:1255–1264PubMedCrossRef Wang Y, Manis PB (2008) Short-term synaptic depression and recovery at the mature mammalian endbulb of Held synapse in mice. J Neurophysiol 100:1255–1264PubMedCrossRef
Zurück zum Zitat Wang C, Zucker RS (1998) Regulation of synaptic vesicle recycling by calcium and serotonin. Neuron 21:155–167PubMedCrossRef Wang C, Zucker RS (1998) Regulation of synaptic vesicle recycling by calcium and serotonin. Neuron 21:155–167PubMedCrossRef
Zurück zum Zitat Wu LG, Betz WJ (1998) Kinetics of synaptic depression and vesicle recycling after tetanic stimulation of frog motor nerve terminals. Biophys J 74:3003–3009PubMedCrossRef Wu LG, Betz WJ (1998) Kinetics of synaptic depression and vesicle recycling after tetanic stimulation of frog motor nerve terminals. Biophys J 74:3003–3009PubMedCrossRef
Zurück zum Zitat Wu LG, Saggau P (1994) Adenosine inhibits evoked synaptic transmission primarily by reducing presynaptic calcium influx in area CA1 of hippocampus. Neuron 12:1139–1148PubMedCrossRef Wu LG, Saggau P (1994) Adenosine inhibits evoked synaptic transmission primarily by reducing presynaptic calcium influx in area CA1 of hippocampus. Neuron 12:1139–1148PubMedCrossRef
Zurück zum Zitat Yoneyama M, Fukushima Y, Tsukada M, Aihara T (2011) Spatiotemporal characteristics of synaptic EPSP summation on the dendritic trees of hippocampal CA1 pyramidal neurons as revealed by laser uncaging stimulation. Cogn Neurodyn 5:333–342PubMedCrossRef Yoneyama M, Fukushima Y, Tsukada M, Aihara T (2011) Spatiotemporal characteristics of synaptic EPSP summation on the dendritic trees of hippocampal CA1 pyramidal neurons as revealed by laser uncaging stimulation. Cogn Neurodyn 5:333–342PubMedCrossRef
Metadaten
Titel
Synaptic activity slows vesicular replenishment at excitatory synapses of rat hippocampus
verfasst von
Loc Bui
Mladen I. Glavinović
Publikationsdatum
01.04.2013
Verlag
Springer Netherlands
Erschienen in
Cognitive Neurodynamics / Ausgabe 2/2013
Print ISSN: 1871-4080
Elektronische ISSN: 1871-4099
DOI
https://doi.org/10.1007/s11571-012-9232-y

Weitere Artikel der Ausgabe 2/2013

Cognitive Neurodynamics 2/2013 Zur Ausgabe

Neuer Inhalt