Skip to main content
Erschienen in:
Buchtitelbild

2020 | OriginalPaper | Buchkapitel

Synthesis and Characterization of Nanofluids: Thermal Conductivity, Electrical Conductivity and Particle Size Distribution

verfasst von : Divya P. Barai, Kalyani K. Chichghare, Shivani S. Chawhan, Bharat A. Bhanvase

Erschienen in: Nanotechnology for Energy and Environmental Engineering

Verlag: Springer International Publishing

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

A new type of fluid, called nanofluid, has found numerous applications in engineering sector due to its outstanding properties. These are known as suspensions of nano-sized particles in fluids called basefluids. The suspension of these nanoparticles in the basefluid shows significant influence on its physical properties. In view of this, in the present book chapter, the properties of the nanofluid like its thermal conductivity, electrical conductivity and so on have been discussed and the notable studies carried out in the past have been summarized. Several factors that are responsible for the alteration of the properties of nanofluids at varying degrees are identified and discussed in this chapter. Further, these properties contribute to the distinctive applications of nanofluids in various engineering fields, which are reviewed and discussed in this chapter.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
Zurück zum Zitat Abdolbaqi MKh, Azmi WH, Mamat R, Sharma KV, Najafi G (2016) Experimental investigation of thermal conductivity and electrical conductivity of bioglycol-water mixture based Al2O3 nanofluid. Appl Therm Eng 102:932–941 Abdolbaqi MKh, Azmi WH, Mamat R, Sharma KV, Najafi G (2016) Experimental investigation of thermal conductivity and electrical conductivity of bioglycol-water mixture based Al2O3 nanofluid. Appl Therm Eng 102:932–941
Zurück zum Zitat Adio SA, Sharifpur M, Meyer JP (2015a) Factors affecting the pH and electrical conductivity of MgO-ethylene glycol nanofluids. Bull Mater Sci 38:1345–1357 Adio SA, Sharifpur M, Meyer JP (2015a) Factors affecting the pH and electrical conductivity of MgO-ethylene glycol nanofluids. Bull Mater Sci 38:1345–1357
Zurück zum Zitat Adio SA, Sharifpur M, Meyer JP (2015b) Investigation into effective viscosity, electrical conductivity, and pH of γ-Al2O3-glycerol nanofluids in Einstein concentration regime. Heat Trans Eng 38:1241–1251 Adio SA, Sharifpur M, Meyer JP (2015b) Investigation into effective viscosity, electrical conductivity, and pH of γ-Al2O3-glycerol nanofluids in Einstein concentration regime. Heat Trans Eng 38:1241–1251
Zurück zum Zitat Aghayari R, Maddah H, Ahmadi MH, Yan W, Ghasemi N (2018) Measurement and artificial neural network modeling of electrical conductivity of CuO/glycerol nanofluids at various thermal and concentration conditions. Energies 11:1190 Aghayari R, Maddah H, Ahmadi MH, Yan W, Ghasemi N (2018) Measurement and artificial neural network modeling of electrical conductivity of CuO/glycerol nanofluids at various thermal and concentration conditions. Energies 11:1190
Zurück zum Zitat Ahammed N, Asirvatham LG, Titus J, Bose JR, Wongwises S (2016) Measurement of thermal conductivity of graphene–water nanofluid at below and above ambient temperatures. Int Commun Heat Mass 70:66–74 Ahammed N, Asirvatham LG, Titus J, Bose JR, Wongwises S (2016) Measurement of thermal conductivity of graphene–water nanofluid at below and above ambient temperatures. Int Commun Heat Mass 70:66–74
Zurück zum Zitat Akoh H, Tsukasaki Y, Yatsuya S, Tasaki A (1978) Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate. J Crystal Growth 45:495–500 Akoh H, Tsukasaki Y, Yatsuya S, Tasaki A (1978) Magnetic properties of ferromagnetic ultrafine particles prepared by vacuum evaporation on running oil substrate. J Crystal Growth 45:495–500
Zurück zum Zitat Alawi OA, Sidik NAC, Xian HW, Kean TH, Kazi SN (2018) Thermal conductivity and viscosity models of metallic oxides nanofluids. Int J Heat Mass Transf 116:1314–1325 Alawi OA, Sidik NAC, Xian HW, Kean TH, Kazi SN (2018) Thermal conductivity and viscosity models of metallic oxides nanofluids. Int J Heat Mass Transf 116:1314–1325
Zurück zum Zitat Ali FM, Yunus MM, Moksin MM, Talib ZA (2010) The effect of volume fraction concentration on the thermal conductivity and thermal diffusivity of nanofluids: numerical and experimental. Rev Sci Instrum 81:074901 Ali FM, Yunus MM, Moksin MM, Talib ZA (2010) The effect of volume fraction concentration on the thermal conductivity and thermal diffusivity of nanofluids: numerical and experimental. Rev Sci Instrum 81:074901
Zurück zum Zitat Ali HM, Ali H, Liaquat H, Maqsood HTB, Nadir MA (2015) Experimental investigation of convective heat transfer augmentation for car radiator using ZnO-water nanofluids. Energy 84:317–324 Ali HM, Ali H, Liaquat H, Maqsood HTB, Nadir MA (2015) Experimental investigation of convective heat transfer augmentation for car radiator using ZnO-water nanofluids. Energy 84:317–324
Zurück zum Zitat Askari S, Koolivand H, Pourkhalil M, Lotfi R, Rashidi A (2017) Investigation of Fe3O4/Graphene nanohybrid heat transfer properties: experimental approach. Int Commun Heat Mass 87:30–39 Askari S, Koolivand H, Pourkhalil M, Lotfi R, Rashidi A (2017) Investigation of Fe3O4/Graphene nanohybrid heat transfer properties: experimental approach. Int Commun Heat Mass 87:30–39
Zurück zum Zitat Azimi M, Ommi F (2013) Using nanofluid for heat transfer enhancement in engine cooling process. J Nano Energy Power Res 2:1–3 Azimi M, Ommi F (2013) Using nanofluid for heat transfer enhancement in engine cooling process. J Nano Energy Power Res 2:1–3
Zurück zum Zitat Azimi HR, Taheri R (2015) Electrical conductivity of CuO nanofluids. Int J Nano Dimens 6:77–81 Azimi HR, Taheri R (2015) Electrical conductivity of CuO nanofluids. Int J Nano Dimens 6:77–81
Zurück zum Zitat Baby TT, Ramaprabhu S (2010) Investigation of thermal and electrical conductivity of graphene based nanofluids. J Appl Phys 108:124308 Baby TT, Ramaprabhu S (2010) Investigation of thermal and electrical conductivity of graphene based nanofluids. J Appl Phys 108:124308
Zurück zum Zitat Bagheli S, Fadafan HK, Orimi RL, Ghaemi M (2015) Synthesis and experimental investigation of the electrical conductivity of water based magnetite nanofluids. Powder Technol 274:426–430 Bagheli S, Fadafan HK, Orimi RL, Ghaemi M (2015) Synthesis and experimental investigation of the electrical conductivity of water based magnetite nanofluids. Powder Technol 274:426–430
Zurück zum Zitat Bhanvase BA, Sarode MR, Putterwar LA, Abdullah KA, Deosarkar MP, Sonawane SH (2014) Intensification of convective heat transfer in water/ethylene glycol based nanofluids containing TiO2 nanoparticles. Chem Eng Process 82:123–131 Bhanvase BA, Sarode MR, Putterwar LA, Abdullah KA, Deosarkar MP, Sonawane SH (2014) Intensification of convective heat transfer in water/ethylene glycol based nanofluids containing TiO2 nanoparticles. Chem Eng Process 82:123–131
Zurück zum Zitat Bhanvase BA, Sayankar SD, Kapre A, Fule PJ, Sonawane SH (2018) Experimental investigation on intensified convective heat transfer coefficient of water based PANI nanofluid in vertical helical coiled heat exchanger. Appl Therm Eng 128:134–140 Bhanvase BA, Sayankar SD, Kapre A, Fule PJ, Sonawane SH (2018) Experimental investigation on intensified convective heat transfer coefficient of water based PANI nanofluid in vertical helical coiled heat exchanger. Appl Therm Eng 128:134–140
Zurück zum Zitat Bozorgan N, Shafahi M (2017) Analysis of gasketed-plate heat exchanger performance using nanofluid. J Heat Mass Trans Res 4:65–72 Bozorgan N, Shafahi M (2017) Analysis of gasketed-plate heat exchanger performance using nanofluid. J Heat Mass Trans Res 4:65–72
Zurück zum Zitat Bruggeman DAG (1935a) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Ann Phys (Leipzig) 24:636 Bruggeman DAG (1935a) Berechnung verschiedener physikalischer Konstanten von heterogenen Substanzen. Ann Phys (Leipzig) 24:636
Zurück zum Zitat Bruggeman DAG (1935b) Dielectric constant and conductivity of mixtures of isotropic materials. Ann Phys (Leipzig) 24:636–679 Bruggeman DAG (1935b) Dielectric constant and conductivity of mixtures of isotropic materials. Ann Phys (Leipzig) 24:636–679
Zurück zum Zitat Chakraborty S (2019) An investigation on the long-term stability of TiO2 nanofluid. Mater Today Proc 11:714–718 Chakraborty S (2019) An investigation on the long-term stability of TiO2 nanofluid. Mater Today Proc 11:714–718
Zurück zum Zitat Chakraborty S, Padhy S (2008) Anomalous electrical conductivity of nanoscale colloidal suspensions. ACS Nano 2:2029–2036 Chakraborty S, Padhy S (2008) Anomalous electrical conductivity of nanoscale colloidal suspensions. ACS Nano 2:2029–2036
Zurück zum Zitat Chieruzzi M, Cerritelli GF, Miliozzi A, Kenny JM (2013) Effect of nanoprticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage. Nanoscale Res Lett 8:448 Chieruzzi M, Cerritelli GF, Miliozzi A, Kenny JM (2013) Effect of nanoprticles on heat capacity of nanofluids based on molten salts as PCM for thermal energy storage. Nanoscale Res Lett 8:448
Zurück zum Zitat Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Publications FED-vol. 231/MD 66:99–105 Choi SUS (1995) Enhancing thermal conductivity of fluids with nanoparticles. ASME Publications FED-vol. 231/MD 66:99–105
Zurück zum Zitat Choi SUS, Yu W, Hull JR, Zhang ZG, Lockwood FE (2001) Nanofluids for vehicle thermal management. In: Proceedings of the 2001 vehicle thermal management systems conference, society of automotive engineers Choi SUS, Yu W, Hull JR, Zhang ZG, Lockwood FE (2001) Nanofluids for vehicle thermal management. In: Proceedings of the 2001 vehicle thermal management systems conference, society of automotive engineers
Zurück zum Zitat Chopkar M, Sudarshan S, Das PK, Manna I (2008) Effect of particle size on thermal conductivity of nanofluid. Metall. Mater. Trans Metall Mater Trans A 39A:1535–1542 Chopkar M, Sudarshan S, Das PK, Manna I (2008) Effect of particle size on thermal conductivity of nanofluid. Metall. Mater. Trans Metall Mater Trans A 39A:1535–1542
Zurück zum Zitat Coelho MF, Rivas MA, Vilao G, Nogueira EM, Iglesias TP (2019) Permittivity and electrical conductivity of copper oxide nanofluid (12 nm) in water at different temperatures. J Chem Thermodyn 132:164–173 Coelho MF, Rivas MA, Vilao G, Nogueira EM, Iglesias TP (2019) Permittivity and electrical conductivity of copper oxide nanofluid (12 nm) in water at different temperatures. J Chem Thermodyn 132:164–173
Zurück zum Zitat Colla L, Marinelli L, Fedele L, Bobbo S, Manca O (2014) Characterization and simulation of the heat transfer behavior of water-based ZnO nanofluids. J Nanosci Nanotechnol 14:1–11 Colla L, Marinelli L, Fedele L, Bobbo S, Manca O (2014) Characterization and simulation of the heat transfer behavior of water-based ZnO nanofluids. J Nanosci Nanotechnol 14:1–11
Zurück zum Zitat Crisostomo F, Hjerrild N, Mesgari S, Li Q, Taylor RA (2017) A hybrid PV/T collector using spectrally selective absorbing nanofluids. Appl Energy 193:1–14 Crisostomo F, Hjerrild N, Mesgari S, Li Q, Taylor RA (2017) A hybrid PV/T collector using spectrally selective absorbing nanofluids. Appl Energy 193:1–14
Zurück zum Zitat Cruz RCD, Reinshagen J, Oberacker R, Segadães AM, Hoffmann MJ (2005) Electrical conductivity and stability of concentrated aqueous alumina suspensions. J Colloid Interface Sci 286:579–588 Cruz RCD, Reinshagen J, Oberacker R, Segadães AM, Hoffmann MJ (2005) Electrical conductivity and stability of concentrated aqueous alumina suspensions. J Colloid Interface Sci 286:579–588
Zurück zum Zitat Darvanjooghi MHK, Esfahany MN (2016) Experimental investigation of the effect of nanoparticle size on thermal conductivity of in-situ prepared silica–ethanol nanofluid. Int Commun Heat Mass 7:148–154 Darvanjooghi MHK, Esfahany MN (2016) Experimental investigation of the effect of nanoparticle size on thermal conductivity of in-situ prepared silica–ethanol nanofluid. Int Commun Heat Mass 7:148–154
Zurück zum Zitat Das SK, Choi SUS, Patel HE (2006) Heat transfer in nanofluids—a review. Heat Transf Eng 27:3–19 Das SK, Choi SUS, Patel HE (2006) Heat transfer in nanofluids—a review. Heat Transf Eng 27:3–19
Zurück zum Zitat Das PK, Mallik AK, Ganguly R, Santra AK (2016) Synthesis and characterization of TiO2–water nanofluids with different surfactants. Int Commun Heat Mass Transf 75:341–348 Das PK, Mallik AK, Ganguly R, Santra AK (2016) Synthesis and characterization of TiO2–water nanofluids with different surfactants. Int Commun Heat Mass Transf 75:341–348
Zurück zum Zitat Dhamoon RK, Popli H, Aggarwal G, Gupta M (2018) Particle size characterization techniques, factors and quality-by-design approach. Int J Drug Deliv 10:1–11 Dhamoon RK, Popli H, Aggarwal G, Gupta M (2018) Particle size characterization techniques, factors and quality-by-design approach. Int J Drug Deliv 10:1–11
Zurück zum Zitat Dill NJ (2005) Fuel cell stack coolant conductivity monitoring circuit, ed: US Patent 6, 838, 201 Dill NJ (2005) Fuel cell stack coolant conductivity monitoring circuit, ed: US Patent 6, 838, 201
Zurück zum Zitat Dong M, Shen LP, Wang H, Wang HB, Miao J (2013) Investigation on the electrical conductivity of transformer oil-based AlN nanofluid. J Nanomater 2013; 7 pages Dong M, Shen LP, Wang H, Wang HB, Miao J (2013) Investigation on the electrical conductivity of transformer oil-based AlN nanofluid. J Nanomater 2013; 7 pages
Zurück zum Zitat Du M, Tang GH (2015) Optical property of nanofluids with particle agglomeration. Sol Energy 122:864–872 Du M, Tang GH (2015) Optical property of nanofluids with particle agglomeration. Sol Energy 122:864–872
Zurück zum Zitat Duangthongsuk W, Wongwises S (2009) Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp Therm Fluid Sci 33:706–714 Duangthongsuk W, Wongwises S (2009) Measurement of temperature-dependent thermal conductivity and viscosity of TiO2-water nanofluids. Exp Therm Fluid Sci 33:706–714
Zurück zum Zitat Eastman JA, Choi US, Li S, Thompson LJ, Lee S (1997) Enhanced thermal conductivity through the development of nanofluids. In: Materials research society symposium proceedings. Materials research society, vol 4576. Pittsburgh, PA, USA, Boston, MA, USA, pp 3–11 Eastman JA, Choi US, Li S, Thompson LJ, Lee S (1997) Enhanced thermal conductivity through the development of nanofluids. In: Materials research society symposium proceedings. Materials research society, vol 4576. Pittsburgh, PA, USA, Boston, MA, USA, pp 3–11
Zurück zum Zitat Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720 Eastman JA, Choi SUS, Li S, Yu W, Thompson LJ (2001) Anomalously increased effective thermal conductivities of ethylene glycol-based nanofluids containing copper nanoparticles. Appl Phys Lett 78:718–720
Zurück zum Zitat Elhamid MHA, Mikhail YM, Blunk RH, Lisi DJ (2004) Inexpensive dielectric coolant for fuel cell stacks, ed: Google Patents Elhamid MHA, Mikhail YM, Blunk RH, Lisi DJ (2004) Inexpensive dielectric coolant for fuel cell stacks, ed: Google Patents
Zurück zum Zitat Elias MM, Mahbubul IM, Saidur MR, Shahrul IM, Khaleduzzaman SS, Sadeghipour S (2014) Experimental investigation on the thermo-physical properties of Al2O3 nanoparticles suspended in car radiator coolant. Int Commun Heat Mass 54:48–53 Elias MM, Mahbubul IM, Saidur MR, Shahrul IM, Khaleduzzaman SS, Sadeghipour S (2014) Experimental investigation on the thermo-physical properties of Al2O3 nanoparticles suspended in car radiator coolant. Int Commun Heat Mass 54:48–53
Zurück zum Zitat Esfe MH, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S (2014) Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim 118:287–294 Esfe MH, Saedodin S, Bahiraei M, Toghraie D, Mahian O, Wongwises S (2014) Thermal conductivity modeling of MgO/EG nanofluids using experimental data and artificial neural network. J Therm Anal Calorim 118:287–294
Zurück zum Zitat Esfe MH, Karimipour A, Yan W, Akbari M, Safaei MR, Dahari M (2015a) Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles. Int J Heat Mass Transf 88:728–734 Esfe MH, Karimipour A, Yan W, Akbari M, Safaei MR, Dahari M (2015a) Experimental study on thermal conductivity of ethylene glycol based nanofluids containing Al2O3 nanoparticles. Int J Heat Mass Transf 88:728–734
Zurück zum Zitat Esfe MH, Saedodin S, Wongwises S, Toghraie D (2015b) An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim 119:1817–1824 Esfe MH, Saedodin S, Wongwises S, Toghraie D (2015b) An experimental study on the effect of diameter on thermal conductivity and dynamic viscosity of Fe/water nanofluids. J Therm Anal Calorim 119:1817–1824
Zurück zum Zitat Esfe MH, Yan WM, Akbari M, Karimipour A, Hassani M (2015c) Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids. Int Commun Heat Mass Transf 68:248–251 Esfe MH, Yan WM, Akbari M, Karimipour A, Hassani M (2015c) Experimental study on thermal conductivity of DWCNT-ZnO/water-EG nanofluids. Int Commun Heat Mass Transf 68:248–251
Zurück zum Zitat Feng Y, Xu P, Zou M, Yu B (2007) The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles. J Phys D Appl Phys 40:3164 Feng Y, Xu P, Zou M, Yu B (2007) The effective thermal conductivity of nanofluids based on the nanolayer and the aggregation of nanoparticles. J Phys D Appl Phys 40:3164
Zurück zum Zitat Feng Y, Yu B, Feng K, Xu P, Zou M (2008) Thermal conductivity of nanofluids and size distribution of nanoparticles by Monte Carlo simulations. J Nanopart Res 10:1319–1328 Feng Y, Yu B, Feng K, Xu P, Zou M (2008) Thermal conductivity of nanofluids and size distribution of nanoparticles by Monte Carlo simulations. J Nanopart Res 10:1319–1328
Zurück zum Zitat Ganguly S, Sikdar S, Basu S (2009) Experimental investigation of the effective electrical conductivity of aluminium oxide nanofluids. Powder Technol 196:326–330 Ganguly S, Sikdar S, Basu S (2009) Experimental investigation of the effective electrical conductivity of aluminium oxide nanofluids. Powder Technol 196:326–330
Zurück zum Zitat Garg J, Poudel B, Chiesa M, Gordon JB, Ma JJ, Wang JJ, Wang JB, Ren ZF, Kang YT, Ohtani H, Nanda J, McKinley GH, Chen G (2008) Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J Appl Phys 103:074301 Garg J, Poudel B, Chiesa M, Gordon JB, Ma JJ, Wang JJ, Wang JB, Ren ZF, Kang YT, Ohtani H, Nanda J, McKinley GH, Chen G (2008) Enhanced thermal conductivity and viscosity of copper nanoparticles in ethylene glycol nanofluid. J Appl Phys 103:074301
Zurück zum Zitat Gershun AV, Jeffcoate CS, Marinho FJ, Woyciesjes PM (2009) Heat transfer compositions with high electrical resistance for fuel cell assemblies, ed: Google Patents Gershun AV, Jeffcoate CS, Marinho FJ, Woyciesjes PM (2009) Heat transfer compositions with high electrical resistance for fuel cell assemblies, ed: Google Patents
Zurück zum Zitat Gharagozloo PE, Goodson KE (2008) Diffusion, aggregation and the thermal conductivity of nanofluids. Appl Phys Lett 93:103110 Gharagozloo PE, Goodson KE (2008) Diffusion, aggregation and the thermal conductivity of nanofluids. Appl Phys Lett 93:103110
Zurück zum Zitat Ghosh MM, Ghosh S, Pabi SK (2012) Effects of particle shape and fluid temperature on heat-transfer characteristics of nanofluids. J Mater Eng Perform 22:1525–1529 Ghosh MM, Ghosh S, Pabi SK (2012) Effects of particle shape and fluid temperature on heat-transfer characteristics of nanofluids. J Mater Eng Perform 22:1525–1529
Zurück zum Zitat Glory J, Bonetti M, Helezen M, Hermite ML, Reynaud C (2008) Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes. J Appl Phys 103:094309 Glory J, Bonetti M, Helezen M, Hermite ML, Reynaud C (2008) Thermal and electrical conductivities of water-based nanofluids prepared with long multiwalled carbon nanotubes. J Appl Phys 103:094309
Zurück zum Zitat Glover B, Whites KW, Hong H, Mukherjee A, Billups WE (2008) Effective electrical conductivity of functional single-wall carbon nanotubes in aqueous fluids. Synth Met 158:506–508 Glover B, Whites KW, Hong H, Mukherjee A, Billups WE (2008) Effective electrical conductivity of functional single-wall carbon nanotubes in aqueous fluids. Synth Met 158:506–508
Zurück zum Zitat Goharshadi EK, Azizi-Toupkanloo H (2013) Silver colloid nanoparticles: Ultrasound-assisted synthesis, electrical and rheological properties. Powder Technol 237:97–101 Goharshadi EK, Azizi-Toupkanloo H (2013) Silver colloid nanoparticles: Ultrasound-assisted synthesis, electrical and rheological properties. Powder Technol 237:97–101
Zurück zum Zitat Goharshadi EK, Toupkanloo HA, Karimi M (2015) Electrical conductivity of water-based palladium nanofluids. Microfluid Nanofluidics 18:667–672 Goharshadi EK, Toupkanloo HA, Karimi M (2015) Electrical conductivity of water-based palladium nanofluids. Microfluid Nanofluidics 18:667–672
Zurück zum Zitat Goudarzi K, Jamali H (2017) Heat transfer enhancement of Al2O3-EG nanofluid in a car radiator with wire coil inserts. Appl Therm Eng 118:510–517 Goudarzi K, Jamali H (2017) Heat transfer enhancement of Al2O3-EG nanofluid in a car radiator with wire coil inserts. Appl Therm Eng 118:510–517
Zurück zum Zitat Guo Y, Zhang T, Zhang D, Wang Q (2018) Experimental investigation of thermal and electrical conductivity of silicon oxide nanofluids in ethylene glycol/water mixture. Int J Heat Mass Trans 117:280–286 Guo Y, Zhang T, Zhang D, Wang Q (2018) Experimental investigation of thermal and electrical conductivity of silicon oxide nanofluids in ethylene glycol/water mixture. Int J Heat Mass Trans 117:280–286
Zurück zum Zitat Gupta SS, Siva VM, Krishnan S, Sreeprasad TS, Singh PK (2011) Thermal conductivity enhancement of nanofluids containing graphene nanosheets. J Appl Phys 110:084302 Gupta SS, Siva VM, Krishnan S, Sreeprasad TS, Singh PK (2011) Thermal conductivity enhancement of nanofluids containing graphene nanosheets. J Appl Phys 110:084302
Zurück zum Zitat Gupta HK, Agrawal GD, Mathur J (2015) Investigations for effect of Al2O3-H2O nanofluid flow rate on the efficiency of direct absorption solar collector. Case Stud Thermal Eng 5:70–78 Gupta HK, Agrawal GD, Mathur J (2015) Investigations for effect of Al2O3-H2O nanofluid flow rate on the efficiency of direct absorption solar collector. Case Stud Thermal Eng 5:70–78
Zurück zum Zitat Hadadian M, Goharshadi EK, Youssefi A (2014) Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids. J Nanopart Res 16:2788 Hadadian M, Goharshadi EK, Youssefi A (2014) Electrical conductivity, thermal conductivity, and rheological properties of graphene oxide-based nanofluids. J Nanopart Res 16:2788
Zurück zum Zitat Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component system. Ind Eng Chem Fundam 1:187–191 Hamilton RL, Crosser OK (1962) Thermal conductivity of heterogeneous two-component system. Ind Eng Chem Fundam 1:187–191
Zurück zum Zitat Harikrishnan S, Magesh S, Kalaiselvam S (2013) Preparation and thermal energy storage behaviour of stearic acid-TiO2 nanfluid as a phase change material for solar heating system. Thermochima Acta 565:137–145 Harikrishnan S, Magesh S, Kalaiselvam S (2013) Preparation and thermal energy storage behaviour of stearic acid-TiO2 nanfluid as a phase change material for solar heating system. Thermochima Acta 565:137–145
Zurück zum Zitat Heyhat MM, Irannezhad A (2018) Experimental investigation on the competition between enhancement of electrical and thermal conductivities in water-based nanofluids. J Mol Liq 268:169–175 Heyhat MM, Irannezhad A (2018) Experimental investigation on the competition between enhancement of electrical and thermal conductivities in water-based nanofluids. J Mol Liq 268:169–175
Zurück zum Zitat Heyhat MM, Kowsary F, Rashidi AM, Momenpour MH, Amrollahi A (2013) Experimental investigation of laminar convective heat transfer and pressure drop of water–based Al2O3 nanofluids in fully developed flow regime. Exp Therm Fluid Sci 44:483–489 Heyhat MM, Kowsary F, Rashidi AM, Momenpour MH, Amrollahi A (2013) Experimental investigation of laminar convective heat transfer and pressure drop of water–based Al2O3 nanofluids in fully developed flow regime. Exp Therm Fluid Sci 44:483–489
Zurück zum Zitat Hjerrild NE, Mesgari S, Crisostomo F, Scott JA, Amal R, Taylor RA (2016) Hybrid PV/T enhancement using selectively absorbing Ag–SiO2/carbon nanofluids. Sol Energy Mater Sol Cells 147:281–287 Hjerrild NE, Mesgari S, Crisostomo F, Scott JA, Amal R, Taylor RA (2016) Hybrid PV/T enhancement using selectively absorbing Ag–SiO2/carbon nanofluids. Sol Energy Mater Sol Cells 147:281–287
Zurück zum Zitat Huang D, Wu Z, Sunden B (2015) Pressure drop and convective heat transfer of Al2O3/water and MWCNT/water nanofluids in a chevron plate heat exchanger. Int J Heat Mass Transf 89:620–626 Huang D, Wu Z, Sunden B (2015) Pressure drop and convective heat transfer of Al2O3/water and MWCNT/water nanofluids in a chevron plate heat exchanger. Int J Heat Mass Transf 89:620–626
Zurück zum Zitat Hwang Y, Lee JK, Lee CH, Jung YM, Cheong SI, Lee CG, Ku BC, Jang SP (2007) Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta 455:70–74 Hwang Y, Lee JK, Lee CH, Jung YM, Cheong SI, Lee CG, Ku BC, Jang SP (2007) Stability and thermal conductivity characteristics of nanofluids. Thermochim Acta 455:70–74
Zurück zum Zitat Ijam A, Saidur R, Ganesan P, Golsheikh AM (2015) Stability, thermo-physical properties, and electrical conductivity of graphene oxide-deionized water/ ethylene glycol based nanofluid. Int J Heat Mass Trans 87:92–103 Ijam A, Saidur R, Ganesan P, Golsheikh AM (2015) Stability, thermo-physical properties, and electrical conductivity of graphene oxide-deionized water/ ethylene glycol based nanofluid. Int J Heat Mass Trans 87:92–103
Zurück zum Zitat Islam MR, Shabani B, Rosengarten G, Andrews J (2015) The potential of using nanofluids in PEM fuel cell cooling systems: a review. Renew Sust Energy Rev 48:523–539 Islam MR, Shabani B, Rosengarten G, Andrews J (2015) The potential of using nanofluids in PEM fuel cell cooling systems: a review. Renew Sust Energy Rev 48:523–539
Zurück zum Zitat Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316–4318 Jang SP, Choi SUS (2004) Role of Brownian motion in the enhanced thermal conductivity of nanofluids. Appl Phys Lett 84:4316–4318
Zurück zum Zitat Jang P, Choi SUS (2007) Effect of various parameters on nanofluid thermal conductivity. J Heat Trans 129:617–623 Jang P, Choi SUS (2007) Effect of various parameters on nanofluid thermal conductivity. J Heat Trans 129:617–623
Zurück zum Zitat Jeong J, Li C, Kwon Y, Lee J, Kim SH, Yun R (2013) Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids. Int J Refrig 36:2233–2241 Jeong J, Li C, Kwon Y, Lee J, Kim SH, Yun R (2013) Particle shape effect on the viscosity and thermal conductivity of ZnO nanofluids. Int J Refrig 36:2233–2241
Zurück zum Zitat Jiang H, Zhang Q, Shi L (2015) Effective thermal conductivity of carbon nanotube – based nanofluid. J Taiwan Inst Chem Eng 55:76–81 Jiang H, Zhang Q, Shi L (2015) Effective thermal conductivity of carbon nanotube – based nanofluid. J Taiwan Inst Chem Eng 55:76–81
Zurück zum Zitat Juneja M, Gangacharyulu D (2017) Effect of volume fraction on particle size distribution in aumina based nanofluids. J Thermal Energy Syst 2:27–32 Juneja M, Gangacharyulu D (2017) Effect of volume fraction on particle size distribution in aumina based nanofluids. J Thermal Energy Syst 2:27–32
Zurück zum Zitat Kahani M, Heris SZ, Mousavi SM (2014) Experimental investigation of TiO2/water nanofluid laminar forced convective heat transfer through helical coiled tube. Heat Mass Transf 50:1563–1573 Kahani M, Heris SZ, Mousavi SM (2014) Experimental investigation of TiO2/water nanofluid laminar forced convective heat transfer through helical coiled tube. Heat Mass Transf 50:1563–1573
Zurück zum Zitat Karthikeyan NR, Philip J, Raj B (2008) Effect of clustering on the thermal conductivity of nanofluids. Mater Chem Phys 109:50–55 Karthikeyan NR, Philip J, Raj B (2008) Effect of clustering on the thermal conductivity of nanofluids. Mater Chem Phys 109:50–55
Zurück zum Zitat Kasaeian A, Eshghi AT, Sameti M (2015) A review on the applications of nanofluids in solar energy systems. Renew Sust Energy Rev 43:584–598 Kasaeian A, Eshghi AT, Sameti M (2015) A review on the applications of nanofluids in solar energy systems. Renew Sust Energy Rev 43:584–598
Zurück zum Zitat Kavitha T, Rajendran A, Durairajan A (2012) Synthesis, characterization of TiO2 nano powder and water based nanofluids using two step method. Eur J Appl Eng Sci Res 1:235–240 Kavitha T, Rajendran A, Durairajan A (2012) Synthesis, characterization of TiO2 nano powder and water based nanofluids using two step method. Eur J Appl Eng Sci Res 1:235–240
Zurück zum Zitat Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45:855–863 Keblinski P, Phillpot SR, Choi SUS, Eastman JA (2002) Mechanisms of heat flow in suspensions of nano-sized particles (nanofluids). Int J Heat Mass Transf 45:855–863
Zurück zum Zitat Khaleduzzaman SS, Sohel MR, Saidur R, Selvaraj J (2015) Stability of Al2O3–water nanofluid for electronic cooling system. Procedia Eng 105:406–411 Khaleduzzaman SS, Sohel MR, Saidur R, Selvaraj J (2015) Stability of Al2O3–water nanofluid for electronic cooling system. Procedia Eng 105:406–411
Zurück zum Zitat Khaleduzzaman SS, Sohel MR, Saidur R, Selvaraj J (2015) Stability of Al2O3-water nanofluid for electronics cooling system. Procedia Eng 105:406–411 Khaleduzzaman SS, Sohel MR, Saidur R, Selvaraj J (2015) Stability of Al2O3-water nanofluid for electronics cooling system. Procedia Eng 105:406–411
Zurück zum Zitat Khatak P, Jakhar R, Kumar M (2015). Enhancement in cooling of electronic components by nanofluids. J Inst Eng India Ser C 96:245–251 Khatak P, Jakhar R, Kumar M (2015). Enhancement in cooling of electronic components by nanofluids. J Inst Eng India Ser C 96:245–251
Zurück zum Zitat Khdher AIM, Sidik NAC, Hamzah WAW, Mamat R (2016) An experimental determination of thermal conductivity and electrical conductivity of bio glycol based Al2O3 nanofluids and development of new correlation. Int Commun Heat Mass Transf 73:75–83 Khdher AIM, Sidik NAC, Hamzah WAW, Mamat R (2016) An experimental determination of thermal conductivity and electrical conductivity of bio glycol based Al2O3 nanofluids and development of new correlation. Int Commun Heat Mass Transf 73:75–83
Zurück zum Zitat Khedkar RS, Sonawane SS, Wasewar KL (2012) Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids. Int Commun Heat Mass 39:665–669 Khedkar RS, Sonawane SS, Wasewar KL (2012) Influence of CuO nanoparticles in enhancing the thermal conductivity of water and monoethylene glycol based nanofluids. Int Commun Heat Mass 39:665–669
Zurück zum Zitat Kole M, Dey TK (2013) Investigation of thermal conductivity, viscosity and electrical conductivity of graphene based nanofluids. J Appl Phys 113:084307 Kole M, Dey TK (2013) Investigation of thermal conductivity, viscosity and electrical conductivity of graphene based nanofluids. J Appl Phys 113:084307
Zurück zum Zitat Konakanchi H, Vajjha R, Misra D, Das D (2011) Electrical conductivity measurements of nanofluids and development of new correlations. J Nanosci Nanotechnol 11:1–8 Konakanchi H, Vajjha R, Misra D, Das D (2011) Electrical conductivity measurements of nanofluids and development of new correlations. J Nanosci Nanotechnol 11:1–8
Zurück zum Zitat Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6:577–588 Koo J, Kleinstreuer C (2004) A new thermal conductivity model for nanofluids. J Nanopart Res 6:577–588
Zurück zum Zitat Koo J, Kleinstreuer C (2005) Impact analysis of nanoparticle motion mechanism on the thermal conductivity of nanofluids. Int Commun Heat Mass Trans 32:1111–1118 Koo J, Kleinstreuer C (2005) Impact analysis of nanoparticle motion mechanism on the thermal conductivity of nanofluids. Int Commun Heat Mass Trans 32:1111–1118
Zurück zum Zitat Kotia A, Borkakoti S, Deval P, Ghosh SK (2017) Review of interfacial layer’s effect on thermal conductivity in nanofluid. Heat Mass Transf 53:2199–2209 Kotia A, Borkakoti S, Deval P, Ghosh SK (2017) Review of interfacial layer’s effect on thermal conductivity in nanofluid. Heat Mass Transf 53:2199–2209
Zurück zum Zitat Kumar N, Sonawane SS, Sonawane SH (2018) Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid. Int Commun Heat Mass 90:1–10 Kumar N, Sonawane SS, Sonawane SH (2018) Experimental study of thermal conductivity, heat transfer and friction factor of Al2O3 based nanofluid. Int Commun Heat Mass 90:1–10
Zurück zum Zitat Kumaresan V, Velraj R, Das SK (2012) Convective heat transfer characteristics of secondary refrigerant based CNT nanofluids in a tubular heat exchanger. Int J Refrig 35:2287–2296 Kumaresan V, Velraj R, Das SK (2012) Convective heat transfer characteristics of secondary refrigerant based CNT nanofluids in a tubular heat exchanger. Int J Refrig 35:2287–2296
Zurück zum Zitat Lee YS (2008) Self-assembly and nanotechnology: a force balance approach. Wiley, New York Lee YS (2008) Self-assembly and nanotechnology: a force balance approach. Wiley, New York
Zurück zum Zitat Lee D, Jae-Won K, Kim BG (2006) A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. J Phys Chem B 110:4323–4328 Lee D, Jae-Won K, Kim BG (2006) A new parameter to control heat transport in nanofluids: surface charge state of the particle in suspension. J Phys Chem B 110:4323–4328
Zurück zum Zitat Lee JH, Hwang KS, Jang SP, Lee BH, Kim JH, Choi SUS, Choi CJ (2008) Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Transf 51:2651–2656 Lee JH, Hwang KS, Jang SP, Lee BH, Kim JH, Choi SUS, Choi CJ (2008) Effective viscosities and thermal conductivities of aqueous nanofluids containing low volume concentrations of Al2O3 nanoparticles. Int J Heat Mass Transf 51:2651–2656
Zurück zum Zitat Leong KC, Yang C, Murshed SMS (2006) A model for the thermal conductivity of nanofluids—the effect of interfacial layer. J Nanopart Res 8:245–254 Leong KC, Yang C, Murshed SMS (2006) A model for the thermal conductivity of nanofluids—the effect of interfacial layer. J Nanopart Res 8:245–254
Zurück zum Zitat Leong KY, Ibrahim IC, Amer NH, Risby MS (2016) Thermal conductivity of carbon based nanofluids as heat transfer fluids. Appl Mech Mater 819:29–33 Leong KY, Ibrahim IC, Amer NH, Risby MS (2016) Thermal conductivity of carbon based nanofluids as heat transfer fluids. Appl Mech Mater 819:29–33
Zurück zum Zitat Leong KY, Razali I, Ahmad KZK, Amer NH, Akmal HN (2018) Thermal conductivity characteristic of titanium dioxide water based nanofluids subjected to various types of surfactant. J Eng Sci Technol 13:1677–1689 Leong KY, Razali I, Ahmad KZK, Amer NH, Akmal HN (2018) Thermal conductivity characteristic of titanium dioxide water based nanofluids subjected to various types of surfactant. J Eng Sci Technol 13:1677–1689
Zurück zum Zitat Li Z, Sheikholeslami M, Jafaryar M, Shafee A, Chamkha AJ (2018) Investigation of nanofluid entropy generation in a heat exchanger with helical twisted tapes. J Mol Liq 266:797–805 Li Z, Sheikholeslami M, Jafaryar M, Shafee A, Chamkha AJ (2018) Investigation of nanofluid entropy generation in a heat exchanger with helical twisted tapes. J Mol Liq 266:797–805
Zurück zum Zitat Lin P, Lin S, Wang PC, Sridhar R (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32:711–726 Lin P, Lin S, Wang PC, Sridhar R (2014) Techniques for physicochemical characterization of nanomaterials. Biotechnol Adv 32:711–726
Zurück zum Zitat Lisunova MO, Lebovka NI, Melezhyk OV, Boiko YP (2006) Stability of the aqueous suspensions of nanotubes in the presence of nonionic surfactant. J Colloid Interface Sci 299:740–746 Lisunova MO, Lebovka NI, Melezhyk OV, Boiko YP (2006) Stability of the aqueous suspensions of nanotubes in the presence of nonionic surfactant. J Colloid Interface Sci 299:740–746
Zurück zum Zitat Liu L, Yang Y, Zhang Y (2004) A study on the electrical conductivity of multi-walled carbon nanotube aqueous solution. Physica E 24:343–348 Liu L, Yang Y, Zhang Y (2004) A study on the electrical conductivity of multi-walled carbon nanotube aqueous solution. Physica E 24:343–348
Zurück zum Zitat Liu MS, Lin MCC, Huang IT, Wang CC (2005) Enhancement of thermal conductivity with carbon nano-tube for nanofluids. Int Commun Heat Mass 32:1202–1210 Liu MS, Lin MCC, Huang IT, Wang CC (2005) Enhancement of thermal conductivity with carbon nano-tube for nanofluids. Int Commun Heat Mass 32:1202–1210
Zurück zum Zitat Liu MS, Lin MCC, Wang C (2011) Enhancement of thermal condutivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system. Nanoscale Res Lett 6:297 Liu MS, Lin MCC, Wang C (2011) Enhancement of thermal condutivities with Cu, CuO, and carbon nanotube nanofluids and application of MWNT/water nanofluid on a water chiller system. Nanoscale Res Lett 6:297
Zurück zum Zitat Lo CH, Tsung TT, Chen LC, Su CH, Lin HM (2005) Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system (SANSS). J Nanopart Res 7:313–320 Lo CH, Tsung TT, Chen LC, Su CH, Lin HM (2005) Fabrication of copper oxide nanofluid using submerged arc nanoparticle synthesis system (SANSS). J Nanopart Res 7:313–320
Zurück zum Zitat Ma B, Banerjee D (2017) Predicting particle size distribution in nanofluid synthesis. In: Proceedings of the ASME 2017 Heat Transfer Summer Conference HT2017, USA Ma B, Banerjee D (2017) Predicting particle size distribution in nanofluid synthesis. In: Proceedings of the ASME 2017 Heat Transfer Summer Conference HT2017, USA
Zurück zum Zitat Mahbubul IM, Shahrul IM, Khaleduzzaman SS, Saidur R, Amalina MA, Turgut A (2015) Experimental investigation on effect of ultrasonication duration on colloidal dispersion and thermophysical properties of alumina–water nanofluid. Int J Heat Mass Transf 88:73–81 Mahbubul IM, Shahrul IM, Khaleduzzaman SS, Saidur R, Amalina MA, Turgut A (2015) Experimental investigation on effect of ultrasonication duration on colloidal dispersion and thermophysical properties of alumina–water nanofluid. Int J Heat Mass Transf 88:73–81
Zurück zum Zitat Maheshwary PB, Handa CC, Nemade KR (2018) Effect of shape on thermophysical and heat transfer properties of ZnO/R-134a nanorefrigerant. Mater Today ProcMater Today: Proc 5:1635–1639 Maheshwary PB, Handa CC, Nemade KR (2018) Effect of shape on thermophysical and heat transfer properties of ZnO/R-134a nanorefrigerant. Mater Today ProcMater Today: Proc 5:1635–1639
Zurück zum Zitat Mahmud KM, Yudistiram SA, Ramadhan AI (2016) Analytical study of forced convection in fluid cooling use nanofluid Al2O3- water on nuclear reactor core based fuel cylinder with hexagonal sub channel. Int J Energy Eng 6:8–15 Mahmud KM, Yudistiram SA, Ramadhan AI (2016) Analytical study of forced convection in fluid cooling use nanofluid Al2O3- water on nuclear reactor core based fuel cylinder with hexagonal sub channel. Int J Energy Eng 6:8–15
Zurück zum Zitat Manimaran R, Palaniradja K, Alagumurthi N, Sendhilnathan S, Hussain J (2014) Preparation and characterization of copper oxide nanofluid for heat transfer applications. Appl Nanosci 4:163–167 Manimaran R, Palaniradja K, Alagumurthi N, Sendhilnathan S, Hussain J (2014) Preparation and characterization of copper oxide nanofluid for heat transfer applications. Appl Nanosci 4:163–167
Zurück zum Zitat Mao C, Huang Y, Zhou X, Gan H, Zhang J, Zhou Z (2014) The tribological properties of nanofluid used in minimum quantity lubrication grinding. Int J Adv Manuf Technol 71:1221–1228 Mao C, Huang Y, Zhou X, Gan H, Zhang J, Zhou Z (2014) The tribological properties of nanofluid used in minimum quantity lubrication grinding. Int J Adv Manuf Technol 71:1221–1228
Zurück zum Zitat Maxwell JC (1881) A treatise on electricity and magnetism, 2nd edn. Clarendon Press, Oxford, p 1881 Maxwell JC (1881) A treatise on electricity and magnetism, 2nd edn. Clarendon Press, Oxford, p 1881
Zurück zum Zitat Mehrali M, Sadeghinezhad E, Rashidi MM, Akhiani AR, Latibari ST, Mehrali M, Metselaar HSC (2015) Experimental and numerical investigation of the effective electrical conductivity of nitrogen-doped graphene nanofluids. J Nanopart Res 17:267 Mehrali M, Sadeghinezhad E, Rashidi MM, Akhiani AR, Latibari ST, Mehrali M, Metselaar HSC (2015) Experimental and numerical investigation of the effective electrical conductivity of nitrogen-doped graphene nanofluids. J Nanopart Res 17:267
Zurück zum Zitat Menbari A, Alemrajabi AA, Razaei A (2016) Heat transfer analysis and the effect of CuO/Water nanofluid on direct absorption concentrating solar collector. Appl Therm Eng 104:176–183 Menbari A, Alemrajabi AA, Razaei A (2016) Heat transfer analysis and the effect of CuO/Water nanofluid on direct absorption concentrating solar collector. Appl Therm Eng 104:176–183
Zurück zum Zitat Minea AA, Luciu RS (2012) Investigations on electrical conductivity of stabilized water based Al2O3 nanofluids. Microfluid Nanofluidics 13:977–985 Minea AA, Luciu RS (2012) Investigations on electrical conductivity of stabilized water based Al2O3 nanofluids. Microfluid Nanofluidics 13:977–985
Zurück zum Zitat Minea AA, Manca O (2017) Field-synergy and figure of merit analysis of two oxide water based nanofluid flow in heated tubes. Heat Transfer Eng 38:909–918 Minea AA, Manca O (2017) Field-synergy and figure of merit analysis of two oxide water based nanofluid flow in heated tubes. Heat Transfer Eng 38:909–918
Zurück zum Zitat Mintsa HA, Roy G, Nguyen CT, Doucet D (2009) New temperature dependent thermal conductivity data for water-based nanofluids. Int J Thermal Sci 48:363–371 Mintsa HA, Roy G, Nguyen CT, Doucet D (2009) New temperature dependent thermal conductivity data for water-based nanofluids. Int J Thermal Sci 48:363–371
Zurück zum Zitat Mohammed HA, Al-aswadi AA, Shuaib NH, Saidur R (2011) Convective heat transfer and fluid flow study over a step using nanofluids: a review. Renew Sust Energy Rev 15:2921–2939 Mohammed HA, Al-aswadi AA, Shuaib NH, Saidur R (2011) Convective heat transfer and fluid flow study over a step using nanofluids: a review. Renew Sust Energy Rev 15:2921–2939
Zurück zum Zitat Naddaf A, Heris SZ (2018) Experimental study on thermal conductivity and electrical conductivity of diesel oil-based nanofluids of graphene nanoplatelets and carbon nanotubes. Int Commun Heat Mass Transf 95:116–122 Naddaf A, Heris SZ (2018) Experimental study on thermal conductivity and electrical conductivity of diesel oil-based nanofluids of graphene nanoplatelets and carbon nanotubes. Int Commun Heat Mass Transf 95:116–122
Zurück zum Zitat Naraki M, Peyghambarzadeh SM, Hashemabadi SH, Vermahmoudi Y (2013) Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator. Int J Therm Sci 66:82–90 Naraki M, Peyghambarzadeh SM, Hashemabadi SH, Vermahmoudi Y (2013) Parametric study of overall heat transfer coefficient of CuO/water nanofluids in a car radiator. Int J Therm Sci 66:82–90
Zurück zum Zitat Natarajan E, Sathish R (2009) Role of nanofluid in solar water heater. Int J Adv Manuf Technol 8:1–5 Natarajan E, Sathish R (2009) Role of nanofluid in solar water heater. Int J Adv Manuf Technol 8:1–5
Zurück zum Zitat Nurdin I, Satriananda (2017) Investigation on electrical conductivity enhancement of water based maghemite (γ-Fe2O3) nanofluids. Int J Mater Sci Appl 6:32–36 Nurdin I, Satriananda (2017) Investigation on electrical conductivity enhancement of water based maghemite (γ-Fe2O3) nanofluids. Int J Mater Sci Appl 6:32–36
Zurück zum Zitat Ohshima H (2003) Electrokinetic phenomena in a dilute suspension of spherical colloidal particles in a salt-free medium. Colloids Surf Physicochem Eng Asp 222:207–211 Ohshima H (2003) Electrokinetic phenomena in a dilute suspension of spherical colloidal particles in a salt-free medium. Colloids Surf Physicochem Eng Asp 222:207–211
Zurück zum Zitat Pak BC, Choi YI (1998) Hydraulic Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Trans 11:151–170 Pak BC, Choi YI (1998) Hydraulic Hydrodynamic and heat transfer study of dispersed fluids with submicron metallic oxide particles. Exp Heat Trans 11:151–170
Zurück zum Zitat Prakash SB, Kotin KN, Kumar PM (2016) Preparation and characterization of nanofluid (CuO/Water, TiO2/Water). Int J Sci Eng 1:14–20 Prakash SB, Kotin KN, Kumar PM (2016) Preparation and characterization of nanofluid (CuO/Water, TiO2/Water). Int J Sci Eng 1:14–20
Zurück zum Zitat Prasher R, Bhattacharya P, Phelan PE (2005) Brownian-motion-based convective–conductive model for the effective thermal conductivity of nanofluids. J Heat Trans 128:588–595 Prasher R, Bhattacharya P, Phelan PE (2005) Brownian-motion-based convective–conductive model for the effective thermal conductivity of nanofluids. J Heat Trans 128:588–595
Zurück zum Zitat Qin C, Lee BJ (2018) Effect of particle size distribution on optical property of nanofluids and DASC performance. Korean Soc Mech Eng 4:392–393 Qin C, Lee BJ (2018) Effect of particle size distribution on optical property of nanofluids and DASC performance. Korean Soc Mech Eng 4:392–393
Zurück zum Zitat Roberts NA, Walker DG (2010) Convective performance of nanofluids in commercial electronics cooling systems. Appl Therm Eng 30:2499–2504 Roberts NA, Walker DG (2010) Convective performance of nanofluids in commercial electronics cooling systems. Appl Therm Eng 30:2499–2504
Zurück zum Zitat Rusconi R, Williams WC, Buongiorno J, Piazza R, Hu LW (2007) Numerical analysis of convective instabilities in a transient short-hot-wire setup for measurement of liquid thermal conductivity. Int J Thermophys 28:1131–1146 Rusconi R, Williams WC, Buongiorno J, Piazza R, Hu LW (2007) Numerical analysis of convective instabilities in a transient short-hot-wire setup for measurement of liquid thermal conductivity. Int J Thermophys 28:1131–1146
Zurück zum Zitat Sarojini KGK, Manoj SV, Singh PK, Pradeep T, Das SK (2013) Electrical conductivity of ceramic and metallic nanofluids. Colloids Surf Physicochem Eng Asp 417:39–46 Sarojini KGK, Manoj SV, Singh PK, Pradeep T, Das SK (2013) Electrical conductivity of ceramic and metallic nanofluids. Colloids Surf Physicochem Eng Asp 417:39–46
Zurück zum Zitat Saterlie M, Sahin H, Kavlicoglu B, Liu Y, Graeve O (2011) Particle size effects in the thermal conductivity enhancement of copper-based nanofluids. Nanoscale Res Lett 6:217 Saterlie M, Sahin H, Kavlicoglu B, Liu Y, Graeve O (2011) Particle size effects in the thermal conductivity enhancement of copper-based nanofluids. Nanoscale Res Lett 6:217
Zurück zum Zitat Schramm LL, Stasiuk EN, Marangoni DG (2003) Surfactants and their applications. Ann Rep Program Chem Sect 99:3–48 Schramm LL, Stasiuk EN, Marangoni DG (2003) Surfactants and their applications. Ann Rep Program Chem Sect 99:3–48
Zurück zum Zitat Selvakumar P, Suresh S (2012) Convective performance of CuO/water nanofluid in an electronic heat sink. Exp Therm Fluid Sci 40:57–63 Selvakumar P, Suresh S (2012) Convective performance of CuO/water nanofluid in an electronic heat sink. Exp Therm Fluid Sci 40:57–63
Zurück zum Zitat Shen LP, Wang H, Dong M, Ma ZC, Wang HB (2012) Solvothermal synthesis and electrical conductivity model for the zinc oxide-insulated oil nanofluid. Phys Lett A 376:1053–1057 Shen LP, Wang H, Dong M, Ma ZC, Wang HB (2012) Solvothermal synthesis and electrical conductivity model for the zinc oxide-insulated oil nanofluid. Phys Lett A 376:1053–1057
Zurück zum Zitat Shoghl SN, Jamali J, Moraveji MK (2016) Electrical conductivity, viscosity, and density of different nanofluids: an experimental study. Exp Therm Fluid Sci 74:339–346 Shoghl SN, Jamali J, Moraveji MK (2016) Electrical conductivity, viscosity, and density of different nanofluids: an experimental study. Exp Therm Fluid Sci 74:339–346
Zurück zum Zitat Sidik NAC, Yazid MNAWM, Mamat R (2017) Recent advancement of nanofluids in engine cooling system. Renew Sust Energy Rev 75:137–144 Sidik NAC, Yazid MNAWM, Mamat R (2017) Recent advancement of nanofluids in engine cooling system. Renew Sust Energy Rev 75:137–144
Zurück zum Zitat Sigmund WM, Bell NS, Bergstrom (2000) Novel powder‐processing methods for advanced ceramics. J Am Ceram Soc 83:1557–1574 Sigmund WM, Bell NS, Bergstrom (2000) Novel powder‐processing methods for advanced ceramics. J Am Ceram Soc 83:1557–1574
Zurück zum Zitat Sikadar S, Basu S, Ganguly S (2011) Investigation of electrical conductivity of titanium dioxide nanofluids. Int J Nanoparticles 4: 336–349 Sikadar S, Basu S, Ganguly S (2011) Investigation of electrical conductivity of titanium dioxide nanofluids. Int J Nanoparticles 4: 336–349
Zurück zum Zitat Silambarasan M, Manikandan S, Rajan KS (2012) Viscosity and thermal conductivity of dispersions of sub-micron TiO2 particles in water prepared by stirred bead milling and ultrasonication. Int J Heat Mass Transf 55:7991–8002 Silambarasan M, Manikandan S, Rajan KS (2012) Viscosity and thermal conductivity of dispersions of sub-micron TiO2 particles in water prepared by stirred bead milling and ultrasonication. Int J Heat Mass Transf 55:7991–8002
Zurück zum Zitat Sohel Murshed SM, Nieto de Castro CA (2011) Contribution of Brownian motion in thermal conductivity of nanofluids. In: Proceedings of the world congress on engineering, vol III. London, UK Sohel Murshed SM, Nieto de Castro CA (2011) Contribution of Brownian motion in thermal conductivity of nanofluids. In: Proceedings of the world congress on engineering, vol III. London, UK
Zurück zum Zitat Sohel MR, Khaleduzzaman SS, Saidur R, Hepbasli A, Sabri MFM, Mahbubul IM (2014) An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3–H2O nanofluid. Int J Heat Mass Transf 74:164–172 Sohel MR, Khaleduzzaman SS, Saidur R, Hepbasli A, Sabri MFM, Mahbubul IM (2014) An experimental investigation of heat transfer enhancement of a minichannel heat sink using Al2O3–H2O nanofluid. Int J Heat Mass Transf 74:164–172
Zurück zum Zitat Sokhansefat T, Kasaeian AB, Kowsary F (2014) Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid. Renew Sust Energy Rev 33:636–644 Sokhansefat T, Kasaeian AB, Kowsary F (2014) Heat transfer enhancement in parabolic trough collector tube using Al2O3/synthetic oil nanofluid. Renew Sust Energy Rev 33:636–644
Zurück zum Zitat Suganthi KS, Rajan KS (2012) Temperature induced changes in ZnO-water nanofluid: zeta potential, size distribution and viscosity profiles. Int J Heat Mass Trasnf 55:7969–7980 Suganthi KS, Rajan KS (2012) Temperature induced changes in ZnO-water nanofluid: zeta potential, size distribution and viscosity profiles. Int J Heat Mass Trasnf 55:7969–7980
Zurück zum Zitat Suganthi KS, Parthasarathy M, Rajan KS (2013) Liquid-layering induced, temperature-dependent thermal conductivity enhancement in ZnO–propylene glycol nanofluids. Chem Phys Lett 561–562:120–124 Suganthi KS, Parthasarathy M, Rajan KS (2013) Liquid-layering induced, temperature-dependent thermal conductivity enhancement in ZnO–propylene glycol nanofluids. Chem Phys Lett 561–562:120–124
Zurück zum Zitat Suganthi KS, Leela Vinodhan V, Rajan KS (2014) Heat transfer performance and transport properties of ZnO-ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants. Appl Energy 135:548–559 Suganthi KS, Leela Vinodhan V, Rajan KS (2014) Heat transfer performance and transport properties of ZnO-ethylene glycol and ZnO–ethylene glycol–water nanofluid coolants. Appl Energy 135:548–559
Zurück zum Zitat Sundar LS, Singh MK, Sousa ACM (2013) Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int Commun Heat Mass 44:7–14 Sundar LS, Singh MK, Sousa ACM (2013) Investigation of thermal conductivity and viscosity of Fe3O4 nanofluid for heat transfer applications. Int Commun Heat Mass 44:7–14
Zurück zum Zitat Syam Sumdar L, Singh MK, Ferro MC, Sousa ACM (2017) Experimental investigation of the thermal transport properties of graphene oxide/Co3O4 hybrid nanofluids. Int Commun Heat Mass 84:1–10 Syam Sumdar L, Singh MK, Ferro MC, Sousa ACM (2017) Experimental investigation of the thermal transport properties of graphene oxide/Co3O4 hybrid nanofluids. Int Commun Heat Mass 84:1–10
Zurück zum Zitat Teng T, Hung Y, Teng T, Mo H, Hsu H (2010) The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng 30:2213–2218 Teng T, Hung Y, Teng T, Mo H, Hsu H (2010) The effect of alumina/water nanofluid particle size on thermal conductivity. Appl Therm Eng 30:2213–2218
Zurück zum Zitat Tijani AS, Sudirman ASB (2018) Thermos-physical properties and heat transfer characteristics of water/anti-freezing and Al2O3/CuO based nanofluid as a coolant for car radiator. Int J Heat Mass Transf 118:48–57 Tijani AS, Sudirman ASB (2018) Thermos-physical properties and heat transfer characteristics of water/anti-freezing and Al2O3/CuO based nanofluid as a coolant for car radiator. Int J Heat Mass Transf 118:48–57
Zurück zum Zitat Timofeeva EY, Gavriloy AN, McCloskey JM, Tolmachey YV, Sprunt S, Lopatina LM, Selinger JV (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E 76:061203 Timofeeva EY, Gavriloy AN, McCloskey JM, Tolmachey YV, Sprunt S, Lopatina LM, Selinger JV (2007) Thermal conductivity and particle agglomeration in alumina nanofluids: experiment and theory. Phys Rev E 76:061203
Zurück zum Zitat Trinh PV, Anh NN, Quang LD, Thang BH, Hong PN, Hong NT, Khoi PH, Minh PN (2016) Thermal conductivity of ethylene glycol based copper nanoparticle decorated graphene nanofluids. Commun Phys 26:351–360 Trinh PV, Anh NN, Quang LD, Thang BH, Hong PN, Hong NT, Khoi PH, Minh PN (2016) Thermal conductivity of ethylene glycol based copper nanoparticle decorated graphene nanofluids. Commun Phys 26:351–360
Zurück zum Zitat Usri NA, Azmi WH, Mamat R, Hamid KA, Najafi G (2015) Thermal conductivity enhancement of Al2O3 nanofluid in ethylene glycol and water mixture. Energy Procedia 79:397–402 Usri NA, Azmi WH, Mamat R, Hamid KA, Najafi G (2015) Thermal conductivity enhancement of Al2O3 nanofluid in ethylene glycol and water mixture. Energy Procedia 79:397–402
Zurück zum Zitat Vasconcelos AA, Gomez AOC, Filho EPB, Parise JAR (2017) Experimental evaluation of SWCNT-water nanofluid as a secondary fluid in a refrigeration system. Appl Therm Eng 111:1487–1492 Vasconcelos AA, Gomez AOC, Filho EPB, Parise JAR (2017) Experimental evaluation of SWCNT-water nanofluid as a secondary fluid in a refrigeration system. Appl Therm Eng 111:1487–1492
Zurück zum Zitat Wang XQ, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46:1–19 Wang XQ, Mujumdar AS (2007) Heat transfer characteristics of nanofluids: a review. Int J Therm Sci 46:1–19
Zurück zum Zitat Wang XJ, Zhu DS (2009) Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem Phys Lett 470:107–111 Wang XJ, Zhu DS (2009) Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem Phys Lett 470:107–111
Zurück zum Zitat Wang X, Zhu D, Yang S (2009) Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem Phys Lett 470:107–111 Wang X, Zhu D, Yang S (2009) Investigation of pH and SDBS on enhancement of thermal conductivity in nanofluids. Chem Phys Lett 470:107–111
Zurück zum Zitat Wen D, Ding Y (2005) Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids. J Nanopart Res 7:265–274 Wen D, Ding Y (2005) Experimental investigation into the pool boiling heat transfer of aqueous based γ-alumina nanofluids. J Nanopart Res 7:265–274
Zurück zum Zitat White SB, Shih AJ, Pipe KP (2011) Investigation of the electrical conductivity of propylene glycol-based ZnO nanofluids. Nanoscale Res Lett 6:346 White SB, Shih AJ, Pipe KP (2011) Investigation of the electrical conductivity of propylene glycol-based ZnO nanofluids. Nanoscale Res Lett 6:346
Zurück zum Zitat Wong KFV, Kurma T (2008) Transport properties of alumina nanofluids. Nanotechnology 19:345702 Wong KFV, Kurma T (2008) Transport properties of alumina nanofluids. Nanotechnology 19:345702
Zurück zum Zitat Xia G, Jiang H, Liu R, Zhai Y (2014) Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids. Int J Therm Sci 84:118–124 Xia G, Jiang H, Liu R, Zhai Y (2014) Effects of surfactant on the stability and thermal conductivity of Al2O3/de-ionized water nanofluids. Int J Therm Sci 84:118–124
Zurück zum Zitat Xie H, Yu W, Chen W (2010) MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles. J Exp Nano Sci 5:463–472 Xie H, Yu W, Chen W (2010) MgO nanofluids: higher thermal conductivity and lower viscosity among ethylene glycol-based nanofluids containing oxide nanoparticles. J Exp Nano Sci 5:463–472
Zurück zum Zitat Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21:58–64 Xuan Y, Li Q (2000) Heat transfer enhancement of nanofluids. Int J Heat Fluid Flow 21:58–64
Zurück zum Zitat Xuan Y, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49:1038–1043 Xuan Y, Li Q, Hu W (2003) Aggregation structure and thermal conductivity of nanofluids. AIChE J 49:1038–1043
Zurück zum Zitat Xuan Y, Li Q, Tie P (2013) The effect of surfactants on heat transfer feature of nanofluids. Exp Therm Fluid Sci 46:259–262 Xuan Y, Li Q, Tie P (2013) The effect of surfactants on heat transfer feature of nanofluids. Exp Therm Fluid Sci 46:259–262
Zurück zum Zitat Xue QZ (2005) Model for thermal conductivity of mixture of carbon-nanotube based composites. Physisca B Condens Matter 368:302–307 Xue QZ (2005) Model for thermal conductivity of mixture of carbon-nanotube based composites. Physisca B Condens Matter 368:302–307
Zurück zum Zitat Yang B, Han ZH (2006) Temperature-dependent thermal conductivity of nanorod-based nanofluids. Appl Phys Lett 89:083111 Yang B, Han ZH (2006) Temperature-dependent thermal conductivity of nanorod-based nanofluids. Appl Phys Lett 89:083111
Zurück zum Zitat Younes H, Christensen G, Luan X, Hong H, Smith P (2012) Effects of alignment, pH, surfactant, and solvent on heat transfer nanofluids containing Fe2O3 and CuO nanoparticles. J Appl Phys 111:064308 Younes H, Christensen G, Luan X, Hong H, Smith P (2012) Effects of alignment, pH, surfactant, and solvent on heat transfer nanofluids containing Fe2O3 and CuO nanoparticles. J Appl Phys 111:064308
Zurück zum Zitat Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S (2012) An experimental investigation on the effect of Al2O3-H2O nanofluid on the efficiency of flat-plate solar collectors. Renew Energ 39:293–298 Yousefi T, Veysi F, Shojaeizadeh E, Zinadini S (2012) An experimental investigation on the effect of Al2O3-H2O nanofluid on the efficiency of flat-plate solar collectors. Renew Energ 39:293–298
Zurück zum Zitat Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5:167–171 Yu W, Choi SUS (2003) The role of interfacial layers in the enhanced thermal conductivity of nanofluids: a renovated Maxwell model. J Nanopart Res 5:167–171
Zurück zum Zitat Yu W, Xie H, Chen L, Li Y (2010) Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticles. Powder Technol 197:218–221 Yu W, Xie H, Chen L, Li Y (2010) Investigation on the thermal transport properties of ethylene glycol-based nanofluids containing copper nanoparticles. Powder Technol 197:218–221
Zurück zum Zitat Yu-Hua L, Wei Q, Jian-Chao F (2008) Temperature dependence of thermal conductivity of nanofluids. Chin Phys Lett 25:3319–3322 Yu-Hua L, Wei Q, Jian-Chao F (2008) Temperature dependence of thermal conductivity of nanofluids. Chin Phys Lett 25:3319–3322
Zurück zum Zitat Zadkhast M, Toghraie D, Karimipour A (2017) Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim 129:859–867 Zadkhast M, Toghraie D, Karimipour A (2017) Developing a new correlation to estimate the thermal conductivity of MWCNT-CuO/water hybrid nanofluid via an experimental investigation. J Therm Anal Calorim 129:859–867
Zurück zum Zitat Zakaria I, Azmi WH, Mohamed WANW, Mamat R, Najafi G (2015) Experimental investigation of thermal conductivity and electrical conductivity of Al2O3 nanofluid in water-ethylene glycol mixture for proton exchange membrane fuel cell application. Int Commun Heat Mass 61:61–68 Zakaria I, Azmi WH, Mohamed WANW, Mamat R, Najafi G (2015) Experimental investigation of thermal conductivity and electrical conductivity of Al2O3 nanofluid in water-ethylene glycol mixture for proton exchange membrane fuel cell application. Int Commun Heat Mass 61:61–68
Zurück zum Zitat Zakaria I, Azmi WH, Mamat AMI, Mamat R, Saidur R, Talib SFA, Mohamed WANW (2016) Thermal analysis of Al2O3-water ethylene glycol mixture nanofluid for single PEM fuel cell cooling plate: an experimental study. Int J Hydrogen Energy 41:5096–5112 Zakaria I, Azmi WH, Mamat AMI, Mamat R, Saidur R, Talib SFA, Mohamed WANW (2016) Thermal analysis of Al2O3-water ethylene glycol mixture nanofluid for single PEM fuel cell cooling plate: an experimental study. Int J Hydrogen Energy 41:5096–5112
Zurück zum Zitat Zawrah MF, Khattab RM, Girgis LG, Daidamony HEl, Aziz REA (2016) Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications. HBRC J 12:227–234 Zawrah MF, Khattab RM, Girgis LG, Daidamony HEl, Aziz REA (2016) Stability and electrical conductivity of water-base Al2O3 nanofluids for different applications. HBRC J 12:227–234
Zurück zum Zitat Zhang G, Kandlikar SG (2012) A critical review of cooling techniques in proton exchange membrane fuel cell stacks. Int J Hydrog Energy 37:2412–2429 Zhang G, Kandlikar SG (2012) A critical review of cooling techniques in proton exchange membrane fuel cell stacks. Int J Hydrog Energy 37:2412–2429
Zurück zum Zitat Zhou D, Wu H (2014) A thermal conductivity model of nanofluids based on particle size distribution analysis. Appl Phys Lett 105:083117 Zhou D, Wu H (2014) A thermal conductivity model of nanofluids based on particle size distribution analysis. Appl Phys Lett 105:083117
Zurück zum Zitat Zhu HT, Yin YS (2004) A novel one-step chemical method preparation of copper nanofluids. J Colloid Inter Sci 227:100–130 Zhu HT, Yin YS (2004) A novel one-step chemical method preparation of copper nanofluids. J Colloid Inter Sci 227:100–130
Zurück zum Zitat Zhu D, Wang L, Yu W, Xie H (2018) Intriguingly high thermal conductivity increment for CuO nanowires contained nanofluids with low viscosity. Sci Rep Sci Rep 8:5282 Zhu D, Wang L, Yu W, Xie H (2018) Intriguingly high thermal conductivity increment for CuO nanowires contained nanofluids with low viscosity. Sci Rep Sci Rep 8:5282
Zurück zum Zitat Zyla G, Fal J (2016) Experimental studies on viscosity, thermal and electrical conductivity of aluminium nitride-ethylene glycol (AlN-EG) nanofluids. Themochim Acta 637:11–16 Zyla G, Fal J (2016) Experimental studies on viscosity, thermal and electrical conductivity of aluminium nitride-ethylene glycol (AlN-EG) nanofluids. Themochim Acta 637:11–16
Zurück zum Zitat Zyla G, Fal J (2017) Viscosity, thermal and electrical conductivity of silicon dioxide-ethylene glycol transparent nanofluids: an experimental studies. Thermochima Acta 650:106–113 Zyla G, Fal J (2017) Viscosity, thermal and electrical conductivity of silicon dioxide-ethylene glycol transparent nanofluids: an experimental studies. Thermochima Acta 650:106–113
Metadaten
Titel
Synthesis and Characterization of Nanofluids: Thermal Conductivity, Electrical Conductivity and Particle Size Distribution
verfasst von
Divya P. Barai
Kalyani K. Chichghare
Shivani S. Chawhan
Bharat A. Bhanvase
Copyright-Jahr
2020
DOI
https://doi.org/10.1007/978-3-030-33774-2_1

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.