Skip to main content
Erschienen in: Polymer Bulletin 2/2019

19.06.2018 | Original Paper

Synthesis, characterization and biocompatible properties of novel silk fibroin/graphene oxide nanocomposite scaffolds for bone tissue engineering application

verfasst von: Mehdi Narimani, Abbas Teimouri, Zeinab Shahbazarab

Erschienen in: Polymer Bulletin | Ausgabe 2/2019

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Novel three-dimensional porous silk fibroin/graphene oxide (SF/GO) nanocomposite scaffolds with different graphene oxide (GO) concentrations were prepared by using the freeze-drying technique. The obtained SF/GO scaffolds were characterized by thermogravimetric analysis, X-ray diffraction, scanning electron microscopy, Brunauer–Emmett–Teller isotherm and Fourier transform infrared spectroscopy techniques. The water absorption, compressive properties, porosity, degradation, biomineralization capability, cell attachment and cell viability of the composite scaffolds were studied as well. Cytocompatibility of the scaffolds was studied in vitro by employing the methylthiazoletetrazolium assay. The results showed that the presence of graphene oxide nanoparticles throughout the fibroin matrix led to an increase in water uptake and mechanical properties; at the same time, the porosity of the scaffolds was decreased. The cell adhesion results also indicated that human osteoblast cells (MG-63) could adhere to the surface of SF/GO nanocomposites and develop on them. These suggest that SF/GO nanocomposite scaffolds may be a good candidate for bone tissue engineering applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Jayakumar R, Chennazhi KP, Srinivasan S, Nair SV, Furuike T, Tamura H (2011) Chitin scaffolds in tissue engineering. Int J Mol Sci 15:1876–1887CrossRef Jayakumar R, Chennazhi KP, Srinivasan S, Nair SV, Furuike T, Tamura H (2011) Chitin scaffolds in tissue engineering. Int J Mol Sci 15:1876–1887CrossRef
2.
Zurück zum Zitat Rocchietta I, Fontana F, Simion M (2008) Clinical outcomes of vertical bone augmentation to enable dental implant placement: a systematic review. J Clin Periodontol 35:203–215CrossRefPubMed Rocchietta I, Fontana F, Simion M (2008) Clinical outcomes of vertical bone augmentation to enable dental implant placement: a systematic review. J Clin Periodontol 35:203–215CrossRefPubMed
3.
Zurück zum Zitat Wang M (2003) Developing bioactive composite materials for tissue replacement. Biomaterials 24:2133–2151CrossRefPubMed Wang M (2003) Developing bioactive composite materials for tissue replacement. Biomaterials 24:2133–2151CrossRefPubMed
4.
Zurück zum Zitat Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRefPubMed Hutmacher DW (2000) Scaffolds in tissue engineering bone and cartilage. Biomaterials 21:2529–2543CrossRefPubMed
5.
Zurück zum Zitat Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7:679–689CrossRefPubMed Yang S, Leong KF, Du Z, Chua CK (2001) The design of scaffolds for use in tissue engineering. Part I. Traditional factors. Tissue Eng 7:679–689CrossRefPubMed
6.
Zurück zum Zitat Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27:2651–2670CrossRefPubMed Ryan G, Pandit A, Apatsidis DP (2006) Fabrication methods of porous metals for use in orthopaedic applications. Biomaterials 27:2651–2670CrossRefPubMed
7.
8.
Zurück zum Zitat Bensaıd W, Triffitt JT, Blanchat C, Oudina K, Sedel L, Petite H (2003) A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 24:2497–2502CrossRefPubMed Bensaıd W, Triffitt JT, Blanchat C, Oudina K, Sedel L, Petite H (2003) A biodegradable fibrin scaffold for mesenchymal stem cell transplantation. Biomaterials 24:2497–2502CrossRefPubMed
9.
Zurück zum Zitat Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL (2005) Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26:2775–2785CrossRefPubMed Kim UJ, Park J, Kim HJ, Wada M, Kaplan DL (2005) Three-dimensional aqueous-derived biomaterial scaffolds from silk fibroin. Biomaterials 26:2775–2785CrossRefPubMed
10.
Zurück zum Zitat Singh BN, Panda NN, Mund R, Pramanik K (2016) Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application. Carbohydr Polym 151:335–347CrossRefPubMed Singh BN, Panda NN, Mund R, Pramanik K (2016) Carboxymethyl cellulose enables silk fibroin nanofibrous scaffold with enhanced biomimetic potential for bone tissue engineering application. Carbohydr Polym 151:335–347CrossRefPubMed
11.
Zurück zum Zitat Meinel L, Karageorgiou V, Hofmann S, Fajardo R, Snyder B, Li C, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL (2004) Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. J Biomed Mater Res 71:25–34CrossRef Meinel L, Karageorgiou V, Hofmann S, Fajardo R, Snyder B, Li C, Zichner L, Langer R, Vunjak-Novakovic G, Kaplan DL (2004) Engineering bone-like tissue in vitro using human bone marrow stem cells and silk scaffolds. J Biomed Mater Res 71:25–34CrossRef
12.
Zurück zum Zitat Luangbudnark W, Viyoch J, Laupattarakasem W, Surakunprapha P, Laupattarakasem P (2012) Properties and biocompatibility of chitosan and silk fibroin blend films for application in skin tissue engineering. World J Sci 2012:697201–697211CrossRef Luangbudnark W, Viyoch J, Laupattarakasem W, Surakunprapha P, Laupattarakasem P (2012) Properties and biocompatibility of chitosan and silk fibroin blend films for application in skin tissue engineering. World J Sci 2012:697201–697211CrossRef
13.
Zurück zum Zitat Bhardwaj N, Kundu SC (2011) Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications. Carbohydr Polym 85:325–333CrossRef Bhardwaj N, Kundu SC (2011) Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications. Carbohydr Polym 85:325–333CrossRef
14.
Zurück zum Zitat She Z, Liu W, Feng Q (2010) Silk fibroin/chitosan/heparin scaffold: preparation, antithrombogenicity and culture with hepatocytes. Polym Int 59:55–61CrossRef She Z, Liu W, Feng Q (2010) Silk fibroin/chitosan/heparin scaffold: preparation, antithrombogenicity and culture with hepatocytes. Polym Int 59:55–61CrossRef
15.
Zurück zum Zitat Ruiz ON, Fernando KS, Wang B, Brown NA, Luo PG, McNamara ND, Vangsness M, Sun YP, Bunker CE (2011) Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 5:8100–8107CrossRefPubMed Ruiz ON, Fernando KS, Wang B, Brown NA, Luo PG, McNamara ND, Vangsness M, Sun YP, Bunker CE (2011) Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 5:8100–8107CrossRefPubMed
16.
Zurück zum Zitat Mehrali M, Moghaddam E, Shirazi SF, Baradaran S, Mehrali M, Latibari ST, Metselaar HS, Kadri NA, Zandi K, Osman NA (2014) Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate–reduced graphene oxide composites. ACS Appl Mater Interface 6:3947–3962CrossRef Mehrali M, Moghaddam E, Shirazi SF, Baradaran S, Mehrali M, Latibari ST, Metselaar HS, Kadri NA, Zandi K, Osman NA (2014) Synthesis, mechanical properties, and in vitro biocompatibility with osteoblasts of calcium silicate–reduced graphene oxide composites. ACS Appl Mater Interface 6:3947–3962CrossRef
17.
Zurück zum Zitat Huang G, Chen S, Tang S, Gao J (2012) A novel intumescent flame retardant-functionalized graphene: Nanocomposite synthesis, characterization, and flammability properties. Mater Chem Phys 135:938–947CrossRef Huang G, Chen S, Tang S, Gao J (2012) A novel intumescent flame retardant-functionalized graphene: Nanocomposite synthesis, characterization, and flammability properties. Mater Chem Phys 135:938–947CrossRef
18.
Zurück zum Zitat Kalbacova M, Broz A, Kong J, Kalbac M (2010) Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 48:4323–4329CrossRef Kalbacova M, Broz A, Kong J, Kalbac M (2010) Graphene substrates promote adherence of human osteoblasts and mesenchymal stromal cells. Carbon 48:4323–4329CrossRef
19.
Zurück zum Zitat Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, Ee PL, Ahn JH, Hong BH, Pastorin G, Ozyilmaz B (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5:4670–4678CrossRefPubMed Nayak TR, Andersen H, Makam VS, Khaw C, Bae S, Xu X, Ee PL, Ahn JH, Hong BH, Pastorin G, Ozyilmaz B (2011) Graphene for controlled and accelerated osteogenic differentiation of human mesenchymal stem cells. ACS Nano 5:4670–4678CrossRefPubMed
20.
Zurück zum Zitat Zhang J, Zhang F, Yang H, Huang X, Liu H, Zhang J, Guo S (2010) Graphene oxide as a matrix for enzyme immobilization. Langmuir 26:6083–6085CrossRefPubMed Zhang J, Zhang F, Yang H, Huang X, Liu H, Zhang J, Guo S (2010) Graphene oxide as a matrix for enzyme immobilization. Langmuir 26:6083–6085CrossRefPubMed
21.
Zurück zum Zitat Sui ZY, Cui Y, Zhu JH, Han BH (2013) Preparation of three-dimensional graphene oxide–polyethylenimine porous materials as dye and gas adsorbents. ACS Appl Mater Interface 5:9172–9179CrossRef Sui ZY, Cui Y, Zhu JH, Han BH (2013) Preparation of three-dimensional graphene oxide–polyethylenimine porous materials as dye and gas adsorbents. ACS Appl Mater Interface 5:9172–9179CrossRef
22.
Zurück zum Zitat Ruiz ON, Fernando KS, Wang B, Brown NA, Luo PG, McNamara ND, Vangsness M, Sun YP, Bunker CE (2011) Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 5:8100–8107CrossRefPubMed Ruiz ON, Fernando KS, Wang B, Brown NA, Luo PG, McNamara ND, Vangsness M, Sun YP, Bunker CE (2011) Graphene oxide: a nonspecific enhancer of cellular growth. ACS Nano 5:8100–8107CrossRefPubMed
23.
Zurück zum Zitat Yoon OJ, Jung CY, Sohn IY, Kim HJ, Hong B, Jhon MS, Lee NE (2011) Nanocomposite nanofibers of poly(d, l-lactic-co-glycolic acid) and graphene oxide nanosheets. Compos Part A Appl Sci Manuf 42:1978–1984CrossRef Yoon OJ, Jung CY, Sohn IY, Kim HJ, Hong B, Jhon MS, Lee NE (2011) Nanocomposite nanofibers of poly(d, l-lactic-co-glycolic acid) and graphene oxide nanosheets. Compos Part A Appl Sci Manuf 42:1978–1984CrossRef
24.
Zurück zum Zitat Yoon OJ, Sohn IY, Kim DJ, Lee NE (2012) Enhancement of thermomechanical properties of poly (d, l-lactic-co-glycolic acid) and graphene oxide composite films for scaffolds. Macromol Res 1:1–6 Yoon OJ, Sohn IY, Kim DJ, Lee NE (2012) Enhancement of thermomechanical properties of poly (d, l-lactic-co-glycolic acid) and graphene oxide composite films for scaffolds. Macromol Res 1:1–6
25.
Zurück zum Zitat Wu S, Zhao X, Cui Z, Zhao C, Wang Y, Du L, Li Y (2014) Cytotoxicity of graphene oxide and graphene oxide loaded with doxorubicin on human multiple myeloma cells. Int J Nano Med 9:1413–1421 Wu S, Zhao X, Cui Z, Zhao C, Wang Y, Du L, Li Y (2014) Cytotoxicity of graphene oxide and graphene oxide loaded with doxorubicin on human multiple myeloma cells. Int J Nano Med 9:1413–1421
26.
Zurück zum Zitat Teimouri A, Ebrahimi R, Chermahini AN, Emadi R (2015) Fabrication and characterization of silk fibroin/chitosan/nano γ-alumina composite scaffolds for tissue engineering applications. RSC Adv 5:27558–27570CrossRef Teimouri A, Ebrahimi R, Chermahini AN, Emadi R (2015) Fabrication and characterization of silk fibroin/chitosan/nano γ-alumina composite scaffolds for tissue engineering applications. RSC Adv 5:27558–27570CrossRef
27.
Zurück zum Zitat Teimouri A, Ebrahimi R, Emadi R, Beni BH, Chermahini AN (2015) Nano-composite of silk fibroin–chitosan/Nano ZrO2 for tissue engineering applications: Fabrication and morphology. Int J Biol Macromol 76:292–302CrossRefPubMed Teimouri A, Ebrahimi R, Emadi R, Beni BH, Chermahini AN (2015) Nano-composite of silk fibroin–chitosan/Nano ZrO2 for tissue engineering applications: Fabrication and morphology. Int J Biol Macromol 76:292–302CrossRefPubMed
28.
Zurück zum Zitat Ghorbanian L, Emadi R, Razavi SM, Shin H, Teimouri A (2013) Fabrication and characterization of novel diopside/silk fibroin nanocomposite scaffolds for potential application in maxillofacial bone regeneration. Int J Biol Macromol 58:275–280CrossRefPubMed Ghorbanian L, Emadi R, Razavi SM, Shin H, Teimouri A (2013) Fabrication and characterization of novel diopside/silk fibroin nanocomposite scaffolds for potential application in maxillofacial bone regeneration. Int J Biol Macromol 58:275–280CrossRefPubMed
29.
Zurück zum Zitat Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6:1612–1631CrossRefPubMed Rockwood DN, Preda RC, Yücel T, Wang X, Lovett ML, Kaplan DL (2011) Materials fabrication from Bombyx mori silk fibroin. Nat Protoc 6:1612–1631CrossRefPubMed
30.
Zurück zum Zitat Lim HN, Huang NM, Lim SS, Harrison I, Chia CH (2011) Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth. Int J Nano Med 6:1817–1823CrossRef Lim HN, Huang NM, Lim SS, Harrison I, Chia CH (2011) Fabrication and characterization of graphene hydrogel via hydrothermal approach as a scaffold for preliminary study of cell growth. Int J Nano Med 6:1817–1823CrossRef
31.
Zurück zum Zitat Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRefPubMed Kokubo T, Takadama H (2006) How useful is SBF in predicting in vivo bone bioactivity? Biomaterials 27:2907–2915CrossRefPubMed
32.
Zurück zum Zitat Escamilla-García M, Calderon-Dominguez G, Chanona-Perez JJ, Farrera-Rebollo RR, Andraca-Adame JA, Arzate-Vazquez I, Mendez-Mendez JV, Moreno-Ruiz LA (2013) Physical and structural characterisation of zein and chitosan edible films using nanotechnology tools. Int J Biol Macromol 61:196–203CrossRefPubMed Escamilla-García M, Calderon-Dominguez G, Chanona-Perez JJ, Farrera-Rebollo RR, Andraca-Adame JA, Arzate-Vazquez I, Mendez-Mendez JV, Moreno-Ruiz LA (2013) Physical and structural characterisation of zein and chitosan edible films using nanotechnology tools. Int J Biol Macromol 61:196–203CrossRefPubMed
33.
Zurück zum Zitat Zdravkov B, Čermák J, Šefara M, Janků J (2007) Pore classification in the characterization of porous materials: a perspective. Open Chem 5:385–395CrossRef Zdravkov B, Čermák J, Šefara M, Janků J (2007) Pore classification in the characterization of porous materials: a perspective. Open Chem 5:385–395CrossRef
34.
Zurück zum Zitat Alonso-Lemus I, Verde-Gómez Y, Álvarez-Contreras L (2011) Platinum nanoparticles synthesis supported in mesoporous silica and its effect in MCM-41 lattice. Int J Electrochem Sci 6:4176–4187 Alonso-Lemus I, Verde-Gómez Y, Álvarez-Contreras L (2011) Platinum nanoparticles synthesis supported in mesoporous silica and its effect in MCM-41 lattice. Int J Electrochem Sci 6:4176–4187
35.
Zurück zum Zitat Ho MH, Kuo PY, Hsieh HJ, Hsien TY, Hou LT, Lai JY, Wang DM (2004) Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25:129–138CrossRefPubMed Ho MH, Kuo PY, Hsieh HJ, Hsien TY, Hou LT, Lai JY, Wang DM (2004) Preparation of porous scaffolds by using freeze-extraction and freeze-gelation methods. Biomaterials 25:129–138CrossRefPubMed
36.
Zurück zum Zitat Zeltinger J, Sherwood JK, Graham DA, Müeller R, Griffith LG (2001) Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 7:557–572CrossRefPubMed Zeltinger J, Sherwood JK, Graham DA, Müeller R, Griffith LG (2001) Effect of pore size and void fraction on cellular adhesion, proliferation, and matrix deposition. Tissue Eng 7:557–572CrossRefPubMed
37.
Zurück zum Zitat Wan Y, Chen X, Xiong G, Guo R, Luo H (2014) Synthesis and characterization of three-dimensional porous graphene oxide/sodium alginate scaffolds with enhanced mechanical properties. Mater Express 4:429–434CrossRef Wan Y, Chen X, Xiong G, Guo R, Luo H (2014) Synthesis and characterization of three-dimensional porous graphene oxide/sodium alginate scaffolds with enhanced mechanical properties. Mater Express 4:429–434CrossRef
38.
Zurück zum Zitat Li J, Dou Y, Yang J, Yin Y, Zhang H, Yao F, Wang H, Yao K (2009) Surface characterization and biocompatibility of micro-and nano-hydroxyapatite/chitosan-gelatin network films. Mater Sci Eng 29:1207–1215CrossRef Li J, Dou Y, Yang J, Yin Y, Zhang H, Yao F, Wang H, Yao K (2009) Surface characterization and biocompatibility of micro-and nano-hydroxyapatite/chitosan-gelatin network films. Mater Sci Eng 29:1207–1215CrossRef
39.
Zurück zum Zitat Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:32–34CrossRef Vacanti JP, Langer R (1999) Tissue engineering: the design and fabrication of living replacement devices for surgical reconstruction and transplantation. Lancet 354:32–34CrossRef
40.
Zurück zum Zitat Thein-Han WW, Misra RD (2009) Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197CrossRefPubMed Thein-Han WW, Misra RD (2009) Biomimetic chitosan–nanohydroxyapatite composite scaffolds for bone tissue engineering. Acta Biomater 5:1182–1197CrossRefPubMed
41.
Zurück zum Zitat Kumar PS, Srinivasan S, Lakshmanan VK, Tamura H, Nair SV, Jayakumar R (2011) Synthesis, characterization and cytocompatibility studies of α-chitin hydrogel/nano hydroxyapatite composite scaffolds. Int J Biol Macromol 49:20–31CrossRefPubMed Kumar PS, Srinivasan S, Lakshmanan VK, Tamura H, Nair SV, Jayakumar R (2011) Synthesis, characterization and cytocompatibility studies of α-chitin hydrogel/nano hydroxyapatite composite scaffolds. Int J Biol Macromol 49:20–31CrossRefPubMed
42.
Zurück zum Zitat Liao KH, Lin YS, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater interface 3:2607–2615CrossRef Liao KH, Lin YS, Macosko CW, Haynes CL (2011) Cytotoxicity of graphene oxide and graphene in human erythrocytes and skin fibroblasts. ACS Appl Mater interface 3:2607–2615CrossRef
43.
Zurück zum Zitat Song J, Gao H, Zhu G, Cao X, Shi X, Wang Y (2015) The preparation and characterization of polycaprolactone/graphene oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors. Carbon 95:1039–1050CrossRef Song J, Gao H, Zhu G, Cao X, Shi X, Wang Y (2015) The preparation and characterization of polycaprolactone/graphene oxide biocomposite nanofiber scaffolds and their application for directing cell behaviors. Carbon 95:1039–1050CrossRef
45.
Zurück zum Zitat Aliramaji S, Zamanian A, Mozafari M (2017) Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications. Mater Sci Eng 70:736–744CrossRef Aliramaji S, Zamanian A, Mozafari M (2017) Super-paramagnetic responsive silk fibroin/chitosan/magnetite scaffolds with tunable pore structures for bone tissue engineering applications. Mater Sci Eng 70:736–744CrossRef
46.
Zurück zum Zitat Xie C, Lu X, Han L, Xu J, Wang Z, Jiang L, Wang K, Zhang H, Ren F, Tang Y (2016) Biomimetic mineralized hierarchical graphene oxide/chitosan scaffolds with adsorbability for immobilization of nanoparticles for biomedical applications. ACS Appl Mater Interface 8:1707–1717CrossRef Xie C, Lu X, Han L, Xu J, Wang Z, Jiang L, Wang K, Zhang H, Ren F, Tang Y (2016) Biomimetic mineralized hierarchical graphene oxide/chitosan scaffolds with adsorbability for immobilization of nanoparticles for biomedical applications. ACS Appl Mater Interface 8:1707–1717CrossRef
47.
Zurück zum Zitat Azadi M, Teimouri A, Mehranzadeh G (2016) Preparation, characterization and biocompatible properties of β-chitin/silk fibroin/nanohydroxyapatite composite scaffolds prepared using a freeze-drying method. RSC Adv 6:7048–7060CrossRef Azadi M, Teimouri A, Mehranzadeh G (2016) Preparation, characterization and biocompatible properties of β-chitin/silk fibroin/nanohydroxyapatite composite scaffolds prepared using a freeze-drying method. RSC Adv 6:7048–7060CrossRef
48.
Zurück zum Zitat She Z, Zhang B, Jin C, Feng Q, Xu Y (2008) Preparation and in vitro degradation of porous three-dimensional silk fibroin/chitosan scaffold. Polym Degrad Stab 93:1316–1322CrossRef She Z, Zhang B, Jin C, Feng Q, Xu Y (2008) Preparation and in vitro degradation of porous three-dimensional silk fibroin/chitosan scaffold. Polym Degrad Stab 93:1316–1322CrossRef
49.
Zurück zum Zitat Bhardwaj N, Kundu SC (2011) Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications. Carbohydr Polym 85:325–333CrossRef Bhardwaj N, Kundu SC (2011) Silk fibroin protein and chitosan polyelectrolyte complex porous scaffolds for tissue engineering applications. Carbohydr Polym 85:325–333CrossRef
50.
Zurück zum Zitat Dinescu S, Ionita M, Pandele AM, Galateanu B, Iovu H, Ardelean A, Costache M, Hermenean A (2014) In vitro cytocompatibility evaluation of chitosan/graphene oxide 3D scaffold composites designed for bone tissue engineering. Bio-Med Mater Eng 24:2249–2256 Dinescu S, Ionita M, Pandele AM, Galateanu B, Iovu H, Ardelean A, Costache M, Hermenean A (2014) In vitro cytocompatibility evaluation of chitosan/graphene oxide 3D scaffold composites designed for bone tissue engineering. Bio-Med Mater Eng 24:2249–2256
51.
Zurück zum Zitat Wang L, Li C (2007) Preparation and physicochemical properties of a novel hydroxyapatite/chitosan–silk fibroin composite. Carbohydr Polym 68:740–745CrossRef Wang L, Li C (2007) Preparation and physicochemical properties of a novel hydroxyapatite/chitosan–silk fibroin composite. Carbohydr Polym 68:740–745CrossRef
52.
Zurück zum Zitat Kim HS, Kim JT, Jung YJ, Ryu SC, Son HJ, Kim YG (2007) Preparation of a porous chitosan/fibroin-hydroxyapatite composite matrix for tissue engineering. Macromol Res 15:65–73CrossRef Kim HS, Kim JT, Jung YJ, Ryu SC, Son HJ, Kim YG (2007) Preparation of a porous chitosan/fibroin-hydroxyapatite composite matrix for tissue engineering. Macromol Res 15:65–73CrossRef
Metadaten
Titel
Synthesis, characterization and biocompatible properties of novel silk fibroin/graphene oxide nanocomposite scaffolds for bone tissue engineering application
verfasst von
Mehdi Narimani
Abbas Teimouri
Zeinab Shahbazarab
Publikationsdatum
19.06.2018
Verlag
Springer Berlin Heidelberg
Erschienen in
Polymer Bulletin / Ausgabe 2/2019
Print ISSN: 0170-0839
Elektronische ISSN: 1436-2449
DOI
https://doi.org/10.1007/s00289-018-2390-2

Weitere Artikel der Ausgabe 2/2019

Polymer Bulletin 2/2019 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.