Skip to main content

2019 | OriginalPaper | Buchkapitel

Synthesis and Characterization and Application of Chitin and Chitosan-Based Eco-friendly Polymer Composites

verfasst von : Aneela Sabir, Faizah Altaf, Muhammad Shafiq

Erschienen in: Sustainable Polymer Composites and Nanocomposites

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Chitosan is derivative of chitin is obtained from natural sources, the external skeleton of crustaceans, fungi, and insects and has to be biocompatible and decomposable. It contains N-acetyl-2-amino-2-deoxy-d-glucopyranose and 2-amino-2-deoxy-d-glucopyranose, the monomers are joined together by (1 → 4) glycosidic bonds. The removal of the acetyl group from chitin to produce chitosan needs a reaction with highly strong NaOH solution (water or alcohol based) with maintaining safe conditions that ensure the reaction mixture does not interact with oxygen and for this purpose reaction mixture is either purged with nitrogen or by adding NaBH4 so to control unwanted depolymerization and production of reactive species. It is a pliable molecule; its chemical modification can be carried out without affecting the degree of polymerization (DP) of chitosan to anchor different functional groups including primary amine and primary and secondary hydroxyl (OH) groups. There are varieties of chitosan derivatives that are produced. The surface functionalization of chitosan also done employing different enzymes termed as an enzymatic modification. Chitosan also makes blends and composite and has been applied in different filed including electrolyte membrane for fuel cell, antimicrobial activities drugs delivery, and much more application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Springer Professional "Wirtschaft"

Online-Abonnement

Mit Springer Professional "Wirtschaft" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 340 Zeitschriften

aus folgenden Fachgebieten:

  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Versicherung + Risiko




Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat de Britto D, Celi Goy R, Campana Filho SP, Assis OB (2011) Quaternary salts of chitosan: history, antimicrobial features, and prospects. Int J Carbohydr Chem de Britto D, Celi Goy R, Campana Filho SP, Assis OB (2011) Quaternary salts of chitosan: history, antimicrobial features, and prospects. Int J Carbohydr Chem
2.
Zurück zum Zitat Dash M, Chiellini F, Ottenbrite R, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014CrossRef Dash M, Chiellini F, Ottenbrite R, Chiellini E (2011) Chitosan—a versatile semi-synthetic polymer in biomedical applications. Prog Polym Sci 36(8):981–1014CrossRef
3.
Zurück zum Zitat Bu X, Pei J, Zhang F, Liu H, Zhou Z, Zhen X et al (2018) The hydration mechanism and hydrogen bonding structure of 6-carboxylate chitooligosaccharides superabsorbent material prepared by laccase/TEMPO oxidation system. Carbohydr Polym Bu X, Pei J, Zhang F, Liu H, Zhou Z, Zhen X et al (2018) The hydration mechanism and hydrogen bonding structure of 6-carboxylate chitooligosaccharides superabsorbent material prepared by laccase/TEMPO oxidation system. Carbohydr Polym
4.
Zurück zum Zitat Ahmed S, Ikram S (2017) Chitosan: derivatives, composites and applications. Wiley Ahmed S, Ikram S (2017) Chitosan: derivatives, composites and applications. Wiley
5.
Zurück zum Zitat Arrouze F, Essahli M, Rhazi M, Desbrieres J, Tolaimate A (2017) Chitin and chitosan: study of the possibilities of their production by valorization of the waste of crustaceans and cephalopods rejected in Essaouira. J Mat Environ Sci: Journal of Materials and Environmental Science 8(7):2251–2258 Arrouze F, Essahli M, Rhazi M, Desbrieres J, Tolaimate A (2017) Chitin and chitosan: study of the possibilities of their production by valorization of the waste of crustaceans and cephalopods rejected in Essaouira. J Mat Environ Sci: Journal of Materials and Environmental Science 8(7):2251–2258
6.
Zurück zum Zitat Hattori H, Tsujimoto H, Hase K, Ishihara M (2017) Characterization of a water-soluble chitosan derivative and its potential for submucosal injection in endoscopic techniques. Carbohyd Polym 175:592–600CrossRef Hattori H, Tsujimoto H, Hase K, Ishihara M (2017) Characterization of a water-soluble chitosan derivative and its potential for submucosal injection in endoscopic techniques. Carbohyd Polym 175:592–600CrossRef
7.
Zurück zum Zitat Hamed I, Özogul F, Regenstein JM (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol 48:40–50CrossRef Hamed I, Özogul F, Regenstein JM (2016) Industrial applications of crustacean by-products (chitin, chitosan, and chitooligosaccharides): a review. Trends Food Sci Technol 48:40–50CrossRef
8.
Zurück zum Zitat Feng Y, Kopplin G, Sato K, Draget KI, Vårum KM (2017) Alginate gels with a combination of calcium and chitosan oligomer mixtures as crosslinkers. Carbohyd Polym 156:490–497CrossRef Feng Y, Kopplin G, Sato K, Draget KI, Vårum KM (2017) Alginate gels with a combination of calcium and chitosan oligomer mixtures as crosslinkers. Carbohyd Polym 156:490–497CrossRef
9.
Zurück zum Zitat Gokara M, Kimavath GB, Podile AR, Subramanyam R (2015) Differential interactions and structural stability of chitosan oligomers with human serum albumin and α-1-glycoprotein. J Biomol Struct Dyn 33(1):196–210CrossRef Gokara M, Kimavath GB, Podile AR, Subramanyam R (2015) Differential interactions and structural stability of chitosan oligomers with human serum albumin and α-1-glycoprotein. J Biomol Struct Dyn 33(1):196–210CrossRef
10.
Zurück zum Zitat Ji X, Li B, Yuan B, Guo M (2017) Preparation and characterizations of a chitosan-based medium-density fiberboard adhesive with high bonding strength and water resistance. Carbohyd Polym 176:273–280CrossRef Ji X, Li B, Yuan B, Guo M (2017) Preparation and characterizations of a chitosan-based medium-density fiberboard adhesive with high bonding strength and water resistance. Carbohyd Polym 176:273–280CrossRef
11.
Zurück zum Zitat Cheon JY, Lee HM, Park WH (2018) Formation of silver nanoparticles using fluorescence properties of chitosan oligomers. Mar Drugs 16(1):11CrossRef Cheon JY, Lee HM, Park WH (2018) Formation of silver nanoparticles using fluorescence properties of chitosan oligomers. Mar Drugs 16(1):11CrossRef
12.
Zurück zum Zitat Naqvi S, Moerschbacher BM (2017) The cell factory approach toward biotechnological production of high-value chitosan oligomers and their derivatives: an update. Crit Rev Biotechnol 37(1):11–25CrossRef Naqvi S, Moerschbacher BM (2017) The cell factory approach toward biotechnological production of high-value chitosan oligomers and their derivatives: an update. Crit Rev Biotechnol 37(1):11–25CrossRef
13.
Zurück zum Zitat Pillai C, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34(7):641–678CrossRef Pillai C, Paul W, Sharma CP (2009) Chitin and chitosan polymers: chemistry, solubility and fiber formation. Prog Polym Sci 34(7):641–678CrossRef
14.
Zurück zum Zitat Ahmed S, Ikram S (2016) Chitosan based scaffolds and their applications in wound healing. Achievements Life Sci 10(1):27–37CrossRef Ahmed S, Ikram S (2016) Chitosan based scaffolds and their applications in wound healing. Achievements Life Sci 10(1):27–37CrossRef
15.
Zurück zum Zitat Thanou M, Florea B, Geldof M, Junginger H, Borchard G (2002) Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials 23(1):153–159CrossRef Thanou M, Florea B, Geldof M, Junginger H, Borchard G (2002) Quaternized chitosan oligomers as novel gene delivery vectors in epithelial cell lines. Biomaterials 23(1):153–159CrossRef
16.
Zurück zum Zitat Liu B, Wang D, Yu G, Meng X (2013) Adsorption of heavy metal ions, dyes and proteins by chitosan composites and derivatives—a review. J Ocean Univer China 12(3):500–508CrossRef Liu B, Wang D, Yu G, Meng X (2013) Adsorption of heavy metal ions, dyes and proteins by chitosan composites and derivatives—a review. J Ocean Univer China 12(3):500–508CrossRef
17.
Zurück zum Zitat Prashanth KH, Tharanathan R (2007) Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci Technol 18(3):117–131CrossRef Prashanth KH, Tharanathan R (2007) Chitin/chitosan: modifications and their unlimited application potential—an overview. Trends Food Sci Technol 18(3):117–131CrossRef
18.
Zurück zum Zitat Polnok A, Borchard G, Verhoef J, Sarisuta N, Junginger H (2004) Influence of methylation process on the degree of quaternization of N-trimethyl chitosan chloride. Eur J Pharm Biopharm 57(1):77–83CrossRef Polnok A, Borchard G, Verhoef J, Sarisuta N, Junginger H (2004) Influence of methylation process on the degree of quaternization of N-trimethyl chitosan chloride. Eur J Pharm Biopharm 57(1):77–83CrossRef
19.
Zurück zum Zitat LogithKumar R, KeshavNarayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N (2016) A review of chitosan and its derivatives in bone tissue engineering. Carbohyd Polym 151:172–188CrossRef LogithKumar R, KeshavNarayan A, Dhivya S, Chawla A, Saravanan S, Selvamurugan N (2016) A review of chitosan and its derivatives in bone tissue engineering. Carbohyd Polym 151:172–188CrossRef
20.
Zurück zum Zitat Peng Y, Han B, Liu W, Xu X (2005) Preparation and antimicrobial activity of hydroxypropyl chitosan. Carbohyd Res 340(11):1846–1851CrossRef Peng Y, Han B, Liu W, Xu X (2005) Preparation and antimicrobial activity of hydroxypropyl chitosan. Carbohyd Res 340(11):1846–1851CrossRef
21.
Zurück zum Zitat Araldi SJ, Tudryn GJ, Hart CE, Carlton AJ (2017) Chemically modified mycological materials having absorbent properties: Google patents Araldi SJ, Tudryn GJ, Hart CE, Carlton AJ (2017) Chemically modified mycological materials having absorbent properties: Google patents
22.
Zurück zum Zitat Jayakumar R, Chennazhi K, Muzzarelli R, Tamura H, Nair S, Selvamurugan N (2010) Chitosan conjugated DNA nanoparticles in gene therapy. Carbohyd Polym 79(1):1–8CrossRef Jayakumar R, Chennazhi K, Muzzarelli R, Tamura H, Nair S, Selvamurugan N (2010) Chitosan conjugated DNA nanoparticles in gene therapy. Carbohyd Polym 79(1):1–8CrossRef
23.
Zurück zum Zitat Krause T, Baumeister J, Weber D, Lang G, Beyer A, Florig E et al (2005) Hair treatment compositions containing N-hydroxy-alkyl-O-benzyl chitosans and methods of using same: Google patents Krause T, Baumeister J, Weber D, Lang G, Beyer A, Florig E et al (2005) Hair treatment compositions containing N-hydroxy-alkyl-O-benzyl chitosans and methods of using same: Google patents
24.
Zurück zum Zitat Karp J, Joshi N, He X, Bhagchandani S (2017) Self assembled gels for controlled delivery of encapsulated agents to cartilage: Google patents Karp J, Joshi N, He X, Bhagchandani S (2017) Self assembled gels for controlled delivery of encapsulated agents to cartilage: Google patents
25.
Zurück zum Zitat Yin T, Zhang Y, Liu Y, Chen Q, Fu Y, Liang J, Huo M (2018) The efficiency and mechanism of N-octyl-O, N-carboxymethyl chitosan-based micelles to enhance the oral absorption of silybin. Int J Pharm 536(1):231–240CrossRef Yin T, Zhang Y, Liu Y, Chen Q, Fu Y, Liang J, Huo M (2018) The efficiency and mechanism of N-octyl-O, N-carboxymethyl chitosan-based micelles to enhance the oral absorption of silybin. Int J Pharm 536(1):231–240CrossRef
26.
Zurück zum Zitat Sashiwa H, Aiba S-I (2004) Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci 29(9):887–908CrossRef Sashiwa H, Aiba S-I (2004) Chemically modified chitin and chitosan as biomaterials. Prog Polym Sci 29(9):887–908CrossRef
27.
Zurück zum Zitat Chtchigrovsky M, Primo A, Gonzalez P, Molvinger K, Robitzer M, Quignard F, Taran F (2009) Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3 + 2] Huisgen cycloaddition. Angew Chem 121(32):6030–6034CrossRef Chtchigrovsky M, Primo A, Gonzalez P, Molvinger K, Robitzer M, Quignard F, Taran F (2009) Functionalized chitosan as a green, recyclable, biopolymer-supported catalyst for the [3 + 2] Huisgen cycloaddition. Angew Chem 121(32):6030–6034CrossRef
28.
Zurück zum Zitat Srbová J, Slováková M, Křípalová Z, Žárská M, Špačková M, Stránská D, Bílková Z (2016) Covalent biofunctionalization of chitosan nanofibers with trypsin for high enzyme stability. React Funct Polym 104:38–44CrossRef Srbová J, Slováková M, Křípalová Z, Žárská M, Špačková M, Stránská D, Bílková Z (2016) Covalent biofunctionalization of chitosan nanofibers with trypsin for high enzyme stability. React Funct Polym 104:38–44CrossRef
29.
Zurück zum Zitat Auzély-Velty R, Rinaudo M (2002) New supramolecular assemblies of a cyclodextrin-grafted chitosan through specific complexation. Macromolecules 35(21):7955–7962CrossRef Auzély-Velty R, Rinaudo M (2002) New supramolecular assemblies of a cyclodextrin-grafted chitosan through specific complexation. Macromolecules 35(21):7955–7962CrossRef
30.
Zurück zum Zitat Martel B, Devassine M, Crini G, Weltrowski M, Bourdonneau M, Morcellet M (2001) Preparation and sorption properties of a β-cyclodextrin-linked chitosan derivative. J Polym Sci Part A: Polym Chem 39(1):169–176CrossRef Martel B, Devassine M, Crini G, Weltrowski M, Bourdonneau M, Morcellet M (2001) Preparation and sorption properties of a β-cyclodextrin-linked chitosan derivative. J Polym Sci Part A: Polym Chem 39(1):169–176CrossRef
31.
Zurück zum Zitat Wang J, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Biores Technol 160:129–141CrossRef Wang J, Chen C (2014) Chitosan-based biosorbents: modification and application for biosorption of heavy metals and radionuclides. Biores Technol 160:129–141CrossRef
32.
Zurück zum Zitat Badawy ME, Rabea EI, Rogge TM, Stevens CV, Smagghe G, Steurbaut W, Höfte M (2004) Synthesis and fungicidal activity of new N,O-acyl chitosan derivatives. Biomacromolecules 5(2):589–595 Badawy ME, Rabea EI, Rogge TM, Stevens CV, Smagghe G, Steurbaut W, Höfte M (2004) Synthesis and fungicidal activity of new N,O-acyl chitosan derivatives. Biomacromolecules 5(2):589–595
33.
Zurück zum Zitat Sun T, Zhu Y, Xie J, Yin X (2011) Antioxidant activity of N-acyl chitosan oligosaccharide with same substituting degree. Bioorg Med Chem Lett 21(2):798–800CrossRef Sun T, Zhu Y, Xie J, Yin X (2011) Antioxidant activity of N-acyl chitosan oligosaccharide with same substituting degree. Bioorg Med Chem Lett 21(2):798–800CrossRef
34.
Zurück zum Zitat Zahir-Jouzdani F, Mahbod M, Soleimani M, Vakhshiteh F, Arefian E, Shahosseini S, Atyabi F (2018) Chitosan and thiolated chitosan: novel therapeutic approach for preventing corneal haze after chemical injuries. Carbohyd Polym 179:42–49CrossRef Zahir-Jouzdani F, Mahbod M, Soleimani M, Vakhshiteh F, Arefian E, Shahosseini S, Atyabi F (2018) Chitosan and thiolated chitosan: novel therapeutic approach for preventing corneal haze after chemical injuries. Carbohyd Polym 179:42–49CrossRef
35.
Zurück zum Zitat Ways TM, Lau WM, Khutoryanskiy VV (2018) Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers 10(3):267 Ways TM, Lau WM, Khutoryanskiy VV (2018) Chitosan and its derivatives for application in mucoadhesive drug delivery systems. Polymers 10(3):267
36.
Zurück zum Zitat Chaffanel F, Charron-Bourgoin F, Soligot C, Kebouchi M, Bertin S, Payot S et al (2018) Surface proteins involved in the adhesion of Streptococcus salivarius to human intestinal epithelial cells. Appl Microbiol Biotechnol, 1–15 Chaffanel F, Charron-Bourgoin F, Soligot C, Kebouchi M, Bertin S, Payot S et al (2018) Surface proteins involved in the adhesion of Streptococcus salivarius to human intestinal epithelial cells. Appl Microbiol Biotechnol, 1–15
37.
Zurück zum Zitat Leitner V, Marschütz M, Bernkop-Schnürch A (2003) Mucoadhesive and cohesive properties of poly (acrylic acid)-cysteine conjugates with regard to their molecular mass. Eur J Pharm Sci 18(1):89–96CrossRef Leitner V, Marschütz M, Bernkop-Schnürch A (2003) Mucoadhesive and cohesive properties of poly (acrylic acid)-cysteine conjugates with regard to their molecular mass. Eur J Pharm Sci 18(1):89–96CrossRef
38.
Zurück zum Zitat Yuan N-Y, Tsai R-Y, Ho M-H, Wang D-M, Lai J-Y, Hsieh H-J (2008) Fabrication and characterization of chondroitin sulfate-modified chitosan membranes for biomedical applications. Desalination 234(1–3):166–174CrossRef Yuan N-Y, Tsai R-Y, Ho M-H, Wang D-M, Lai J-Y, Hsieh H-J (2008) Fabrication and characterization of chondroitin sulfate-modified chitosan membranes for biomedical applications. Desalination 234(1–3):166–174CrossRef
39.
Zurück zum Zitat Zhang C, Ping Q, Zhang H, Shen J (2003) Preparation of N-alkyl-O-sulfate chitosan derivatives and micellar solubilization of taxol. Carbohyd Polym 54(2):137–141CrossRef Zhang C, Ping Q, Zhang H, Shen J (2003) Preparation of N-alkyl-O-sulfate chitosan derivatives and micellar solubilization of taxol. Carbohyd Polym 54(2):137–141CrossRef
40.
Zurück zum Zitat Shanmugam A, Kathiresan K, Nayak L (2016) Preparation, characterization and antibacterial activity of chitosan and phosphorylated chitosan from cuttlebone of Sepia kobiensis (Hoyle, 1885). Biotechnol Rep 9:25–30CrossRef Shanmugam A, Kathiresan K, Nayak L (2016) Preparation, characterization and antibacterial activity of chitosan and phosphorylated chitosan from cuttlebone of Sepia kobiensis (Hoyle, 1885). Biotechnol Rep 9:25–30CrossRef
41.
Zurück zum Zitat Karaki N, Aljawish A, Humeau C, Muniglia L, Jasniewski J (2016) Enzymatic modification of polysaccharides: mechanisms, properties, and potential applications: a review. Enzyme Microb Technol 90:1–18CrossRef Karaki N, Aljawish A, Humeau C, Muniglia L, Jasniewski J (2016) Enzymatic modification of polysaccharides: mechanisms, properties, and potential applications: a review. Enzyme Microb Technol 90:1–18CrossRef
42.
Zurück zum Zitat Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652CrossRef Thakur VK, Thakur MK (2014) Recent advances in graft copolymerization and applications of chitosan: a review. ACS Sustain Chem Eng 2(12):2637–2652CrossRef
43.
Zurück zum Zitat Zhou T, Zhu Y, Li X, Liu X, Yeung KW, Wu S, Chu PK (2016) Surface functionalization of biomaterials by radical polymerization. Prog Mater Sci 83:191–235CrossRef Zhou T, Zhu Y, Li X, Liu X, Yeung KW, Wu S, Chu PK (2016) Surface functionalization of biomaterials by radical polymerization. Prog Mater Sci 83:191–235CrossRef
44.
Zurück zum Zitat Carreira A, Gonçalves F, Mendonça P, Gil M, Coelho J (2010) Temperature and pH responsive polymers based on chitosan: applications and new graft copolymerization strategies based on living radical polymerization. Carbohyd Polym 80(3):618–630CrossRef Carreira A, Gonçalves F, Mendonça P, Gil M, Coelho J (2010) Temperature and pH responsive polymers based on chitosan: applications and new graft copolymerization strategies based on living radical polymerization. Carbohyd Polym 80(3):618–630CrossRef
45.
Zurück zum Zitat Kim KM, Son JH, Kim SK, Weller CL, Hanna MA (2006) Properties of chitosan films as a function of pH and solvent type. J Food Sci 71(3) Kim KM, Son JH, Kim SK, Weller CL, Hanna MA (2006) Properties of chitosan films as a function of pH and solvent type. J Food Sci 71(3)
46.
Zurück zum Zitat Twu Y-K, Huang H-I, Chang S-Y, Wang S-L (2003) Preparation and sorption activity of chitosan/cellulose blend beads. Carbohyd Polym 54(4):425–430CrossRef Twu Y-K, Huang H-I, Chang S-Y, Wang S-L (2003) Preparation and sorption activity of chitosan/cellulose blend beads. Carbohyd Polym 54(4):425–430CrossRef
47.
Zurück zum Zitat Xu Y, Du Y (2003) Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm 250(1):215–226CrossRef Xu Y, Du Y (2003) Effect of molecular structure of chitosan on protein delivery properties of chitosan nanoparticles. Int J Pharm 250(1):215–226CrossRef
48.
Zurück zum Zitat Xu Y, Kim KM, Hanna MA, Nag D (2005) Chitosan–starch composite film: preparation and characterization. Ind Crops Prod 21(2):185–192CrossRef Xu Y, Kim KM, Hanna MA, Nag D (2005) Chitosan–starch composite film: preparation and characterization. Ind Crops Prod 21(2):185–192CrossRef
49.
Zurück zum Zitat Chillo S, Flores S, Mastromatteo M, Conte A, Gerschenson L, Del Nobile MA (2008) Influence of glycerol and chitosan on tapioca starch-based edible film properties. J Food Eng 88(2):159–168CrossRef Chillo S, Flores S, Mastromatteo M, Conte A, Gerschenson L, Del Nobile MA (2008) Influence of glycerol and chitosan on tapioca starch-based edible film properties. J Food Eng 88(2):159–168CrossRef
50.
Zurück zum Zitat Vásconez MB, Flores SK, Campos CA, Alvarado J, Gerschenson LN (2009) Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Res Int 42(7):762–769CrossRef Vásconez MB, Flores SK, Campos CA, Alvarado J, Gerschenson LN (2009) Antimicrobial activity and physical properties of chitosan–tapioca starch based edible films and coatings. Food Res Int 42(7):762–769CrossRef
51.
Zurück zum Zitat Nagahama H, Maeda H, Kashiki T, Jayakumar R, Furuike T, Tamura H (2009) Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohyd Polym 76(2):255–260CrossRef Nagahama H, Maeda H, Kashiki T, Jayakumar R, Furuike T, Tamura H (2009) Preparation and characterization of novel chitosan/gelatin membranes using chitosan hydrogel. Carbohyd Polym 76(2):255–260CrossRef
52.
Zurück zum Zitat Cheng L, Bulmer C, Margaritis A (2015) Characterization of novel composite alginate chitosan-carrageenan nanoparticles for encapsulation of BSA as a model drug delivery system. Curr Drug Deliv 12(3):351–357CrossRef Cheng L, Bulmer C, Margaritis A (2015) Characterization of novel composite alginate chitosan-carrageenan nanoparticles for encapsulation of BSA as a model drug delivery system. Curr Drug Deliv 12(3):351–357CrossRef
53.
Zurück zum Zitat Darder M, Colilla M, Ruiz-Hitzky E (2005) Chitosan–clay nanocomposites: application as electrochemical sensors. Appl Clay Sci 28(1–4):199–208CrossRef Darder M, Colilla M, Ruiz-Hitzky E (2005) Chitosan–clay nanocomposites: application as electrochemical sensors. Appl Clay Sci 28(1–4):199–208CrossRef
54.
Zurück zum Zitat Günister E, Pestreli D, Ünlü CH, Atıcı O, Güngör N (2007) Synthesis and characterization of chitosan-MMT biocomposite systems. Carbohyd Polym 67(3):358–365CrossRef Günister E, Pestreli D, Ünlü CH, Atıcı O, Güngör N (2007) Synthesis and characterization of chitosan-MMT biocomposite systems. Carbohyd Polym 67(3):358–365CrossRef
55.
Zurück zum Zitat Hsu S-H, Wang M-C, Lin J-J (2012) Biocompatibility and antimicrobial evaluation of montmorillonite/chitosan nanocomposites. Appl Clay Sci 56:53–62CrossRef Hsu S-H, Wang M-C, Lin J-J (2012) Biocompatibility and antimicrobial evaluation of montmorillonite/chitosan nanocomposites. Appl Clay Sci 56:53–62CrossRef
56.
Zurück zum Zitat Mohammadi R, Mohammadifar MA, Rouhi M, Kariminejad M, Mortazavian AM, Sadeghi E, Hasanvand S (2018) Physico-mechanical and structural properties of eggshell membrane gelatin-chitosan blend edible films. Int J Biol Macromol 107:406–412CrossRef Mohammadi R, Mohammadifar MA, Rouhi M, Kariminejad M, Mortazavian AM, Sadeghi E, Hasanvand S (2018) Physico-mechanical and structural properties of eggshell membrane gelatin-chitosan blend edible films. Int J Biol Macromol 107:406–412CrossRef
57.
Zurück zum Zitat Hai TAP, Sugimoto R (2018) Surface modification of chitin and chitosan with poly (3-hexylthiophene) via oxidative polymerization. Appl Surf Sci 434:188–197CrossRef Hai TAP, Sugimoto R (2018) Surface modification of chitin and chitosan with poly (3-hexylthiophene) via oxidative polymerization. Appl Surf Sci 434:188–197CrossRef
58.
Zurück zum Zitat Santos-Moriano P, Fernandez-Arrojo L, Mengibar M, Belmonte-Reche E, Peñalver P, Acosta F, Fernández-Lobato M (2018) Enzymatic production of fully deacetylated chitooligosaccharides and their neuroprotective and anti-inflammatory properties. Biocatal Biotransform 36(1):57–67CrossRef Santos-Moriano P, Fernandez-Arrojo L, Mengibar M, Belmonte-Reche E, Peñalver P, Acosta F, Fernández-Lobato M (2018) Enzymatic production of fully deacetylated chitooligosaccharides and their neuroprotective and anti-inflammatory properties. Biocatal Biotransform 36(1):57–67CrossRef
59.
Zurück zum Zitat Vasconcelos DP, Costa M, Neves N, Teixeira JH, Vasconcelos DM, Santos SG et al (2018) The use of chitosan porous 3D scaffolds embedded with resolvin D1 to improve in vivo bone healing. J Biomed Mat Res Part A Vasconcelos DP, Costa M, Neves N, Teixeira JH, Vasconcelos DM, Santos SG et al (2018) The use of chitosan porous 3D scaffolds embedded with resolvin D1 to improve in vivo bone healing. J Biomed Mat Res Part A
60.
Zurück zum Zitat Singh G, Manohar M, Arya SK, Siddiqui WA, Stenström TA (2017) Potential biomedical applications of chitosan–and chitosan-based nanomaterials. Chitosan Deriv Compos Appl, 385–408 Singh G, Manohar M, Arya SK, Siddiqui WA, Stenström TA (2017) Potential biomedical applications of chitosan–and chitosan-based nanomaterials. Chitosan Deriv Compos Appl, 385–408
61.
Zurück zum Zitat Cremar L, Gutierrez J, Martinez J, Materon L, Gilkerson R, Xu F, Lozano K (2018) Development of antimicrobial chitosan based nanofiber dressings for wound healing applications. Nanomed J 5(1):6–14 Cremar L, Gutierrez J, Martinez J, Materon L, Gilkerson R, Xu F, Lozano K (2018) Development of antimicrobial chitosan based nanofiber dressings for wound healing applications. Nanomed J 5(1):6–14
62.
Zurück zum Zitat Heidari F, Bahrololoom ME, Vashaee D, Tayebi L (2015) In situ preparation of iron oxide nanoparticles in natural hydroxyapatite/chitosan matrix for bone tissue engineering application. Ceram Int 41(2):3094–3100CrossRef Heidari F, Bahrololoom ME, Vashaee D, Tayebi L (2015) In situ preparation of iron oxide nanoparticles in natural hydroxyapatite/chitosan matrix for bone tissue engineering application. Ceram Int 41(2):3094–3100CrossRef
63.
Zurück zum Zitat Jayakumar R, Prabaharan M, Kumar PS, Nair S, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337CrossRef Jayakumar R, Prabaharan M, Kumar PS, Nair S, Tamura H (2011) Biomaterials based on chitin and chitosan in wound dressing applications. Biotechnol Adv 29(3):322–337CrossRef
64.
Zurück zum Zitat Choi YS, Lee S, Hong SR, Lee Y, Song K, Park M (2001) Studies on gelatin-based sponges. Part III: a comparative study of cross-linked gelatin/alginate, gelatin/hyaluronate and chitosan/hyaluronate sponges and their application as a wound dressing in full-thickness skin defect of rat. J Mat Sci: Materials in Medicine 12(1):67–73 Choi YS, Lee S, Hong SR, Lee Y, Song K, Park M (2001) Studies on gelatin-based sponges. Part III: a comparative study of cross-linked gelatin/alginate, gelatin/hyaluronate and chitosan/hyaluronate sponges and their application as a wound dressing in full-thickness skin defect of rat. J Mat Sci: Materials in Medicine 12(1):67–73
65.
Zurück zum Zitat Srinivasan H, Kanayairam V, Ravichandran R (2018) Chitin and chitosan preparation from shrimp shells Penaeus monodon and its human ovarian cancer cell line, PA-1. Int J Biol Macromol 107:662–667CrossRef Srinivasan H, Kanayairam V, Ravichandran R (2018) Chitin and chitosan preparation from shrimp shells Penaeus monodon and its human ovarian cancer cell line, PA-1. Int J Biol Macromol 107:662–667CrossRef
66.
Zurück zum Zitat Abdelmalek BE, Sila A, Haddar A, Bougatef A, Ayadi MA (2017) β-Chitin and chitosan from squid gladius: biological activities of chitosan and its application as clarifying agent for apple juice. Int J Biol Macromol 104:953–962CrossRef Abdelmalek BE, Sila A, Haddar A, Bougatef A, Ayadi MA (2017) β-Chitin and chitosan from squid gladius: biological activities of chitosan and its application as clarifying agent for apple juice. Int J Biol Macromol 104:953–962CrossRef
67.
Zurück zum Zitat Kabalak M, Aracagök YD, Torun M (2017) Extraction and physicochemical properties of chitins from four different insect species Kabalak M, Aracagök YD, Torun M (2017) Extraction and physicochemical properties of chitins from four different insect species
68.
Zurück zum Zitat Sudha PN, Saranya M, Gomathi T, Gokila S, Aisverya S, Venkatesan J, Anil S (2017) Perspectives of chitin- and chitosan-based scaffolds dressing in regenerative medicine. Chitosan Deriv Comp Appl, 253–269 Sudha PN, Saranya M, Gomathi T, Gokila S, Aisverya S, Venkatesan J, Anil S (2017) Perspectives of chitin- and chitosan-based scaffolds dressing in regenerative medicine. Chitosan Deriv Comp Appl, 253–269
69.
Zurück zum Zitat Yu Z, Lau D (2017) Flexibility of backbone fibrils in α-chitin crystals with different degree of acetylation. Carbohyd Polym 174:941–947CrossRef Yu Z, Lau D (2017) Flexibility of backbone fibrils in α-chitin crystals with different degree of acetylation. Carbohyd Polym 174:941–947CrossRef
70.
Zurück zum Zitat Akpan E, Gbenebor O, Adeosun S (2018) Synthesis and characterisation of chitin from periwinkle (Tympanotonus fusatus (L.)) and snail (Lissachatina fulica (Bowdich)) shells. Int J Biol Macromol 106:1080–1088CrossRef Akpan E, Gbenebor O, Adeosun S (2018) Synthesis and characterisation of chitin from periwinkle (Tympanotonus fusatus (L.)) and snail (Lissachatina fulica (Bowdich)) shells. Int J Biol Macromol 106:1080–1088CrossRef
71.
Zurück zum Zitat Gbenebor OP, Akpan EI, Adeosun SO (2017) Thermal, structural and acetylation behavior of snail and periwinkle shells chitin. Prog Biomat 6(3):97–111CrossRef Gbenebor OP, Akpan EI, Adeosun SO (2017) Thermal, structural and acetylation behavior of snail and periwinkle shells chitin. Prog Biomat 6(3):97–111CrossRef
72.
Zurück zum Zitat Kaya M, Bağrıaçık N, Seyyar O, Baran T (2015) Comparison of chitin structures derived from three common wasp species (Vespa crabro Linnaeus, 1758, Vespa orientalis Linnaeus, 1771 and Vespula germanica (Fabricius, 1793)). Arch Insect Biochem Physiol 89(4):204–217CrossRef Kaya M, Bağrıaçık N, Seyyar O, Baran T (2015) Comparison of chitin structures derived from three common wasp species (Vespa crabro Linnaeus, 1758, Vespa orientalis Linnaeus, 1771 and Vespula germanica (Fabricius, 1793)). Arch Insect Biochem Physiol 89(4):204–217CrossRef
73.
Zurück zum Zitat Silva SS, Mano JF, Reis RL (2017) Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chem 19(5):1208–1220CrossRef Silva SS, Mano JF, Reis RL (2017) Ionic liquids in the processing and chemical modification of chitin and chitosan for biomedical applications. Green Chem 19(5):1208–1220CrossRef
74.
Zurück zum Zitat Isono Y, Noishiki Y (2018) Method for manufacturing water-insoluble molded article and water-insoluble molded article: Google patents Isono Y, Noishiki Y (2018) Method for manufacturing water-insoluble molded article and water-insoluble molded article: Google patents
75.
Zurück zum Zitat Roy JC, Salaün F, Giraud S, Ferri A, Chen G, Guan J (2017) Solubility of chitin: solvents, solution behaviors and their related mechanisms. Solubility of Polysaccharides, InTech Roy JC, Salaün F, Giraud S, Ferri A, Chen G, Guan J (2017) Solubility of chitin: solvents, solution behaviors and their related mechanisms. Solubility of Polysaccharides, InTech
76.
Zurück zum Zitat Tachaboonyakiat W (2017) Antimicrobial applications of chitosan. Chitosan based biomaterials, vol 2. Elsevier, pp 245–274 Tachaboonyakiat W (2017) Antimicrobial applications of chitosan. Chitosan based biomaterials, vol 2. Elsevier, pp 245–274
77.
Zurück zum Zitat Vincendon M (1997) Regenerated chitin from phosphoric acid solutions. Carbohyd Polym 32(3–4):233–237CrossRef Vincendon M (1997) Regenerated chitin from phosphoric acid solutions. Carbohyd Polym 32(3–4):233–237CrossRef
78.
Zurück zum Zitat Jothimani B, Sureshkumar S, Venkatachalapathy B (2017) Hydrophobic structural modification of chitosan and its impact on nanoparticle synthesis—a physicochemical study. Carbohyd Polym 173:714–720CrossRef Jothimani B, Sureshkumar S, Venkatachalapathy B (2017) Hydrophobic structural modification of chitosan and its impact on nanoparticle synthesis—a physicochemical study. Carbohyd Polym 173:714–720CrossRef
79.
Zurück zum Zitat Jayakumar R, Menon D, Manzoor K, Nair S, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohyd Polym 82(2):227–232CrossRef Jayakumar R, Menon D, Manzoor K, Nair S, Tamura H (2010) Biomedical applications of chitin and chitosan based nanomaterials—a short review. Carbohyd Polym 82(2):227–232CrossRef
80.
Zurück zum Zitat Gulati K, Meher MK, Poluri KM (2017) Glycosaminoglycan-based resorbable polymer composites in tissue refurbishment. Regenerative Med 12(4):431–457CrossRef Gulati K, Meher MK, Poluri KM (2017) Glycosaminoglycan-based resorbable polymer composites in tissue refurbishment. Regenerative Med 12(4):431–457CrossRef
81.
Zurück zum Zitat Cao N, Lyu Q, Li J, Wang Y, Yang B, Szunerits S, Boukherroub R (2017) Facile synthesis of fluorinated polydopamine/chitosan/reduced graphene oxide composite aerogel for efficient oil/water separation. Chem Eng J 326:17–28CrossRef Cao N, Lyu Q, Li J, Wang Y, Yang B, Szunerits S, Boukherroub R (2017) Facile synthesis of fluorinated polydopamine/chitosan/reduced graphene oxide composite aerogel for efficient oil/water separation. Chem Eng J 326:17–28CrossRef
82.
Zurück zum Zitat Yu C, Kecen X, Xiaosai Q (2018) Grafting modification of chitosan. Biopolymer grafting. Elsevier, pp 295–364 Yu C, Kecen X, Xiaosai Q (2018) Grafting modification of chitosan. Biopolymer grafting. Elsevier, pp 295–364
83.
Zurück zum Zitat Badawy ME, Rabea EI (2017) Chitosan and its modifications as biologically active compounds in different applications. Adv Physicochem Properties Biopolym (Part 2), 1 Badawy ME, Rabea EI (2017) Chitosan and its modifications as biologically active compounds in different applications. Adv Physicochem Properties Biopolym (Part 2), 1
84.
Zurück zum Zitat Olicón-Hernández DR, Uribe-Alvarez C, Uribe-Carvajal S, Pardo JP, Guerra-Sánchez G (2017) Response of ustilago maydis against the stress caused by three polycationic chitin derivatives. Molecules 22(12):1745CrossRef Olicón-Hernández DR, Uribe-Alvarez C, Uribe-Carvajal S, Pardo JP, Guerra-Sánchez G (2017) Response of ustilago maydis against the stress caused by three polycationic chitin derivatives. Molecules 22(12):1745CrossRef
85.
Zurück zum Zitat Swatloski RP, Barber PS, Opichka T, Bonner JR, Gurau G, Griggs CS, Rogers RD (2017) Process for electrospinning chitin fibers from chitinous biomass solution: Google patents Swatloski RP, Barber PS, Opichka T, Bonner JR, Gurau G, Griggs CS, Rogers RD (2017) Process for electrospinning chitin fibers from chitinous biomass solution: Google patents
86.
Zurück zum Zitat Zou H, Lin B, Xu C, Lin M, Zhan W (2018) Preparation and characterization of individual chitin nanofibers with high stability from chitin gels by low-intensity ultrasonication for antibacterial finishing. Cellulose 25(2):999–1010CrossRef Zou H, Lin B, Xu C, Lin M, Zhan W (2018) Preparation and characterization of individual chitin nanofibers with high stability from chitin gels by low-intensity ultrasonication for antibacterial finishing. Cellulose 25(2):999–1010CrossRef
87.
Zurück zum Zitat Kong K, Davies RJ, McDonald MA, Young RJ, Wilding MA, Ibbett RN, Eichhorn SJ (2007) Influence of domain orientation on the mechanical properties of regenerated cellulose fibers. Biomacromology 8(2):624–630CrossRef Kong K, Davies RJ, McDonald MA, Young RJ, Wilding MA, Ibbett RN, Eichhorn SJ (2007) Influence of domain orientation on the mechanical properties of regenerated cellulose fibers. Biomacromology 8(2):624–630CrossRef
88.
Zurück zum Zitat Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632CrossRef Rinaudo M (2006) Chitin and chitosan: properties and applications. Prog Polym Sci 31(7):603–632CrossRef
89.
Zurück zum Zitat Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24(13):2339–2349CrossRef Khor E, Lim LY (2003) Implantable applications of chitin and chitosan. Biomaterials 24(13):2339–2349CrossRef
90.
Zurück zum Zitat Khor E (2014) Chitin: fulfilling a biomaterials promise. Elsevier Khor E (2014) Chitin: fulfilling a biomaterials promise. Elsevier
91.
Zurück zum Zitat Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27CrossRef Kumar MNR (2000) A review of chitin and chitosan applications. React Funct Polym 46(1):1–27CrossRef
92.
Zurück zum Zitat Beier S, Bertilsson S (2013) Bacterial chitin degradation—mechanisms and ecophysiological strategies. Front Microbiol 4:149CrossRef Beier S, Bertilsson S (2013) Bacterial chitin degradation—mechanisms and ecophysiological strategies. Front Microbiol 4:149CrossRef
93.
Zurück zum Zitat Kumirska J, Weinhold MX, Thöming J, Stepnowski P (2011) Biomedical activity of chitin/chitosan based materials—influence of physicochemical properties apart from molecular weight and degree of N-acetylation. Polymers 3(4):1875–1901CrossRef Kumirska J, Weinhold MX, Thöming J, Stepnowski P (2011) Biomedical activity of chitin/chitosan based materials—influence of physicochemical properties apart from molecular weight and degree of N-acetylation. Polymers 3(4):1875–1901CrossRef
94.
Zurück zum Zitat Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174 Younes I, Rinaudo M (2015) Chitin and chitosan preparation from marine sources. Structure, properties and applications. Mar Drugs 13(3):1133–1174
95.
Zurück zum Zitat Friedman AJ, Phan J, Schairer DO, Champer J, Qin M, Pirouz A, Modlin RL (2013) Antimicrobial and anti-inflammatory activity of chitosan–alginate nanoparticles: a targeted therapy for cutaneous pathogens. J Invest Dermatol 133(5):1231–1239CrossRef Friedman AJ, Phan J, Schairer DO, Champer J, Qin M, Pirouz A, Modlin RL (2013) Antimicrobial and anti-inflammatory activity of chitosan–alginate nanoparticles: a targeted therapy for cutaneous pathogens. J Invest Dermatol 133(5):1231–1239CrossRef
96.
Zurück zum Zitat Gooday GW (1990) The ecology of chitin degradation. Advances in microbial ecology. Springer, pp 387–430 Gooday GW (1990) The ecology of chitin degradation. Advances in microbial ecology. Springer, pp 387–430
97.
Zurück zum Zitat Badwan AA, Rashid I, Al Omari MM, Darras FH (2015) Chitin and chitosan as direct compression excipients in pharmaceutical applications. Mar Drugs 13(3):1519–1547CrossRef Badwan AA, Rashid I, Al Omari MM, Darras FH (2015) Chitin and chitosan as direct compression excipients in pharmaceutical applications. Mar Drugs 13(3):1519–1547CrossRef
98.
Zurück zum Zitat Yen M-T, Yang J-H, Mau J-L (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohyd Polym 75(1):15–21CrossRef Yen M-T, Yang J-H, Mau J-L (2009) Physicochemical characterization of chitin and chitosan from crab shells. Carbohyd Polym 75(1):15–21CrossRef
99.
Zurück zum Zitat Ospina Álvarez SP, Ramírez Cadavid DA, Escobar Sierra DM, Ossa Orozco CP, Rojas Vahos DF, Zapata Ocampo P, Atehortúa L (2014) Comparison of extraction methods of chitin from Ganoderma lucidum mushroom obtained in submerged culture. BioMed Res Int Ospina Álvarez SP, Ramírez Cadavid DA, Escobar Sierra DM, Ossa Orozco CP, Rojas Vahos DF, Zapata Ocampo P, Atehortúa L (2014) Comparison of extraction methods of chitin from Ganoderma lucidum mushroom obtained in submerged culture. BioMed Res Int
100.
Zurück zum Zitat Yang T-L (2011) Chitin-based materials in tissue engineering: applications in soft tissue and epithelial organ. Int J Mol Sci 12(3):1936–1963CrossRef Yang T-L (2011) Chitin-based materials in tissue engineering: applications in soft tissue and epithelial organ. Int J Mol Sci 12(3):1936–1963CrossRef
101.
Zurück zum Zitat Hajji S, Younes I, Ghorbel-Bellaaj O, Hajji R, Rinaudo M, Nasri M, Jellouli K (2014) Structural differences between chitin and chitosan extracted from three different marine sources. Int J Biol Macromol 65:298–306CrossRef Hajji S, Younes I, Ghorbel-Bellaaj O, Hajji R, Rinaudo M, Nasri M, Jellouli K (2014) Structural differences between chitin and chitosan extracted from three different marine sources. Int J Biol Macromol 65:298–306CrossRef
102.
Zurück zum Zitat Xu Q, Wang C-H, Wayne Pack D (2010) Polymeric carriers for gene delivery: chitosan and poly (amidoamine) dendrimers. Curr Pharm Des 16(21):2350–2368CrossRef Xu Q, Wang C-H, Wayne Pack D (2010) Polymeric carriers for gene delivery: chitosan and poly (amidoamine) dendrimers. Curr Pharm Des 16(21):2350–2368CrossRef
103.
Zurück zum Zitat Chen Q, Zhang J-W, Chen L-L, Yang J, Yang X-L, Ling Y, Yang Q (2017) Design and synthesis of chitin synthase inhibitors as potent fungicides. Chin Chem Lett 28(6):1232–1237CrossRef Chen Q, Zhang J-W, Chen L-L, Yang J, Yang X-L, Ling Y, Yang Q (2017) Design and synthesis of chitin synthase inhibitors as potent fungicides. Chin Chem Lett 28(6):1232–1237CrossRef
104.
Zurück zum Zitat Tang B, Yang M, Shen Q, Xu Y, Wang H, Wang S (2017) Suppressing the activity of trehalase with validamycin disrupts the trehalose and chitin biosynthesis pathways in the rice brown planthopper, Nilaparvata lugens. Pestic Biochem Physiol 137:81–90CrossRef Tang B, Yang M, Shen Q, Xu Y, Wang H, Wang S (2017) Suppressing the activity of trehalase with validamycin disrupts the trehalose and chitin biosynthesis pathways in the rice brown planthopper, Nilaparvata lugens. Pestic Biochem Physiol 137:81–90CrossRef
105.
Zurück zum Zitat Ruiz-Herrera J, Lopez-Romero E, Bartnicki-Garcia S (1977) Properties of chitin synthetase in isolated chitosomes from yeast cells of Mucor rouxii. J Biol Chem 252(10):3338–3343 Ruiz-Herrera J, Lopez-Romero E, Bartnicki-Garcia S (1977) Properties of chitin synthetase in isolated chitosomes from yeast cells of Mucor rouxii. J Biol Chem 252(10):3338–3343
106.
Zurück zum Zitat Wang P, Bi S, Wu F, Xu P, Shen X, Zhao Q (2017) Differentially expressed genes in the head of the 2nd instar pre-molting larvae of the nm2 mutant of the silkworm, Bombyx mori. PloS One 12(7):e0180160CrossRef Wang P, Bi S, Wu F, Xu P, Shen X, Zhao Q (2017) Differentially expressed genes in the head of the 2nd instar pre-molting larvae of the nm2 mutant of the silkworm, Bombyx mori. PloS One 12(7):e0180160CrossRef
107.
Zurück zum Zitat Cohen E (2001) Chitin synthesis and inhibition: a revisit. Pest Manag Sci 57(10):946–950CrossRef Cohen E (2001) Chitin synthesis and inhibition: a revisit. Pest Manag Sci 57(10):946–950CrossRef
108.
Zurück zum Zitat Yang M, Wang Y, Jiang F, Song T, Wang H, Liu Q, Kang L (2016) miR-71 and miR-263 jointly regulate target genes chitin synthase and chitinase to control locust molting. PLoS Genet 12(8):e1006257CrossRef Yang M, Wang Y, Jiang F, Song T, Wang H, Liu Q, Kang L (2016) miR-71 and miR-263 jointly regulate target genes chitin synthase and chitinase to control locust molting. PLoS Genet 12(8):e1006257CrossRef
109.
Zurück zum Zitat Bowen A, Chen-Wu J, Momany M, Young R, Szaniszlo P, Robbins P (1992) Classification of fungal chitin synthases. Proc Natl Acad Sci 89(2):519–523CrossRef Bowen A, Chen-Wu J, Momany M, Young R, Szaniszlo P, Robbins P (1992) Classification of fungal chitin synthases. Proc Natl Acad Sci 89(2):519–523CrossRef
110.
Zurück zum Zitat Chen Q, Jin S, Zhang L, Shen Q, Wei P, Wei Z et al (2017) Regulatory functions of trehalose-6-phosphate synthase in the chitin biosynthesis pathway in Tribolium castaneum (Coleoptera: Tenebrionidae) revealed by RNA interference. Bull Entomol Res, 1–12 Chen Q, Jin S, Zhang L, Shen Q, Wei P, Wei Z et al (2017) Regulatory functions of trehalose-6-phosphate synthase in the chitin biosynthesis pathway in Tribolium castaneum (Coleoptera: Tenebrionidae) revealed by RNA interference. Bull Entomol Res, 1–12
111.
Zurück zum Zitat Kaya M, Sargin I, Tozak KÖ, Baran T, Erdogan S, Sezen G (2013) Chitin extraction and characterization from Daphnia magna resting eggs. Int J Biol Macromol 61:459–464CrossRef Kaya M, Sargin I, Tozak KÖ, Baran T, Erdogan S, Sezen G (2013) Chitin extraction and characterization from Daphnia magna resting eggs. Int J Biol Macromol 61:459–464CrossRef
112.
Zurück zum Zitat Kaya M, Karaarslan M, Baran T, Can E, Ekemen G, Bitim B, Duman F (2014) The quick extraction of chitin from an epizoic crustacean species (Chelonibia patula). Nat Prod Res 28(23):2186–2190CrossRef Kaya M, Karaarslan M, Baran T, Can E, Ekemen G, Bitim B, Duman F (2014) The quick extraction of chitin from an epizoic crustacean species (Chelonibia patula). Nat Prod Res 28(23):2186–2190CrossRef
113.
Zurück zum Zitat Philibert T, Lee BH, Fabien N (2017) Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl Biochem Biotechnol 181(4):1314–1337CrossRef Philibert T, Lee BH, Fabien N (2017) Current status and new perspectives on chitin and chitosan as functional biopolymers. Appl Biochem Biotechnol 181(4):1314–1337CrossRef
114.
Zurück zum Zitat Jayakumar R, Nair S, Furuike T, Tamura H (2010) Perspectives of chitin and chitosan nanofibrous scaffolds in tissue engineering. Tissue Engineering, Intech Jayakumar R, Nair S, Furuike T, Tamura H (2010) Perspectives of chitin and chitosan nanofibrous scaffolds in tissue engineering. Tissue Engineering, Intech
115.
Zurück zum Zitat Madihally SV, Matthew HW (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20(12):1133–1142CrossRef Madihally SV, Matthew HW (1999) Porous chitosan scaffolds for tissue engineering. Biomaterials 20(12):1133–1142CrossRef
116.
Zurück zum Zitat Dev A, Binulal N, Anitha A, Nair S, Furuike T, Tamura H, Jayakumar R (2010) Preparation of poly (lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohyd Polym 80(3):833–838CrossRef Dev A, Binulal N, Anitha A, Nair S, Furuike T, Tamura H, Jayakumar R (2010) Preparation of poly (lactic acid)/chitosan nanoparticles for anti-HIV drug delivery applications. Carbohyd Polym 80(3):833–838CrossRef
117.
Zurück zum Zitat Mourya V, Inamdar NN, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mat Lett 1(1):11–33CrossRef Mourya V, Inamdar NN, Tiwari A (2010) Carboxymethyl chitosan and its applications. Adv Mat Lett 1(1):11–33CrossRef
118.
Zurück zum Zitat Huang Y, Yao M, Zheng X, Liang X, Su X, Zhang Y et al. (2015) Effects of chitin whiskers on physical properties and osteoblast culture of alginate based nanocomposite hydrogels. Biomacromolecules 16(11):3499–3507 Huang Y, Yao M, Zheng X, Liang X, Su X, Zhang Y et al. (2015) Effects of chitin whiskers on physical properties and osteoblast culture of alginate based nanocomposite hydrogels. Biomacromolecules 16(11):3499–3507
119.
Zurück zum Zitat Mathew ME, Mohan JC, Manzoor K, Nair S, Tamura H, Jayakumar R (2010) Folate conjugated carboxymethyl chitosan–manganese doped zinc sulphide nanoparticles for targeted drug delivery and imaging of cancer cells. Carbohyd Polym 80(2):442–448CrossRef Mathew ME, Mohan JC, Manzoor K, Nair S, Tamura H, Jayakumar R (2010) Folate conjugated carboxymethyl chitosan–manganese doped zinc sulphide nanoparticles for targeted drug delivery and imaging of cancer cells. Carbohyd Polym 80(2):442–448CrossRef
120.
Zurück zum Zitat Wu S, Huang Z, Yue J, Liu D, Wang T, Ezanno P, Pan H (2015) The efficient hemostatic effect of Antarctic krill chitosan is related to its hydration property. Carbohyd Polym 132:295–303CrossRef Wu S, Huang Z, Yue J, Liu D, Wang T, Ezanno P, Pan H (2015) The efficient hemostatic effect of Antarctic krill chitosan is related to its hydration property. Carbohyd Polym 132:295–303CrossRef
121.
Zurück zum Zitat Komi DEA, Sharma L, Cruz CSD (2017) Chitin and its effects on inflammatory and immune responses. Clin Rev Allergy Immunol, 1–11 Komi DEA, Sharma L, Cruz CSD (2017) Chitin and its effects on inflammatory and immune responses. Clin Rev Allergy Immunol, 1–11
122.
Zurück zum Zitat Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res 4(3):411 Elieh-Ali-Komi D, Hamblin MR (2016) Chitin and chitosan: production and application of versatile biomedical nanomaterials. Int J Adv Res 4(3):411
123.
Zurück zum Zitat Morganti P, Palombo P, Palombo M, Fabrizi G, Cardillo A, Svolacchia F, Mezzana P (2012) A phosphatidylcholine hyaluronic acid chitin–nanofibrils complex for a fast skin remodeling and a rejuvenating look. Clin Cosmet Invest Dermatol 5:213CrossRef Morganti P, Palombo P, Palombo M, Fabrizi G, Cardillo A, Svolacchia F, Mezzana P (2012) A phosphatidylcholine hyaluronic acid chitin–nanofibrils complex for a fast skin remodeling and a rejuvenating look. Clin Cosmet Invest Dermatol 5:213CrossRef
Metadaten
Titel
Synthesis and Characterization and Application of Chitin and Chitosan-Based Eco-friendly Polymer Composites
verfasst von
Aneela Sabir
Faizah Altaf
Muhammad Shafiq
Copyright-Jahr
2019
DOI
https://doi.org/10.1007/978-3-030-05399-4_46

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.