Skip to main content
Erschienen in: Journal of Materials Science 18/2017

12.06.2017 | Computation

Synergistic effects of grain boundaries and edges on fatigue deformations of sub-5 nm graphene nanoribbons

verfasst von: Zhi Yang, Yuhong Huang, Hongwei Bao, Kewei Xu, Fei Ma

Erschienen in: Journal of Materials Science | Ausgabe 18/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Polycrystalline graphene nanoribbons usually experience a brittle rupture before failure, and the irreversible breaking occurs in grain boundaries (GBs). In this paper, molecular dynamic simulations are conducted to study the fatigue properties of bi-crystal graphene nanoribbons under a periodic in-plane compression. It is found that ribbon edges rather than GBs dominate the dynamic stability when the ribbon width is smaller than 5 nm. The fatigue failure is closely related to the misorientation angle between two grains because of the distinct edge energy. It always starts from the edges with higher energy and results in a localized damage at the edges.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science 327:1603–1607CrossRef Rogers JA, Someya T, Huang Y (2010) Materials and mechanics for stretchable electronics. Science 327:1603–1607CrossRef
2.
Zurück zum Zitat Kim DH, Ahn JH, Choi WM, Kim HS, Kim TH, Song J, Huang YY, Liu Z, Lu C, Rogers JA (2008) Stretchable and foldable silicon integrated circuits. Science 320:507–511CrossRef Kim DH, Ahn JH, Choi WM, Kim HS, Kim TH, Song J, Huang YY, Liu Z, Lu C, Rogers JA (2008) Stretchable and foldable silicon integrated circuits. Science 320:507–511CrossRef
3.
Zurück zum Zitat Berber S, Kwon YK, Tománek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616CrossRef Berber S, Kwon YK, Tománek D (2000) Unusually high thermal conductivity of carbon nanotubes. Phys Rev Lett 84:4613–4616CrossRef
4.
Zurück zum Zitat Tan YW, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang EH, Das Sarma S, Stormer HL, Kim P (2007) Measurement of scattering rate and minimum conductivity in graphene. Phys Rev Lett 99:246803–246806CrossRef Tan YW, Zhang Y, Bolotin K, Zhao Y, Adam S, Hwang EH, Das Sarma S, Stormer HL, Kim P (2007) Measurement of scattering rate and minimum conductivity in graphene. Phys Rev Lett 99:246803–246806CrossRef
5.
Zurück zum Zitat Barone V, Hod O, Scuseria GE (2006) Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett 6:2748–2754CrossRef Barone V, Hod O, Scuseria GE (2006) Electronic structure and stability of semiconducting graphene nanoribbons. Nano Lett 6:2748–2754CrossRef
6.
Zurück zum Zitat Yang L, Park CH, Son YW, Cohen ML, Louie SG (2007) Quasiparticle energies and band gaps in graphene nanoribbons. Phys Rev Lett 99:186801–186804CrossRef Yang L, Park CH, Son YW, Cohen ML, Louie SG (2007) Quasiparticle energies and band gaps in graphene nanoribbons. Phys Rev Lett 99:186801–186804CrossRef
7.
Zurück zum Zitat Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232CrossRef Li X, Wang X, Zhang L, Lee S, Dai H (2008) Chemically derived, ultrasmooth graphene nanoribbon semiconductors. Science 319:1229–1232CrossRef
8.
Zurück zum Zitat Reddy C, Ramasubramaniam A, Shenoy V, Zhang Y-W (2009) Edge elastic properties of defect-free single-layer graphene sheets. Appl Phys Lett 94:101904–101906CrossRef Reddy C, Ramasubramaniam A, Shenoy V, Zhang Y-W (2009) Edge elastic properties of defect-free single-layer graphene sheets. Appl Phys Lett 94:101904–101906CrossRef
9.
Zurück zum Zitat Schiøtz J, Di Tolla FD, Jacobsen KW (1998) Softening of nanocrystalline metals at very small grain sizes. Nature 391:561–563CrossRef Schiøtz J, Di Tolla FD, Jacobsen KW (1998) Softening of nanocrystalline metals at very small grain sizes. Nature 391:561–563CrossRef
10.
Zurück zum Zitat Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9:3012–3015CrossRef Zhao H, Min K, Aluru NR (2009) Size and chirality dependent elastic properties of graphene nanoribbons under uniaxial tension. Nano Lett 9:3012–3015CrossRef
11.
Zurück zum Zitat Suryanarayana C, Mukhopadhyay D, Patankar S, Froes F (1992) Grain size effects in nanocrystalline materials. J Mater Res 7:2114–2115CrossRef Suryanarayana C, Mukhopadhyay D, Patankar S, Froes F (1992) Grain size effects in nanocrystalline materials. J Mater Res 7:2114–2115CrossRef
12.
Zurück zum Zitat Yang CC, Li S (2007) Investigation of cohesive energy effects on size-dependent physical and chemical properties of nanocrystals. Phys Rev B 75:165413–165415CrossRef Yang CC, Li S (2007) Investigation of cohesive energy effects on size-dependent physical and chemical properties of nanocrystals. Phys Rev B 75:165413–165415CrossRef
13.
Zurück zum Zitat Schmidt DA, Ohta T, Beechem TE (2011) Strain and charge carrier coupling in epitaxial graphene. Phys Rev B 84:235422–2354229CrossRef Schmidt DA, Ohta T, Beechem TE (2011) Strain and charge carrier coupling in epitaxial graphene. Phys Rev B 84:235422–2354229CrossRef
14.
Zurück zum Zitat Bouaziz O, Allain S, Scott C (2008) Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels. Scripta Mater 58:484–487CrossRef Bouaziz O, Allain S, Scott C (2008) Effect of grain and twin boundaries on the hardening mechanisms of twinning-induced plasticity steels. Scripta Mater 58:484–487CrossRef
15.
Zurück zum Zitat Shenoy V, Reddy C, Ramasubramaniam A, Zhang Y (2008) Edge-stress-induced warping of graphene sheets and nanoribbons. Phys Rev Lett 101:245501–245504CrossRef Shenoy V, Reddy C, Ramasubramaniam A, Zhang Y (2008) Edge-stress-induced warping of graphene sheets and nanoribbons. Phys Rev Lett 101:245501–245504CrossRef
16.
Zurück zum Zitat Branicio PS, Jhon MH, Gan CK, Srolovitz DJ (2011) Properties on the edge: graphene edge energies, edge stresses, edge warping, and the Wulff shape of graphene flakes. Model Simul Mater Sci Eng 19:054002–0544011CrossRef Branicio PS, Jhon MH, Gan CK, Srolovitz DJ (2011) Properties on the edge: graphene edge energies, edge stresses, edge warping, and the Wulff shape of graphene flakes. Model Simul Mater Sci Eng 19:054002–0544011CrossRef
17.
Zurück zum Zitat Acik M, Chabal YJ (2011) Nature of graphene edges: a review. Jpn J Appl Phys 50:070101–070116CrossRef Acik M, Chabal YJ (2011) Nature of graphene edges: a review. Jpn J Appl Phys 50:070101–070116CrossRef
18.
Zurück zum Zitat Yakobson BI, Brabec CJ, Bernholc J (1995) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511–2514CrossRef Yakobson BI, Brabec CJ, Bernholc J (1995) Nanomechanics of carbon tubes: instabilities beyond linear response. Phys Rev Lett 76:2511–2514CrossRef
19.
Zurück zum Zitat Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578CrossRef Bae S, Kim H, Lee Y, Xu X, Park JS, Zheng Y, Balakrishnan J, Lei T, Kim HR, Song YI, Kim YJ, Kim KS, Ozyilmaz B, Ahn JH, Hong BH, Iijima S (2010) Roll-to-roll production of 30-inch graphene films for transparent electrodes. Nat Nanotechnol 5:574–578CrossRef
20.
Zurück zum Zitat Huang PY, Ruiz-Vargas CS, van der Zande AM, Whitney WS, Levendorf MP, Kevek JW, Garg S, Alden JS, Hustedt CJ, Zhu Y, Park J, McEuen PL, Muller DA (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469:389–392CrossRef Huang PY, Ruiz-Vargas CS, van der Zande AM, Whitney WS, Levendorf MP, Kevek JW, Garg S, Alden JS, Hustedt CJ, Zhu Y, Park J, McEuen PL, Muller DA (2011) Grains and grain boundaries in single-layer graphene atomic patchwork quilts. Nature 469:389–392CrossRef
21.
Zurück zum Zitat Cadelano E, Palla PL, Giordano S, Colombo L (2009) Nonlinear elasticity of monolayer graphene. Phys Rev Lett 102:235502–235505CrossRef Cadelano E, Palla PL, Giordano S, Colombo L (2009) Nonlinear elasticity of monolayer graphene. Phys Rev Lett 102:235502–235505CrossRef
22.
Zurück zum Zitat Barnard AS, Snook IK (2008) Thermal stability of graphene edge structure and graphene nanoflakes. J Chem Phys 128:094707–094713CrossRef Barnard AS, Snook IK (2008) Thermal stability of graphene edge structure and graphene nanoflakes. J Chem Phys 128:094707–094713CrossRef
23.
Zurück zum Zitat Liu Y, Yakobson BI (2010) Cones, pringles, and grain boundary landscapes in graphene topology. Nano Lett 10:2178–2183CrossRef Liu Y, Yakobson BI (2010) Cones, pringles, and grain boundary landscapes in graphene topology. Nano Lett 10:2178–2183CrossRef
24.
Zurück zum Zitat Wu J, Wei Y (2013) Grain misorientation and grain-boundary rotation dependent mechanical properties in polycrystalline graphene. J Mech Phys Solids 61:1421–1432CrossRef Wu J, Wei Y (2013) Grain misorientation and grain-boundary rotation dependent mechanical properties in polycrystalline graphene. J Mech Phys Solids 61:1421–1432CrossRef
25.
Zurück zum Zitat Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter 14:783–802CrossRef Brenner DW, Shenderova OA, Harrison JA, Stuart SJ, Ni B, Sinnott SB (2002) A second-generation reactive empirical bond order (REBO) potential energy expression for hydrocarbons. J Phys Condens Matter 14:783–802CrossRef
26.
Zurück zum Zitat Argon A, Yip S (2006) The strongest size. Philos Mag Lett 86:713–718CrossRef Argon A, Yip S (2006) The strongest size. Philos Mag Lett 86:713–718CrossRef
27.
Zurück zum Zitat Zhao H, Aluru NR (2010) Temperature and strain-rate dependent fracture strength of graphene. J Appl Phys 108:064321–064326CrossRef Zhao H, Aluru NR (2010) Temperature and strain-rate dependent fracture strength of graphene. J Appl Phys 108:064321–064326CrossRef
28.
Zurück zum Zitat Yang Z, Huang Y, Ma F, Miao Y, Bao H, Xu K, Chu PK (2015) Lattice shearing in nano-grained graphene sheets: a molecular dynamics simulation. RSC Adv 5:105194–105199CrossRef Yang Z, Huang Y, Ma F, Miao Y, Bao H, Xu K, Chu PK (2015) Lattice shearing in nano-grained graphene sheets: a molecular dynamics simulation. RSC Adv 5:105194–105199CrossRef
29.
Zurück zum Zitat Wei X, Fragneaud B, Marianetti CA, Kysar JW (2009) Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description. Phys Rev B 80:205407–205414CrossRef Wei X, Fragneaud B, Marianetti CA, Kysar JW (2009) Nonlinear elastic behavior of graphene: Ab initio calculations to continuum description. Phys Rev B 80:205407–205414CrossRef
30.
Zurück zum Zitat Kheirkhah AH, Iranizad ES, Raeisi M, Rajabpour A (2014) Mechanical properties of hydrogen functionalized graphene under shear deformation: a molecular dynamics study. Solid State Commun 177:98–102CrossRef Kheirkhah AH, Iranizad ES, Raeisi M, Rajabpour A (2014) Mechanical properties of hydrogen functionalized graphene under shear deformation: a molecular dynamics study. Solid State Commun 177:98–102CrossRef
31.
Zurück zum Zitat Dmitriev SV, Baimova YA, Savin AV, Kivshar YS (2011) Stability range for a flat graphene sheet subjected to in-plane deformation. JETP Lett 93:571–576CrossRef Dmitriev SV, Baimova YA, Savin AV, Kivshar YS (2011) Stability range for a flat graphene sheet subjected to in-plane deformation. JETP Lett 93:571–576CrossRef
32.
Zurück zum Zitat Srivastava D, Menon M, Cho K (1999) Nanoplasticity of single-wall carbon nanotubes under uniaxial compression. Phys Rev Lett 83:2973–2976CrossRef Srivastava D, Menon M, Cho K (1999) Nanoplasticity of single-wall carbon nanotubes under uniaxial compression. Phys Rev Lett 83:2973–2976CrossRef
33.
Zurück zum Zitat Huang HL, Ho NJ (2000) The study of fatigue in polycrystalline copper under various strain amplitude at stage I: crack initiation and propagation. Mater Sci Eng A 293:7–14CrossRef Huang HL, Ho NJ (2000) The study of fatigue in polycrystalline copper under various strain amplitude at stage I: crack initiation and propagation. Mater Sci Eng A 293:7–14CrossRef
34.
Zurück zum Zitat Budarapu PR, Javvaji B, Sutrakar VK, Roy Mahapatra D, Zi G, Rabczuk T (2015) Crack propagation in graphene. J Appl Phys 118:064307–064317CrossRef Budarapu PR, Javvaji B, Sutrakar VK, Roy Mahapatra D, Zi G, Rabczuk T (2015) Crack propagation in graphene. J Appl Phys 118:064307–064317CrossRef
35.
Zurück zum Zitat Ma F, Sun YJ, Ma DY, Xu KW, Chu PK (2011) Reversible phase transformation in graphene nano-ribbons: lattice shearing based mechanism. Acta Mater 59:6783–6789CrossRef Ma F, Sun YJ, Ma DY, Xu KW, Chu PK (2011) Reversible phase transformation in graphene nano-ribbons: lattice shearing based mechanism. Acta Mater 59:6783–6789CrossRef
36.
Zurück zum Zitat Huang B, Liu M, Su N, Wu J, Duan W, Gu B, Liu F (2009) Quantum manifestations of graphene edge stress and edge instability: a first-principles study. Phys Rev Lett 102:166404–166407CrossRef Huang B, Liu M, Su N, Wu J, Duan W, Gu B, Liu F (2009) Quantum manifestations of graphene edge stress and edge instability: a first-principles study. Phys Rev Lett 102:166404–166407CrossRef
37.
Zurück zum Zitat Ovid’ko I, Sheinerman A (2013) Cracks at disclinated grain boundaries in graphene. J Phys D Appl Phys 46:345305–345313CrossRef Ovid’ko I, Sheinerman A (2013) Cracks at disclinated grain boundaries in graphene. J Phys D Appl Phys 46:345305–345313CrossRef
38.
Zurück zum Zitat Song Z, Artyukhov VI, Yakobson BI, Xu Z (2013) Pseudo Hall-Petch strength reduction in polycrystalline graphene. Nano Lett 13:1829–1833 Song Z, Artyukhov VI, Yakobson BI, Xu Z (2013) Pseudo Hall-Petch strength reduction in polycrystalline graphene. Nano Lett 13:1829–1833
39.
Zurück zum Zitat Sha Z, Quek S, Pei Q, Liu Z, Wang T, Shenoy V, Zhang Y (2014) Inverse pseudo Hall-Petch relation in polycrystalline graphene. Sci Rep 4:5991–5996CrossRef Sha Z, Quek S, Pei Q, Liu Z, Wang T, Shenoy V, Zhang Y (2014) Inverse pseudo Hall-Petch relation in polycrystalline graphene. Sci Rep 4:5991–5996CrossRef
40.
Zurück zum Zitat Zhang B, Mei L, Xiao H (2012) Nanofracture in graphene under complex mechanical stresses. Appl Phys Lett 101:121915–121919CrossRef Zhang B, Mei L, Xiao H (2012) Nanofracture in graphene under complex mechanical stresses. Appl Phys Lett 101:121915–121919CrossRef
Metadaten
Titel
Synergistic effects of grain boundaries and edges on fatigue deformations of sub-5 nm graphene nanoribbons
verfasst von
Zhi Yang
Yuhong Huang
Hongwei Bao
Kewei Xu
Fei Ma
Publikationsdatum
12.06.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 18/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1269-1

Weitere Artikel der Ausgabe 18/2017

Journal of Materials Science 18/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.