Skip to main content
Erschienen in: Journal of Coatings Technology and Research 2/2019

20.08.2018

Synthesis and characterization of castor oil-based branched polyols from renewable resources and their polyurethane-urea coatings

verfasst von: Allauddin Shaik, Kabir Baidya, Kirankumar Nehete, Subarna Shyamroy

Erschienen in: Journal of Coatings Technology and Research | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The chemical modifications of castor oil (CO) to develop branched polyols and their polyurethane-urea coatings have been investigated. For this purpose, castor oil-based branched polyols (COBPs) were synthesized from CO by modifying with succinic anhydride followed by reaction with hydroxyl group moieties like petrochemical-based pentaerythritol, trimethylolpropane and bio-based glycerol. The COBPs were characterized by using Fourier transform infrared, 1H and 13C nuclear magnetic resonance spectroscopies, gel permeation chromatography and differential scanning calorimetry. These COBPs were further urethanized with isophorone diisocyanate at OH/NCO ratio of 1:1.6 to get the isocyanate-terminated polyurethane prepolymers. The surplus isocyanate groups of the prepolymer were cured with atmospheric moisture at ambient temperature condition to form uniform film with fast surface drying. The thermo-mechanical, viscoelastic and swelling properties were evaluated for the cured coating films. Properties have been discussed from the viewpoint of branched network and also the urethane segment present in the structure. The glass transition temperatures of the coating films were found to be in the range of 32–64°C. The modified castor oil coating films show better thermo-mechanical and viscoelastic properties in comparison with control (unmodified castor oil) coating films. This work delivers an effective and promising way to synthesize branched moieties in plant oil-based high performance coatings.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Allauddin, S, Narayan, R, Raju, KVSN, “Synthesis and Properties of Alkoxysilane Castor Oil and Their Polyurethane/Urea–Silica Hybrid Coating Films.” ACS. Sustain. Chem. Eng., 1 910–918 (2013)CrossRef Allauddin, S, Narayan, R, Raju, KVSN, “Synthesis and Properties of Alkoxysilane Castor Oil and Their Polyurethane/Urea–Silica Hybrid Coating Films.” ACS. Sustain. Chem. Eng., 1 910–918 (2013)CrossRef
2.
Zurück zum Zitat Shirkel, A, Bharatkumar, D, Ketan, K, “Novel Applications of Castor Oil Based Polyurethanes: A Short Review.” Polym. Sci. Ser. B., 57 (4) 292–297 (2015)CrossRef Shirkel, A, Bharatkumar, D, Ketan, K, “Novel Applications of Castor Oil Based Polyurethanes: A Short Review.” Polym. Sci. Ser. B., 57 (4) 292–297 (2015)CrossRef
3.
Zurück zum Zitat Petrovic, ZS, “Polyurethanes from Vegetable Oils.” Polym. Rev., 48 109–155 (2008)CrossRef Petrovic, ZS, “Polyurethanes from Vegetable Oils.” Polym. Rev., 48 109–155 (2008)CrossRef
4.
Zurück zum Zitat Pfister, DP, Xia, Y, Larock, RC, “Recent Advances in Vegetable Oil-Based Polyurethanes.” ChemSusChem, 4 (6) 703–717 (2011)CrossRef Pfister, DP, Xia, Y, Larock, RC, “Recent Advances in Vegetable Oil-Based Polyurethanes.” ChemSusChem, 4 (6) 703–717 (2011)CrossRef
5.
Zurück zum Zitat Lligadas, G, Ronda, JC, Galià, M, Cádiz, V, “Plant Oils as Platform Chemicals for Polyurethane Synthesis: Current State-of-the-Art.” Biomacromolecules, 11 (11) 2825–2835 (2010)CrossRef Lligadas, G, Ronda, JC, Galià, M, Cádiz, V, “Plant Oils as Platform Chemicals for Polyurethane Synthesis: Current State-of-the-Art.” Biomacromolecules, 11 (11) 2825–2835 (2010)CrossRef
6.
Zurück zum Zitat Ogunniyi, DS, “Castor Oil: A Vital Industrial Raw Material.” Bioresour. Technol., 97 (9) 1086–1091 (2006)CrossRef Ogunniyi, DS, “Castor Oil: A Vital Industrial Raw Material.” Bioresour. Technol., 97 (9) 1086–1091 (2006)CrossRef
7.
Zurück zum Zitat Achaya, KT, “Chemical Derivatives of Castor Oil.” J. Am. Oil Chem. Soc., 48 (11) 758–763 (1971)CrossRef Achaya, KT, “Chemical Derivatives of Castor Oil.” J. Am. Oil Chem. Soc., 48 (11) 758–763 (1971)CrossRef
8.
Zurück zum Zitat Ganetri, I, Tighzert, L, Dony, P, Challioui, A, “New Composites Based on Castor Oil with Isophorone Diisocyanate Polyurethanes and Cellulose Fibers.” J. Mater. Environ. Sci., 4 (4) 571–582 (2013) Ganetri, I, Tighzert, L, Dony, P, Challioui, A, “New Composites Based on Castor Oil with Isophorone Diisocyanate Polyurethanes and Cellulose Fibers.” J. Mater. Environ. Sci., 4 (4) 571–582 (2013)
9.
Zurück zum Zitat John, MJ, Thomas, S, Biofibres Biocompos. Carbohydr. Polym., 71 (3) 343–364 (2008)CrossRef John, MJ, Thomas, S, Biofibres Biocompos. Carbohydr. Polym., 71 (3) 343–364 (2008)CrossRef
10.
Zurück zum Zitat Teramoto, N, Saitoh, Y, Takahashi, A, Shibata, M, “Biodegradable Polyurethane Elastomers Prepared from Isocyanate-Terminated Poly(ethylene adipate), Castor Oil, and Glycerol.” J. Appl. Polym. Sci., 115 (6) 3199–3204 (2010)CrossRef Teramoto, N, Saitoh, Y, Takahashi, A, Shibata, M, “Biodegradable Polyurethane Elastomers Prepared from Isocyanate-Terminated Poly(ethylene adipate), Castor Oil, and Glycerol.” J. Appl. Polym. Sci., 115 (6) 3199–3204 (2010)CrossRef
11.
Zurück zum Zitat Zlatani, A, Lava, C, Zhang, W, “Effect of Structure On Properties of Polyols and Polyurethanes Based on Different Vegetable Oils.” J. Polym. Sci. Part B Polym. Phys., 42 (5) 809–819 (2004)CrossRef Zlatani, A, Lava, C, Zhang, W, “Effect of Structure On Properties of Polyols and Polyurethanes Based on Different Vegetable Oils.” J. Polym. Sci. Part B Polym. Phys., 42 (5) 809–819 (2004)CrossRef
12.
Zurück zum Zitat Guo, A, Demydov, D, Zhang, W, Petrovic, ZS, “Polyols and Polyurethanes from Hydroformylation of Soybean Oil.” J. Polym. Envir., 10 49–52 (2002)CrossRef Guo, A, Demydov, D, Zhang, W, Petrovic, ZS, “Polyols and Polyurethanes from Hydroformylation of Soybean Oil.” J. Polym. Envir., 10 49–52 (2002)CrossRef
13.
Zurück zum Zitat Guo, A, Cho, Y, Petrovic, ZS, “Structure and Properties of Halogenated and Nonhalogenated Soy-Based Polyols.” J. Polym. Sci. Part A Polym. Chem., 38 (21) 3900–3910 (2000)CrossRef Guo, A, Cho, Y, Petrovic, ZS, “Structure and Properties of Halogenated and Nonhalogenated Soy-Based Polyols.” J. Polym. Sci. Part A Polym. Chem., 38 (21) 3900–3910 (2000)CrossRef
14.
Zurück zum Zitat Allauddin, S, Varaprasad, S, Thumu, R, Rao, BVSK, Ramanuj, N, Raju, KVSN, “One-Pot Synthesis and Physicochemical Properties of High Functionality Soy Polyols and Their Polyurethane-Urea Coatings.” Ind. Crops Prod., 85 361–371 (2016)CrossRef Allauddin, S, Varaprasad, S, Thumu, R, Rao, BVSK, Ramanuj, N, Raju, KVSN, “One-Pot Synthesis and Physicochemical Properties of High Functionality Soy Polyols and Their Polyurethane-Urea Coatings.” Ind. Crops Prod., 85 361–371 (2016)CrossRef
15.
Zurück zum Zitat Kong, X, Liu, G, Jonathan, MC, “Novel Polyurethane Produced from Canola Oil Based Poly(ether ester) Polyols: Synthesis, Characterization and Properties.” Eur. Polym. J., 48 (12) 2097–2106 (2012)CrossRef Kong, X, Liu, G, Jonathan, MC, “Novel Polyurethane Produced from Canola Oil Based Poly(ether ester) Polyols: Synthesis, Characterization and Properties.” Eur. Polym. J., 48 (12) 2097–2106 (2012)CrossRef
16.
Zurück zum Zitat Achaya, KT, “Chemical Derivatives of Castor Oil.” J. Am. Oil Chem. Soc., 48 (11) 758–763 (1971)CrossRef Achaya, KT, “Chemical Derivatives of Castor Oil.” J. Am. Oil Chem. Soc., 48 (11) 758–763 (1971)CrossRef
17.
Zurück zum Zitat Nema, SK, “Production of Polyols Containing Basic Nitrogen.” U.S. Patent 4161482, 1979 Nema, SK, “Production of Polyols Containing Basic Nitrogen.” U.S. Patent 4161482, 1979
18.
Zurück zum Zitat Krishnamurthy, VN, Thomas, S, “ISRO Polyol—The Versatile Binder for Composite Solid Propellants for Launch Vehicles and Missiles.” Def. Sci. J., 37 (1) 29–37 (1987)CrossRef Krishnamurthy, VN, Thomas, S, “ISRO Polyol—The Versatile Binder for Composite Solid Propellants for Launch Vehicles and Missiles.” Def. Sci. J., 37 (1) 29–37 (1987)CrossRef
19.
Zurück zum Zitat Thakur, S, Barua, S, Karak, N, “Self-Healable Castor Oil Based Tough Smart Hyperbranched Polyurethane Nanocomposite with Antimicrobial Attributes.” RSC Adv., 5 2167–2176 (2015)CrossRef Thakur, S, Barua, S, Karak, N, “Self-Healable Castor Oil Based Tough Smart Hyperbranched Polyurethane Nanocomposite with Antimicrobial Attributes.” RSC Adv., 5 2167–2176 (2015)CrossRef
20.
Zurück zum Zitat Karak, N, Rana, S, Cho, JW, “Synthesis and Characterization of Castor-Oil-Modified Hyperbranched Polyurethanes.” J. Appl. Polym. Sci, 112 (2) 736–743 (2009)CrossRef Karak, N, Rana, S, Cho, JW, “Synthesis and Characterization of Castor-Oil-Modified Hyperbranched Polyurethanes.” J. Appl. Polym. Sci, 112 (2) 736–743 (2009)CrossRef
21.
Zurück zum Zitat Thakur, S, Karak, N, “Castor Oil-Based Hyperbranched Polyurethanes as Advanced Surface Coating Materials.” Prog. Org. Coat., 76 (1) 157–164 (2013)CrossRef Thakur, S, Karak, N, “Castor Oil-Based Hyperbranched Polyurethanes as Advanced Surface Coating Materials.” Prog. Org. Coat., 76 (1) 157–164 (2013)CrossRef
22.
Zurück zum Zitat Das, B, Konwar, U, Mandal, M, Karak, N, “Sunflower Oil Based Biodegradable Hyperbranched Polyurethane as a Thin Film Material.” Ind. Crops Prod., 44 396–404 (2013)CrossRef Das, B, Konwar, U, Mandal, M, Karak, N, “Sunflower Oil Based Biodegradable Hyperbranched Polyurethane as a Thin Film Material.” Ind. Crops Prod., 44 396–404 (2013)CrossRef
23.
Zurück zum Zitat Moghadam, PN, Yarmohamadi, M, Hasanzadeh, R, Nuri, S, “Preparation of Polyurethane Wood Adhesives by Polyols Formulated with Polyester Polyols Based on Castor Oil.” Int. J. Adhes. Adhes., 68 273–282 (2016)CrossRef Moghadam, PN, Yarmohamadi, M, Hasanzadeh, R, Nuri, S, “Preparation of Polyurethane Wood Adhesives by Polyols Formulated with Polyester Polyols Based on Castor Oil.” Int. J. Adhes. Adhes., 68 273–282 (2016)CrossRef
24.
Zurück zum Zitat Meer, KMS, Sankar, RM, Paul, J, Jaisankara, SN, Mandal, AB, “The Influence of Applied Silica Nanoparticles on a Bio-Renewable Castor Oil Based Polyurethane Nanocomposite and Its Physicochemical Properties.” Phys. Chem. Chem. Phys, 16 9276–9288 (2014)CrossRef Meer, KMS, Sankar, RM, Paul, J, Jaisankara, SN, Mandal, AB, “The Influence of Applied Silica Nanoparticles on a Bio-Renewable Castor Oil Based Polyurethane Nanocomposite and Its Physicochemical Properties.” Phys. Chem. Chem. Phys, 16 9276–9288 (2014)CrossRef
25.
Zurück zum Zitat Ahmad, S, Zafar, F, Sharmin, E, Garg, N, Kashif, M, “Synthesis and Characterization of Corrosion Protective Polyurethanefattyamide/Silica Hybrid Coating Material.” Prog. Org. Coat, 73 (1) 112–117 (2012)CrossRef Ahmad, S, Zafar, F, Sharmin, E, Garg, N, Kashif, M, “Synthesis and Characterization of Corrosion Protective Polyurethanefattyamide/Silica Hybrid Coating Material.” Prog. Org. Coat, 73 (1) 112–117 (2012)CrossRef
26.
Zurück zum Zitat Williams, GI, Wool, RP, “Composites from Natural Fibers and Soy Oil Resins.” Appl. Compos. Mater., 7 421–432 (2000)CrossRef Williams, GI, Wool, RP, “Composites from Natural Fibers and Soy Oil Resins.” Appl. Compos. Mater., 7 421–432 (2000)CrossRef
27.
Zurück zum Zitat Lligadas, G, Ronda, JC, Marina, G, Cadiz, V, “Bionanocomposites from Renewable Resources: Epoxidized Linseed Oil − Polyhedral Oligomeric Silsesquioxanes Hybrid Materials.” Biomacromolecules, 7 (12) 3521–3526 (2006)CrossRef Lligadas, G, Ronda, JC, Marina, G, Cadiz, V, “Bionanocomposites from Renewable Resources: Epoxidized Linseed Oil − Polyhedral Oligomeric Silsesquioxanes Hybrid Materials.” Biomacromolecules, 7 (12) 3521–3526 (2006)CrossRef
28.
Zurück zum Zitat Hiroshi, U, Mai, K, Takashi, T, Mitsuru, N, Arimitsu, U, Shiro, K, “Green Nanocomposites from Renewable Resources: Plant Oil − Clay Hybrid Materials.” Chem. Mater., 15 (13) 2492–2494 (2003)CrossRef Hiroshi, U, Mai, K, Takashi, T, Mitsuru, N, Arimitsu, U, Shiro, K, “Green Nanocomposites from Renewable Resources: Plant Oil − Clay Hybrid Materials.” Chem. Mater., 15 (13) 2492–2494 (2003)CrossRef
29.
Zurück zum Zitat Siyanbola, TO, Sasidhar, K, Anjaneyulu, B, Kumar, KP, Rao, BVSK, Ramanuj, N, Olaofe, O, Akintayo, ET, Raju, KVSN, “Anti-Microbial and Anti-Corrosive Poly (ester amide urethane) Siloxane Modified ZnO Hybrid Coatings from Thevetia Peruviana Seed Oil.” J. Mater. Sci, 48 (23) 8215–8227 (2013)CrossRef Siyanbola, TO, Sasidhar, K, Anjaneyulu, B, Kumar, KP, Rao, BVSK, Ramanuj, N, Olaofe, O, Akintayo, ET, Raju, KVSN, “Anti-Microbial and Anti-Corrosive Poly (ester amide urethane) Siloxane Modified ZnO Hybrid Coatings from Thevetia Peruviana Seed Oil.” J. Mater. Sci, 48 (23) 8215–8227 (2013)CrossRef
30.
Zurück zum Zitat Lligadas, G, Callau, L, Ronda, JC, Galia, M, Cadiz, V, “Novel Organic–Inorganic Hybrid materials from Renewable Resources: Hydrosilylation of Fatty Acid Derivatives.” J. Poly. Sci. Part A: Poly. Chem., 43 (24) 6295–6307 (2005)CrossRef Lligadas, G, Callau, L, Ronda, JC, Galia, M, Cadiz, V, “Novel Organic–Inorganic Hybrid materials from Renewable Resources: Hydrosilylation of Fatty Acid Derivatives.” J. Poly. Sci. Part A: Poly. Chem., 43 (24) 6295–6307 (2005)CrossRef
31.
Zurück zum Zitat Wold, CR, Soucek, MD, “Viscoelastic and Thermal Properties of Linseed Oil-Based Creamer Coatings.” Macromol. Chem. Phys., 201 382–392 (2000)CrossRef Wold, CR, Soucek, MD, “Viscoelastic and Thermal Properties of Linseed Oil-Based Creamer Coatings.” Macromol. Chem. Phys., 201 382–392 (2000)CrossRef
32.
Zurück zum Zitat Lligadas, G, Ronda, JC, Marina, G, Cadiz, V, “Novel Silicon-Containing Polyurethanes from Vegetable Oils as Renewable Resources. Synthesis and Properties.” Biomacromolecules, 7 (8) 2420–2426 (2006)CrossRef Lligadas, G, Ronda, JC, Marina, G, Cadiz, V, “Novel Silicon-Containing Polyurethanes from Vegetable Oils as Renewable Resources. Synthesis and Properties.” Biomacromolecules, 7 (8) 2420–2426 (2006)CrossRef
33.
Zurück zum Zitat Kamal, MSM, Rajavelu, MS, Sellamuthu, NJ, Asit, BM, “Physicochemical Studies on Polyurethane/Siloxane Cross-Linked Films for Hydrophobic Surfaces by the Sol-Gel Process.” J. Phys. Chem. B, 117 (9) 2682–2694 (2013)CrossRef Kamal, MSM, Rajavelu, MS, Sellamuthu, NJ, Asit, BM, “Physicochemical Studies on Polyurethane/Siloxane Cross-Linked Films for Hydrophobic Surfaces by the Sol-Gel Process.” J. Phys. Chem. B, 117 (9) 2682–2694 (2013)CrossRef
34.
Zurück zum Zitat Ivan, SR, Jaroslava, B, Ivan, K, Helena, V, Radmila, R, Suzana, C, Nada, N, “The Properties of Polyurethane Hybrid Materials Based on Castor Oil.” Mater. Chem. Phys., 132 (1) 74–81 (2012)CrossRef Ivan, SR, Jaroslava, B, Ivan, K, Helena, V, Radmila, R, Suzana, C, Nada, N, “The Properties of Polyurethane Hybrid Materials Based on Castor Oil.” Mater. Chem. Phys., 132 (1) 74–81 (2012)CrossRef
35.
Zurück zum Zitat Allauddin, S, Narayan, R, Raju, KVSN, “Synthesis and Properties of Siloxane-Crosslinked Polyurethane urea/Silica Hybrid Films from Castor Oil.” J. Coat. Technol. Res., 11 (3) 397–407 (2014)CrossRef Allauddin, S, Narayan, R, Raju, KVSN, “Synthesis and Properties of Siloxane-Crosslinked Polyurethane urea/Silica Hybrid Films from Castor Oil.” J. Coat. Technol. Res., 11 (3) 397–407 (2014)CrossRef
36.
Zurück zum Zitat Cumurcu, AA, Erciyes, T, “Synthesis and Properties of Alkoxysilane-Functionalized Urethane Oil/Titania Hybrid Films.” Prog. Org. Coat., 67 (3) 317–323 (2010)CrossRef Cumurcu, AA, Erciyes, T, “Synthesis and Properties of Alkoxysilane-Functionalized Urethane Oil/Titania Hybrid Films.” Prog. Org. Coat., 67 (3) 317–323 (2010)CrossRef
37.
Zurück zum Zitat Akram, D, Sharmin, E, Ahmad, S, “Linseed Polyurethane/Tetraethoxyorthosilane/Fumed Silica Hybrid Nanocomposite Coatings: Physico-Mechanical and Potentiodynamic Polarization Measurements Studies.” Prog. Org. Coat., 77 (5) 957–964 (2014)CrossRef Akram, D, Sharmin, E, Ahmad, S, “Linseed Polyurethane/Tetraethoxyorthosilane/Fumed Silica Hybrid Nanocomposite Coatings: Physico-Mechanical and Potentiodynamic Polarization Measurements Studies.” Prog. Org. Coat., 77 (5) 957–964 (2014)CrossRef
38.
Zurück zum Zitat Nayak, P, Mishra, DK, Parida, D, Sahoo, KC, Nanda, M, Lenka, S, Nayak, PL, “Polymers from Renewable Resources. IX. Interpenetrating Polymer Networks Based on Castor Oil Polyurethane Poly(hydroxyethyl methacrylate): Synthesis, Chemical, Thermal, and Mechanical Properties.” J. Appl. Polym. Sci., 63 (5) 671–679 (1997)CrossRef Nayak, P, Mishra, DK, Parida, D, Sahoo, KC, Nanda, M, Lenka, S, Nayak, PL, “Polymers from Renewable Resources. IX. Interpenetrating Polymer Networks Based on Castor Oil Polyurethane Poly(hydroxyethyl methacrylate): Synthesis, Chemical, Thermal, and Mechanical Properties.” J. Appl. Polym. Sci., 63 (5) 671–679 (1997)CrossRef
39.
Zurück zum Zitat Athawale, VD, Raut, SS, “New Interpenetrating Polymer Networks Based on Uralkyd/Poly(glycidyl methacrylate).” E. Polym. J., 38 (10) 2033–2040 (2002)CrossRef Athawale, VD, Raut, SS, “New Interpenetrating Polymer Networks Based on Uralkyd/Poly(glycidyl methacrylate).” E. Polym. J., 38 (10) 2033–2040 (2002)CrossRef
40.
Zurück zum Zitat Prashantha, K, Pai, KV, Sherigara, BS, Prasannakumar, S, “Interpenetrating Polymer Networks Based on Polyol Modified Castor Oil Polyurethane and Poly(2- hydroxyethylmethacrylate): Synthesis, Chemical, Mechanical and Thermal Properties.” Bull. Mater. Sci., 24 (5) 535–538 (2001)CrossRef Prashantha, K, Pai, KV, Sherigara, BS, Prasannakumar, S, “Interpenetrating Polymer Networks Based on Polyol Modified Castor Oil Polyurethane and Poly(2- hydroxyethylmethacrylate): Synthesis, Chemical, Mechanical and Thermal Properties.” Bull. Mater. Sci., 24 (5) 535–538 (2001)CrossRef
41.
Zurück zum Zitat Hsieh, TT, Hsieh, KH, Simon, GP, Tiu, C, Hsu, HP, “Effect of Crosslinking Density on the Physical Properties of Interpenetrating Polymer Networks of Polyurethane and 2- Hydroxyethyl Methacrylate-Teminated Polyurethane.” J. Polym. Res., 5 (3) 153–162 (1998)CrossRef Hsieh, TT, Hsieh, KH, Simon, GP, Tiu, C, Hsu, HP, “Effect of Crosslinking Density on the Physical Properties of Interpenetrating Polymer Networks of Polyurethane and 2- Hydroxyethyl Methacrylate-Teminated Polyurethane.” J. Polym. Res., 5 (3) 153–162 (1998)CrossRef
43.
Zurück zum Zitat Uma, MS, Hama, DS, Choa, SK, Lee, SJ, Kima, K, Lee, JH, Choac, S, Jung, HW, Choia, WJ, “Surface Mechanical Properties of Poly(urethane acrylate)/Silica Hybrid Interpenetrating Polymer Network (IPN) Coatings.” Prog. Org. Coat., 97 166–174 (2016)CrossRef Uma, MS, Hama, DS, Choa, SK, Lee, SJ, Kima, K, Lee, JH, Choac, S, Jung, HW, Choia, WJ, “Surface Mechanical Properties of Poly(urethane acrylate)/Silica Hybrid Interpenetrating Polymer Network (IPN) Coatings.” Prog. Org. Coat., 97 166–174 (2016)CrossRef
44.
Zurück zum Zitat Mihail, I, Dragana, R, Xianmei, W, Maha, LS, Zoran, SP, Thomas, AU, “Highly Functional Polyols from Castor Oil for Rigid Polyurethanes.” Eur. Polym. J., 84 736–749 (2016)CrossRef Mihail, I, Dragana, R, Xianmei, W, Maha, LS, Zoran, SP, Thomas, AU, “Highly Functional Polyols from Castor Oil for Rigid Polyurethanes.” Eur. Polym. J., 84 736–749 (2016)CrossRef
45.
Zurück zum Zitat Savita, K, Aswini, KM, Krishna, AVR, Raju, KVSN, “Organically Modified Montmorillonite Hyperbranched Polyurethane–Urea Hybrid Composites.” Prog. Org. Coat., 60 (1) 54–62 (2007)CrossRef Savita, K, Aswini, KM, Krishna, AVR, Raju, KVSN, “Organically Modified Montmorillonite Hyperbranched Polyurethane–Urea Hybrid Composites.” Prog. Org. Coat., 60 (1) 54–62 (2007)CrossRef
46.
Zurück zum Zitat Kishore, KJ, Raju, KVSN, Prathab, B, Tejraj, MA, “Hyperbranched Polyesters: Synthesis, Characterization, and Molecular Simulations.” J. Phys. Chem. B., 111 8801–8811 (2007)CrossRef Kishore, KJ, Raju, KVSN, Prathab, B, Tejraj, MA, “Hyperbranched Polyesters: Synthesis, Characterization, and Molecular Simulations.” J. Phys. Chem. B., 111 8801–8811 (2007)CrossRef
47.
Zurück zum Zitat Varaprasad, S, Allauddin, S, Ramanuj, N, Raju, KVSN, “Synthesis of a Novel Glycerol Based B3-type Monomer and its Application in Hyperbranched Polyester Urethane–Urea Coatings.” RSC Adv., 5 74003–74011 (2015)CrossRef Varaprasad, S, Allauddin, S, Ramanuj, N, Raju, KVSN, “Synthesis of a Novel Glycerol Based B3-type Monomer and its Application in Hyperbranched Polyester Urethane–Urea Coatings.” RSC Adv., 5 74003–74011 (2015)CrossRef
48.
Zurück zum Zitat Savita, K, Aswini, KM, Dipak, KC, Raju, KVSN, “Synthesis and Characterization of Hyperbranched Polyesters and Polyurethane Coatings.” J. Poly. Sci. Part A Poly. Chem, 45 (13) 2673–2688 (2007)CrossRef Savita, K, Aswini, KM, Dipak, KC, Raju, KVSN, “Synthesis and Characterization of Hyperbranched Polyesters and Polyurethane Coatings.” J. Poly. Sci. Part A Poly. Chem, 45 (13) 2673–2688 (2007)CrossRef
49.
Zurück zum Zitat Marcel, SF, Jie, LK, Mustafa, J, “High-Resolution Nuclear Magnetic Resonance Spectroscopy—Applications to Fatty Acids and Triacylglycerols.” Lipids, 32 (10) 1019–1034 (1997)CrossRef Marcel, SF, Jie, LK, Mustafa, J, “High-Resolution Nuclear Magnetic Resonance Spectroscopy—Applications to Fatty Acids and Triacylglycerols.” Lipids, 32 (10) 1019–1034 (1997)CrossRef
50.
Zurück zum Zitat Ionescu, M, Chemistry and Technology of Polyols for Polyurethanes, Chapter 2. Rapra, Shawbury (2005) Ionescu, M, Chemistry and Technology of Polyols for Polyurethanes, Chapter 2. Rapra, Shawbury (2005)
51.
Zurück zum Zitat Tran, P, Graiver, D, Narayan, R, “Ozone-Mediated Polyol Synthesis from Soybean Oil.” J. Am. Oil Chem. Soc., 82 (9) 653–659 (2005)CrossRef Tran, P, Graiver, D, Narayan, R, “Ozone-Mediated Polyol Synthesis from Soybean Oil.” J. Am. Oil Chem. Soc., 82 (9) 653–659 (2005)CrossRef
52.
Zurück zum Zitat Pion, F, Jena, KK, Allauddin, S, Ramanuj, N, Raju, KVSN, “Preparation and Characterization of Waterborne Hyperbranched Polyurethane-Urea and Their Hybrid Coatings.” Ind. Eng. Chem. Res., 49 (10) 4517–4527 (2010)CrossRef Pion, F, Jena, KK, Allauddin, S, Ramanuj, N, Raju, KVSN, “Preparation and Characterization of Waterborne Hyperbranched Polyurethane-Urea and Their Hybrid Coatings.” Ind. Eng. Chem. Res., 49 (10) 4517–4527 (2010)CrossRef
53.
Zurück zum Zitat Kong, X, Liu, G, Curtis, JM, “Novel Polyurethane Produced from Canola Oil Based Poly(ether ester) Polyols: Synthesis, Characterization and Properties.” Eur. Poly. J., 48 (12) 2097–2106 (2012)CrossRef Kong, X, Liu, G, Curtis, JM, “Novel Polyurethane Produced from Canola Oil Based Poly(ether ester) Polyols: Synthesis, Characterization and Properties.” Eur. Poly. J., 48 (12) 2097–2106 (2012)CrossRef
54.
Zurück zum Zitat Javni, I, Petrović, ZS, Guo, A, Fuller, R, “Thermal Stability of Polyurethanes Based on Vegetable Oils.” J. Appl. Polym. Sci., 77 (8) 1723–1734 (2000)CrossRef Javni, I, Petrović, ZS, Guo, A, Fuller, R, “Thermal Stability of Polyurethanes Based on Vegetable Oils.” J. Appl. Polym. Sci., 77 (8) 1723–1734 (2000)CrossRef
55.
Zurück zum Zitat Hablot, E, Zheng, D, Bouquey, M, Avérous, L, “Polyurethanes Based on Castor Oil: Kinetics, Chemical, Mechanical and Thermal Properties.” Macromol. Mat. Eng., 293 (11) 922–929 (2008)CrossRef Hablot, E, Zheng, D, Bouquey, M, Avérous, L, “Polyurethanes Based on Castor Oil: Kinetics, Chemical, Mechanical and Thermal Properties.” Macromol. Mat. Eng., 293 (11) 922–929 (2008)CrossRef
56.
Zurück zum Zitat Petrovic, ZS, Zavargo, Z, Flyn, JH, Macknight, WJ, “Thermal Degradation of Segmented Polyurethanes.” J. Appl. Polym. Sci., 51 (6) 1087–1095 (1994)CrossRef Petrovic, ZS, Zavargo, Z, Flyn, JH, Macknight, WJ, “Thermal Degradation of Segmented Polyurethanes.” J. Appl. Polym. Sci., 51 (6) 1087–1095 (1994)CrossRef
Metadaten
Titel
Synthesis and characterization of castor oil-based branched polyols from renewable resources and their polyurethane-urea coatings
verfasst von
Allauddin Shaik
Kabir Baidya
Kirankumar Nehete
Subarna Shyamroy
Publikationsdatum
20.08.2018
Verlag
Springer US
Erschienen in
Journal of Coatings Technology and Research / Ausgabe 2/2019
Print ISSN: 1547-0091
Elektronische ISSN: 1935-3804
DOI
https://doi.org/10.1007/s11998-018-0118-8

Weitere Artikel der Ausgabe 2/2019

Journal of Coatings Technology and Research 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.