Skip to main content
Erschienen in: Journal of Materials Science 13/2017

21.03.2017 | Original Paper

Synthesis and characterization of Torlon-based polyion complex for direct methanol and polymer electrolyte membrane fuel cells

verfasst von: Harsha Nagar, V. V. Basava Rao, S. Sridhar

Erschienen in: Journal of Materials Science | Ausgabe 13/2017

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

An acid–base polyion complex membrane was synthesized by blending a polyamide-imide (Torlon) with sulfonated polyethersulfone (SPES), to make a sturdy proton-conducting electrolyte for portable fuel cells. The membrane was characterized by FTIR, XRD, TGA, SEM and UTM techniques. Chemical interactions between Torlon and SPES enabled the formation of ionic clusters that are useful for facilitating proton conduction and water sorption with prevention of fuel bypass. The complex exhibited high mechanical, thermal and oxidative stability with low methanol permeability (9.46 × 10−8 cm2/s). Sorption experiments showed the membrane to possess moderate affinity toward water with preferably low methanol uptake. Moreover, the blend membrane exhibited high proton conductivity (0.13 S/cm) at low humidity and high temperature conditions. To investigate the microstructure and transport behavior of the reported blend, molecular dynamics simulation based on COMPASS force field was performed. The diffusivity of hydronium ion obtained through simulation was used to calculate conductivity by Einstein equation. Proton conductivity obtained by simulation was validated by comparison with experimental data. Furthermore, the interaction of membrane functional groups with water and hydronium ion carrier was evaluated by radial distribution function. The study revealed the proposed complex to be an attractive, inexpensive alternative to state-of-the-art Nafion 117 membrane for fuel cell application.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Uma Devi A, Neelakandan S, Nagendran A (2016) Highly selective sulfonated poly(vinylidene fluoride-co-hexafluoropropylene)/poly(ether sulfone) blend proton exchange membranes for direct methanol fuel cells. J Appl Polym Sci 133:43907–43914 Uma Devi A, Neelakandan S, Nagendran A (2016) Highly selective sulfonated poly(vinylidene fluoride-co-hexafluoropropylene)/poly(ether sulfone) blend proton exchange membranes for direct methanol fuel cells. J Appl Polym Sci 133:43907–43914
2.
Zurück zum Zitat Mayahi A, Ismail AF, Ilbeygi H, Othman MHD, Ghasemi M, Norddin MNAM, Matsuura T (2013) Effect of operating temperature on the behavior of promising SPEEK/cSMM electrolyte membrane for DMFCs. Sep Purif Technol 106:72–81CrossRef Mayahi A, Ismail AF, Ilbeygi H, Othman MHD, Ghasemi M, Norddin MNAM, Matsuura T (2013) Effect of operating temperature on the behavior of promising SPEEK/cSMM electrolyte membrane for DMFCs. Sep Purif Technol 106:72–81CrossRef
3.
Zurück zum Zitat Juhana J, Ismail AF, Matsuura T, Norddin MNAM (2013) Stability of SPEEK-triaminopyrimide polymer electrolyte membrane for direct methanol fuel cell application. Sains Malays 42:1671–1677 Juhana J, Ismail AF, Matsuura T, Norddin MNAM (2013) Stability of SPEEK-triaminopyrimide polymer electrolyte membrane for direct methanol fuel cell application. Sains Malays 42:1671–1677
5.
Zurück zum Zitat Muthumeenal A, Neelakandan S, Kanagaraj P, Nagendran A (2016) Synthesis and properties of novel proton exchange membranes based on sulfonated polyethersulfone and N-phthaloyl chitosan blends for DMFC applications. Renew Energy 86:922–929CrossRef Muthumeenal A, Neelakandan S, Kanagaraj P, Nagendran A (2016) Synthesis and properties of novel proton exchange membranes based on sulfonated polyethersulfone and N-phthaloyl chitosan blends for DMFC applications. Renew Energy 86:922–929CrossRef
6.
Zurück zum Zitat Wang J, Liao J, Yang L, Zhang S, Huang X, Ji J (2012) Highly compatible acid–base blend membranes based on sulfonated poly(ether ether ketone) and poly(ether ether ketone-alt-benzimidazole) for fuel cells application. J Membr Sci 415–416:644–653CrossRef Wang J, Liao J, Yang L, Zhang S, Huang X, Ji J (2012) Highly compatible acid–base blend membranes based on sulfonated poly(ether ether ketone) and poly(ether ether ketone-alt-benzimidazole) for fuel cells application. J Membr Sci 415–416:644–653CrossRef
7.
Zurück zum Zitat Smitha B, Sridhar S, Khan AA (2006) Chitosan–poly(vinyl pyrrolidone) blends as membranes for direct methanol fuel cell applications. J Power Sources 159:846–854CrossRef Smitha B, Sridhar S, Khan AA (2006) Chitosan–poly(vinyl pyrrolidone) blends as membranes for direct methanol fuel cell applications. J Power Sources 159:846–854CrossRef
8.
Zurück zum Zitat Lang Wu H, Ma M (2005) Sulfonated poly(ether ether ketone)/poly(vinylpyrrolidone) acid–base polymer blends for direct methanol fuel cell application. J Polym Sci Part B Polym Phys 44:566–572 Lang Wu H, Ma M (2005) Sulfonated poly(ether ether ketone)/poly(vinylpyrrolidone) acid–base polymer blends for direct methanol fuel cell application. J Polym Sci Part B Polym Phys 44:566–572
9.
Zurück zum Zitat Haghigh AH, Hasani-Sadrabad MM, Dashtimoghadam E, Bahlakeh G, Shakeri S, Majedi FS, Emami SH, Moaddel H (2011) Direct methanol fuel cell performance of sulfonated poly(2,6-dimethyl-1,4-phenylene oxide)-polybenzimidazole blend proton exchange membranes. Int J Hydrog Energy 36:3688–3696CrossRef Haghigh AH, Hasani-Sadrabad MM, Dashtimoghadam E, Bahlakeh G, Shakeri S, Majedi FS, Emami SH, Moaddel H (2011) Direct methanol fuel cell performance of sulfonated poly(2,6-dimethyl-1,4-phenylene oxide)-polybenzimidazole blend proton exchange membranes. Int J Hydrog Energy 36:3688–3696CrossRef
10.
Zurück zum Zitat Hasiotisa C, Deimede V, Kontoyannisa C (2001) New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole. Electrochim Acta 46:2401–2406CrossRef Hasiotisa C, Deimede V, Kontoyannisa C (2001) New polymer electrolytes based on blends of sulfonated polysulfones with polybenzimidazole. Electrochim Acta 46:2401–2406CrossRef
11.
Zurück zum Zitat Bhavani P, Sangeetha D (2011) Preparation and characterization of proton exchange membrane based on SPSEBS/PSU blends for fuel cell applications. Energy 36:3360–3369CrossRef Bhavani P, Sangeetha D (2011) Preparation and characterization of proton exchange membrane based on SPSEBS/PSU blends for fuel cell applications. Energy 36:3360–3369CrossRef
12.
Zurück zum Zitat Harsha N, Kalyani S, Rao VVB, Sridhar S (2015) Synthesis and characterization of polyion complex membranes made of aminated polyetherimide and sulfonated polyethersulfone for fuel cell applications. J Fuel Cell Sci Technol 12(061004):1–10 Harsha N, Kalyani S, Rao VVB, Sridhar S (2015) Synthesis and characterization of polyion complex membranes made of aminated polyetherimide and sulfonated polyethersulfone for fuel cell applications. J Fuel Cell Sci Technol 12(061004):1–10
13.
Zurück zum Zitat Muthumeenal A, Sundar Pethaiah S, Nagendran A (2016) Investigation of SPES as PEM for hydrogen production through electrochemical reforming of aqueous methanol. Renew Energy 91:75–82CrossRef Muthumeenal A, Sundar Pethaiah S, Nagendran A (2016) Investigation of SPES as PEM for hydrogen production through electrochemical reforming of aqueous methanol. Renew Energy 91:75–82CrossRef
14.
Zurück zum Zitat Guan R, Dai H, Li C, Liu J, Xu J (2006) Effect of casting solvent on the morphology and performance of sulfonated polyethersulfone membranes. J Membr Sci 277:148–156CrossRef Guan R, Dai H, Li C, Liu J, Xu J (2006) Effect of casting solvent on the morphology and performance of sulfonated polyethersulfone membranes. J Membr Sci 277:148–156CrossRef
15.
Zurück zum Zitat Madaeni SS, Amirinejad S, Amirinejad M (2011) Phosphotungstic acid doped poly(vinyl alcohol)/poly(ether sulfone) blend composite membranes for direct methanol fuel cells. J Membr Sci 380:132–137CrossRef Madaeni SS, Amirinejad S, Amirinejad M (2011) Phosphotungstic acid doped poly(vinyl alcohol)/poly(ether sulfone) blend composite membranes for direct methanol fuel cells. J Membr Sci 380:132–137CrossRef
16.
Zurück zum Zitat Hasani-Sadrabad MM, Dashtimoghadam E, Ghaffarian SR, Sadrabadi MHH, Heidari M, Moaddel H (2010) Novel high-performance nanocomposite proton exchange membranes based on poly(ether sulfone). Renew Energy 35:226–231CrossRef Hasani-Sadrabad MM, Dashtimoghadam E, Ghaffarian SR, Sadrabadi MHH, Heidari M, Moaddel H (2010) Novel high-performance nanocomposite proton exchange membranes based on poly(ether sulfone). Renew Energy 35:226–231CrossRef
17.
Zurück zum Zitat Chen L, Sun L, Zeng R, Xiao S, Chen Y (2012) Cross-linked zwitterionic polyelectrolytes based on sulfonated poly(ether sulfone) with high proton conductivity for direct methanol fuel cells. J Power Sources 212:13–21CrossRef Chen L, Sun L, Zeng R, Xiao S, Chen Y (2012) Cross-linked zwitterionic polyelectrolytes based on sulfonated poly(ether sulfone) with high proton conductivity for direct methanol fuel cells. J Power Sources 212:13–21CrossRef
18.
Zurück zum Zitat Wen S, Gong C, Tsen WC, Shu YC, Tsai FC (2009) Sulfonated poly(ether sulfone) (SPES)/boron phosphate (BPO4) composite membranes for high-temperature proton-exchange membrane fuel cells. Int J Hydrog Energy 34:8982–8991CrossRef Wen S, Gong C, Tsen WC, Shu YC, Tsai FC (2009) Sulfonated poly(ether sulfone) (SPES)/boron phosphate (BPO4) composite membranes for high-temperature proton-exchange membrane fuel cells. Int J Hydrog Energy 34:8982–8991CrossRef
19.
Zurück zum Zitat Seo DW, Lim YD, Lee SH, Jeong YG, Hong TW, Kim WG (2010) Preparation and characterization of sulfonated amine-poly(ether sulfone) for proton exchange membrane fuel cell Int. J Hydrog Energy 35:13088–13095CrossRef Seo DW, Lim YD, Lee SH, Jeong YG, Hong TW, Kim WG (2010) Preparation and characterization of sulfonated amine-poly(ether sulfone) for proton exchange membrane fuel cell Int. J Hydrog Energy 35:13088–13095CrossRef
20.
Zurück zum Zitat Kim DJ, Lee HJ, Nam SY (2014) Sulfonated poly(arylene ether sulfone) membranes blended with hydrophobic polymers for direct methanol fuel cell applications. Int J Hydrog Energy 39:17524–17532CrossRef Kim DJ, Lee HJ, Nam SY (2014) Sulfonated poly(arylene ether sulfone) membranes blended with hydrophobic polymers for direct methanol fuel cell applications. Int J Hydrog Energy 39:17524–17532CrossRef
21.
Zurück zum Zitat Li W, Manthiram A, Guiver MD (2010) Acid–base blend membranes consisting of sulfonated poly(ether ether ketone) and 5-amino-benzotriazole tethered polysulfone for DMFC. J Membr Sci 362:289–297CrossRef Li W, Manthiram A, Guiver MD (2010) Acid–base blend membranes consisting of sulfonated poly(ether ether ketone) and 5-amino-benzotriazole tethered polysulfone for DMFC. J Membr Sci 362:289–297CrossRef
22.
Zurück zum Zitat Seung CG, Jin CK, Dahee A, Jin SJ, Haekyoung K, Jin CJ, Seongyop L, Doo-HJ HJ, Wonmok L (2012) Thermally crosslinked sulfonated polyethersulfone proton exchange membranes for direct methanol fuel cells. J Membr Sci 417–418:2–9 Seung CG, Jin CK, Dahee A, Jin SJ, Haekyoung K, Jin CJ, Seongyop L, Doo-HJ HJ, Wonmok L (2012) Thermally crosslinked sulfonated polyethersulfone proton exchange membranes for direct methanol fuel cells. J Membr Sci 417–418:2–9
23.
Zurück zum Zitat Muthumeenal A, John Rethinam A, Nagendran A (2016) Sulfonated polyethersulfone based composite membranes containing heteropolyacids laminated with polypyrrole for electrochemical energy conversion devices. Solid State Ion 296:106–113CrossRef Muthumeenal A, John Rethinam A, Nagendran A (2016) Sulfonated polyethersulfone based composite membranes containing heteropolyacids laminated with polypyrrole for electrochemical energy conversion devices. Solid State Ion 296:106–113CrossRef
24.
Zurück zum Zitat Jang W, Sundar S, Choi S, Shul YG, Han H (2006) Acid–base polyimide blends for the application as electrolyte membranes for fuel cells. J Membr Sci 280:321–329CrossRef Jang W, Sundar S, Choi S, Shul YG, Han H (2006) Acid–base polyimide blends for the application as electrolyte membranes for fuel cells. J Membr Sci 280:321–329CrossRef
25.
Zurück zum Zitat Bahlakeh G, Nikazar M, Sadrabadi MMH (2013) Understanding structure and transport characteristics in hydrated sulfonated poly(ether ether ketone)–sulfonated poly(ether sulfone) blend membranes using molecular dynamics simulations. J Membr Sci 429:384–395CrossRef Bahlakeh G, Nikazar M, Sadrabadi MMH (2013) Understanding structure and transport characteristics in hydrated sulfonated poly(ether ether ketone)–sulfonated poly(ether sulfone) blend membranes using molecular dynamics simulations. J Membr Sci 429:384–395CrossRef
26.
Zurück zum Zitat Srinophakun T, Martkumchan S (2012) Ionic conductivity in a chitosan membrane for a PEM fuel cell using molecular dynamics simulation. Carbohydr Polym 88:194–200CrossRef Srinophakun T, Martkumchan S (2012) Ionic conductivity in a chitosan membrane for a PEM fuel cell using molecular dynamics simulation. Carbohydr Polym 88:194–200CrossRef
27.
Zurück zum Zitat Li S, Fried JR, Colebrook J, Burkhardt J (2010) Molecular simulations of neat, hydrated, and phosphoric acid-doped polybenzimidazoles. Part 1: poly(2,2′-m-phenylene-5,5′-bibenzimidazole) (PBI), poly(2,5-benzimidazole) (ABPBI), and poly(p-phenylene benzobisimidazole) (PBDI). Polymer 51:5640–5648CrossRef Li S, Fried JR, Colebrook J, Burkhardt J (2010) Molecular simulations of neat, hydrated, and phosphoric acid-doped polybenzimidazoles. Part 1: poly(2,2′-m-phenylene-5,5′-bibenzimidazole) (PBI), poly(2,5-benzimidazole) (ABPBI), and poly(p-phenylene benzobisimidazole) (PBDI). Polymer 51:5640–5648CrossRef
28.
Zurück zum Zitat Chen L, He YL, Tao WQ (2014) The temperature effect on the diffusion processes of water and proton in the proton exchange membrane using molecular dynamics simulation. Numer Heat Transf Part A 65:216–228CrossRef Chen L, He YL, Tao WQ (2014) The temperature effect on the diffusion processes of water and proton in the proton exchange membrane using molecular dynamics simulation. Numer Heat Transf Part A 65:216–228CrossRef
29.
Zurück zum Zitat Saranya R, Kumar M, Tamilarasan R, Ismail AF, Arthanareeswaran G (2016) Functionalised activated carbon modified polyphenylsulfone composite membranes for adsorption enhanced phenol filtration. J Chem Technol Biotechnol 91:748–761CrossRef Saranya R, Kumar M, Tamilarasan R, Ismail AF, Arthanareeswaran G (2016) Functionalised activated carbon modified polyphenylsulfone composite membranes for adsorption enhanced phenol filtration. J Chem Technol Biotechnol 91:748–761CrossRef
30.
Zurück zum Zitat Liao Y, Farrell TP, Guillen GR, Li M, Temple JAT, Li XG, Hoek EMV, Kaner RB (2014) Highly dispersible polypyrrole nanospheres for advanced nanocomposite ultrafiltration membranes. Mater Horiz 1:58–64CrossRef Liao Y, Farrell TP, Guillen GR, Li M, Temple JAT, Li XG, Hoek EMV, Kaner RB (2014) Highly dispersible polypyrrole nanospheres for advanced nanocomposite ultrafiltration membranes. Mater Horiz 1:58–64CrossRef
31.
Zurück zum Zitat Harsha N, Sumana C, Rao VVB, Sridhar S (2016) Performance evaluation of sodium alginate–Pebax polyion complex membranes for application in direct methanol fuel cells. J Appl Polym Sci 288:69–80 Harsha N, Sumana C, Rao VVB, Sridhar S (2016) Performance evaluation of sodium alginate–Pebax polyion complex membranes for application in direct methanol fuel cells. J Appl Polym Sci 288:69–80
32.
Zurück zum Zitat Fu RQ, Julius D, Hong L, Lee JY (2008) Sulfonated polyimide membranes grafted with sulfoalkylated side chains for proton exchange membrane fuel cell (PEMFC) applications. J Membr Sci 322:331–338CrossRef Fu RQ, Julius D, Hong L, Lee JY (2008) Sulfonated polyimide membranes grafted with sulfoalkylated side chains for proton exchange membrane fuel cell (PEMFC) applications. J Membr Sci 322:331–338CrossRef
33.
Zurück zum Zitat Lee CH, Park HB, Lee YM, Lee RD (2005) Importance of Proton conductivity measurement in polymer electrolyte membrane for fuel cell application. Ind Eng Chem Res 44:7617–7626CrossRef Lee CH, Park HB, Lee YM, Lee RD (2005) Importance of Proton conductivity measurement in polymer electrolyte membrane for fuel cell application. Ind Eng Chem Res 44:7617–7626CrossRef
34.
Zurück zum Zitat Wang J, Li N, Cui Z, Zhang S, Xing W (2009) Blends based on sulfonated poly[bis(benzimidazobenzisoquinolinones)] and poly(vinylidene fluoride) for polymer electrolyte membrane fuel cell. J Membr Sci 341:155–162CrossRef Wang J, Li N, Cui Z, Zhang S, Xing W (2009) Blends based on sulfonated poly[bis(benzimidazobenzisoquinolinones)] and poly(vinylidene fluoride) for polymer electrolyte membrane fuel cell. J Membr Sci 341:155–162CrossRef
35.
Zurück zum Zitat Kalaw GJD, Wahome JAN, Zhu Y Jr, Balkus KJ, Musselman IH, Yang DJ, Ferraris JP (2013) Perfluorocyclobutyl (PFCB)-based polymer blends for proton exchange membrane fuel cells (PEMFCs). J Membr Sci 431:86–95CrossRef Kalaw GJD, Wahome JAN, Zhu Y Jr, Balkus KJ, Musselman IH, Yang DJ, Ferraris JP (2013) Perfluorocyclobutyl (PFCB)-based polymer blends for proton exchange membrane fuel cells (PEMFCs). J Membr Sci 431:86–95CrossRef
36.
Zurück zum Zitat Kumar R, Mamlouk M, Scott K (2014) Sulfonated polyether ether ketone—sulfonated graphene oxide composite membranes for polymer electrolyte fuel cells. RSC Adv 4:617–623CrossRef Kumar R, Mamlouk M, Scott K (2014) Sulfonated polyether ether ketone—sulfonated graphene oxide composite membranes for polymer electrolyte fuel cells. RSC Adv 4:617–623CrossRef
37.
Zurück zum Zitat Srirama K, Arthanareeswaran G, Ismail AF, Paul D (2016) Effects of special nanoparticles on fuel cell properties of sulfonated polyethersulfone membrane. Int J Polym Mater 65:294–301CrossRef Srirama K, Arthanareeswaran G, Ismail AF, Paul D (2016) Effects of special nanoparticles on fuel cell properties of sulfonated polyethersulfone membrane. Int J Polym Mater 65:294–301CrossRef
38.
Zurück zum Zitat Velu S, Muruganandam L, Arthanareeswaran G (2015) Preparation and performance studies on polyethersulfone ultrafiltration membranes modified with gelatin for treatment of tannery and distillery wastewater. Braz J Chem Eng 32:179–189CrossRef Velu S, Muruganandam L, Arthanareeswaran G (2015) Preparation and performance studies on polyethersulfone ultrafiltration membranes modified with gelatin for treatment of tannery and distillery wastewater. Braz J Chem Eng 32:179–189CrossRef
39.
Zurück zum Zitat Teoh MM, Chung TS, Wang KY, Guiver MD (2008) Exploring Torlon/P84 co-polyamide-imide blended hollow fibers and their chemical cross-linking modifications for pervaporation dehydration of isopropanol. Sep Purif Technol 61:404–413CrossRef Teoh MM, Chung TS, Wang KY, Guiver MD (2008) Exploring Torlon/P84 co-polyamide-imide blended hollow fibers and their chemical cross-linking modifications for pervaporation dehydration of isopropanol. Sep Purif Technol 61:404–413CrossRef
40.
Zurück zum Zitat Jang W, Sundar S, Choi S, Shul YG, Han H (2006) Acid–base polyimide blends for the application as electrolyte membranes for fuel cells. J Membr Sci 280:321–329CrossRef Jang W, Sundar S, Choi S, Shul YG, Han H (2006) Acid–base polyimide blends for the application as electrolyte membranes for fuel cells. J Membr Sci 280:321–329CrossRef
41.
Zurück zum Zitat Bahlakeh G, Nikazar M, Sadrabadi MMH (2013) Understanding structure and transport characteristics in hydrated sulfonated poly(ether ether ketone)–sulfonated poly(ether sulfone) blend membranes using molecular dynamics simulations. J Membr Sci 429:384–395CrossRef Bahlakeh G, Nikazar M, Sadrabadi MMH (2013) Understanding structure and transport characteristics in hydrated sulfonated poly(ether ether ketone)–sulfonated poly(ether sulfone) blend membranes using molecular dynamics simulations. J Membr Sci 429:384–395CrossRef
42.
Zurück zum Zitat Kuwertz R, Kirstein C, Turek T, Kunz U (2016) Influence of acid pretreatment on ionic conductivity of Nafion® membranes. J Membr Sci 500:225–235CrossRef Kuwertz R, Kirstein C, Turek T, Kunz U (2016) Influence of acid pretreatment on ionic conductivity of Nafion® membranes. J Membr Sci 500:225–235CrossRef
43.
Zurück zum Zitat Huang RYM (1991) Pervaporation membrane separation processes. Elsevier Science Publishers, Amsterdam Huang RYM (1991) Pervaporation membrane separation processes. Elsevier Science Publishers, Amsterdam
44.
Zurück zum Zitat Wang LS, Lai AN, Lin CX, Zhang QG, Zhu AM, Liu QL (2015) Orderly sandwich- shaped graphene oxide/Nafion composite membranes for direct methanol fuel cells. J Membr Sci 492:58–66CrossRef Wang LS, Lai AN, Lin CX, Zhang QG, Zhu AM, Liu QL (2015) Orderly sandwich- shaped graphene oxide/Nafion composite membranes for direct methanol fuel cells. J Membr Sci 492:58–66CrossRef
Metadaten
Titel
Synthesis and characterization of Torlon-based polyion complex for direct methanol and polymer electrolyte membrane fuel cells
verfasst von
Harsha Nagar
V. V. Basava Rao
S. Sridhar
Publikationsdatum
21.03.2017
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 13/2017
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-017-1008-7

Weitere Artikel der Ausgabe 13/2017

Journal of Materials Science 13/2017 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.