Skip to main content
Erschienen in: Journal of Polymer Research 5/2021

01.05.2021 | ORIGINAL PAPER

Synthesis, molecular structure and photovoltaic performance for polythiophenes with β-carboxylate side chains

verfasst von: Jiabin Zhang, Lingpeng Yan, Hongwei Tan, Xiaochen Liu, Yi Lin, Lianping Zhang, Hongyu Wang, Chang-Qi Ma

Erschienen in: Journal of Polymer Research | Ausgabe 5/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

To lower the HOMO energy level of polythiophenes, carboxylate groups were introduced to the β-position of the thiophene unit, by which two polythiophenes with tetrathiophene (poly[5,5′′-(bis-3,3′′-((2-butyloctyl)-carboxylate)-2,2′:2′,2′′-terthiophene)-alt-5-thiophene], P-4T-2COOR) or pentathiophene (poly[5,5′′-(bis-3,3′′-((2-butyloctyl)-carboxylate)-2,2′:2′,2′′-terthiophene)-alt-5,5′-(2,2′-bithiophene)], P-5T-2COOR) repeating unit were synthesized. Absorption spectroscopy and cyclic voltammetry measurements revealed that the β-carboxylate substitution red-shifts the maximum absorption wavelength (λmaxabs) in solution owing to the electron accepting nature of the carboxylate group. In addition, the introduction of β-carboxylate reduces the HOMO level from -5.09 eV for P3HT to -5.34 eV and -5.18 eV for P-4T-2COOR and P-5T-2COOR, respectively, which is in good agreement with quantum chemisty calculation results. However, the β-carboxylate side chain showed different orientation to that of P3HT, which leads to weaker intermolecular π-π interaction as confirmed by less red-shited absorption in thin solid film and the quantum calculation results. Polymer solar cells using P-4T-2COOR and P-5T-2COOR as the electron donor, 3,9‐bis(2‐methylene‐(3‐(1,1‐dicyanomethylene)‐indanone))‐5,5,11,11‐tetrakis(4‐hexylphenyl)‐dithieno[2,3‐d:2′,3′‐d′]‐s‐indaceno‐[1,2‐b:5,6-b′]di‐thiophene (ITIC) as the electron acceptor were fabricated and tested. The P-4T-2COOR and P-5T-2COOR based cells showed high open circuit (VOC) of 0.73–0.99 V, significantly higher than that of P3HT based cell (VOC of 0.52 V), which can be ascribed to the lower HOMO energy levels and less condensed molecular packing of these two polymers.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Wang M, Hu X, Liu P, Li W, Gong X, Huang F, Cao Y (2011) Donor-acceptor conjugated polymer based on naphtho [1,2-c:5,6-c] bis [1,2,5] thiadiazole for high-performance polymer solar cells. J. Am. Chem. Soc. 133:9638–9641CrossRef Wang M, Hu X, Liu P, Li W, Gong X, Huang F, Cao Y (2011) Donor-acceptor conjugated polymer based on naphtho [1,2-c:5,6-c] bis [1,2,5] thiadiazole for high-performance polymer solar cells. J. Am. Chem. Soc. 133:9638–9641CrossRef
2.
Zurück zum Zitat Li Y, Zou Y (2008) Conjugated Polymer Photovoltaic Materials with Broad Absorption Band and High Charge Carrier Mobility. Adv. Mater. 20:2952–2958CrossRef Li Y, Zou Y (2008) Conjugated Polymer Photovoltaic Materials with Broad Absorption Band and High Charge Carrier Mobility. Adv. Mater. 20:2952–2958CrossRef
3.
Zurück zum Zitat Stuart AC, Tumbleston JR, Zhou H, Li W, Liu S, Ade H, You W (2013) Fluorine substituents reduce charge recombination and drive structure and morphology development in polymer solar cells. J. Am. Chem. Soc. 135:1806–1815CrossRef Stuart AC, Tumbleston JR, Zhou H, Li W, Liu S, Ade H, You W (2013) Fluorine substituents reduce charge recombination and drive structure and morphology development in polymer solar cells. J. Am. Chem. Soc. 135:1806–1815CrossRef
4.
Zurück zum Zitat Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent Advances in Bulk Heterojunction Polymer Solar Cells. Chem. Rev. 115:12666–12731CrossRef Lu L, Zheng T, Wu Q, Schneider AM, Zhao D, Yu L (2015) Recent Advances in Bulk Heterojunction Polymer Solar Cells. Chem. Rev. 115:12666–12731CrossRef
5.
Zurück zum Zitat Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L (2020) 18% Efficiency organic solar cells. Sci.. Bull. 65:272–275CrossRef Liu Q, Jiang Y, Jin K, Qin J, Xu J, Li W, Xiong J, Liu J, Xiao Z, Sun K, Yang S, Zhang X, Ding L (2020) 18% Efficiency organic solar cells. Sci.. Bull. 65:272–275CrossRef
6.
Zurück zum Zitat Li G, Li W, Guo X, Guo B, Su W, Xu Z, Zhang M (2019) A new narrow bandgap polymer as donor material for high performance non-fullerene polymer solar cells. Org. Electron. 64:241–246CrossRef Li G, Li W, Guo X, Guo B, Su W, Xu Z, Zhang M (2019) A new narrow bandgap polymer as donor material for high performance non-fullerene polymer solar cells. Org. Electron. 64:241–246CrossRef
7.
Zurück zum Zitat Kim H, Lee H, Seo D, Jeong Y, Cho K, Lee J, Lee Y (2015) Regioregular Low Bandgap Polymer with Controlled Thieno[3,4-b]thiophene Orientation for High-Efficiency Polymer Solar Cells. Chem. Mater. 27:3102–3107CrossRef Kim H, Lee H, Seo D, Jeong Y, Cho K, Lee J, Lee Y (2015) Regioregular Low Bandgap Polymer with Controlled Thieno[3,4-b]thiophene Orientation for High-Efficiency Polymer Solar Cells. Chem. Mater. 27:3102–3107CrossRef
8.
Zurück zum Zitat Lee J, Sin DH, Moon B, Shin J, Kim HG, Kim M, Cho K (2017) Highly crystalline low-bandgap polymer nanowires towards high-performance thick-film organic solar cells exceeding 10% power conversion efficiency. Energy Environ. Sci. 10:247–257CrossRef Lee J, Sin DH, Moon B, Shin J, Kim HG, Kim M, Cho K (2017) Highly crystalline low-bandgap polymer nanowires towards high-performance thick-film organic solar cells exceeding 10% power conversion efficiency. Energy Environ. Sci. 10:247–257CrossRef
9.
Zurück zum Zitat Li N, McCulloch I, Brabec CJ (2018) Analyzing the efficiency, stability and cost potential for fullerene-free organic photovoltaics in one figure of merit. Energy Environ. Sci. 11:1355–1361CrossRef Li N, McCulloch I, Brabec CJ (2018) Analyzing the efficiency, stability and cost potential for fullerene-free organic photovoltaics in one figure of merit. Energy Environ. Sci. 11:1355–1361CrossRef
10.
Zurück zum Zitat Guo X, Cui C, Zhang M, Huo L, Huang Y, Hou J, Li Y (2012) High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive. Energy Environ. Sci. 5:7943–7949CrossRef Guo X, Cui C, Zhang M, Huo L, Huang Y, Hou J, Li Y (2012) High efficiency polymer solar cells based on poly(3-hexylthiophene)/indene-C70 bisadduct with solvent additive. Energy Environ. Sci. 5:7943–7949CrossRef
11.
Zurück zum Zitat Qian D, Ma W, Li Z, Guo X, Zhang S, Ye L, Ade H, Tan Z, Hou J (2013) Molecular design toward efficient polymer solar cells with high polymer content. J. Am. Chem. Soc 135:8464–8467CrossRef Qian D, Ma W, Li Z, Guo X, Zhang S, Ye L, Ade H, Tan Z, Hou J (2013) Molecular design toward efficient polymer solar cells with high polymer content. J. Am. Chem. Soc 135:8464–8467CrossRef
12.
Zurück zum Zitat Fan Q, Su W, Guo X, Guo B, Li W, Zhang Y, Wang K, Zhang M, Li Y (2016) A new polythiophene derivative for high efficiency polymer solar cells with PCE over 9%. Adv. Energy Mater. 6 Fan Q, Su W, Guo X, Guo B, Li W, Zhang Y, Wang K, Zhang M, Li Y (2016) A new polythiophene derivative for high efficiency polymer solar cells with PCE over 9%. Adv. Energy Mater. 6
13.
Zurück zum Zitat Dang MT, Hirsch L, Wantz G (2011) P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater. 23:3597–3602CrossRef Dang MT, Hirsch L, Wantz G (2011) P3HT:PCBM, best seller in polymer photovoltaic research. Adv. Mater. 23:3597–3602CrossRef
14.
Zurück zum Zitat Khlyabich PP, Burkhart B, Thompson BC (2011) Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage. J. Am. Chem. Soc. 133:14534–14537CrossRef Khlyabich PP, Burkhart B, Thompson BC (2011) Efficient ternary blend bulk heterojunction solar cells with tunable open-circuit voltage. J. Am. Chem. Soc. 133:14534–14537CrossRef
15.
Zurück zum Zitat Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21:1323–1338CrossRef Dennler G, Scharber MC, Brabec CJ (2009) Polymer-fullerene bulk-heterojunction solar cells. Adv. Mater. 21:1323–1338CrossRef
16.
Zurück zum Zitat Zhang M, Guo X, Ma W, Ade H, Hou J (2014) A polythiophene derivative with superior properties for practical application in polymer solar cells. Adv. Mater. 26:5880–5885CrossRef Zhang M, Guo X, Ma W, Ade H, Hou J (2014) A polythiophene derivative with superior properties for practical application in polymer solar cells. Adv. Mater. 26:5880–5885CrossRef
17.
Zurück zum Zitat Zhang H, Ye L, Hou J (2015) Molecular design strategies for voltage modulation in highly efficient polymer solar cells. Poly. Intern. 64:957–962CrossRef Zhang H, Ye L, Hou J (2015) Molecular design strategies for voltage modulation in highly efficient polymer solar cells. Poly. Intern. 64:957–962CrossRef
18.
Zurück zum Zitat Hou J, Fan B, Huo L, He C, Yang C, Li Y (2006) Poly(alkylthio-p-phenylenevinylene): Synthesis and electroluminescent and photovoltaic properties. J. Poly. Sci. A. Polym. Chem. 44:1279–1290 Hou J, Fan B, Huo L, He C, Yang C, Li Y (2006) Poly(alkylthio-p-phenylenevinylene): Synthesis and electroluminescent and photovoltaic properties. J. Poly. Sci. A. Polym. Chem. 44:1279–1290
19.
Zurück zum Zitat Huo L, Zhou Y, Li Y (2009) Alkylthio-substituted polythiophene: absorption and photovoltaic properties. Macromol. Rapid. Commun. 30:925–931CrossRef Huo L, Zhou Y, Li Y (2009) Alkylthio-substituted polythiophene: absorption and photovoltaic properties. Macromol. Rapid. Commun. 30:925–931CrossRef
20.
Zurück zum Zitat Hou J, Chen TL, Zhang S, Huo L, Sista S, Yang Y (2009) An easy and effective method to modulate molecular energy level of Poly(3-alkylthiophene) for high-voc polymer solar cells. Macromolecules 42:9217–9219CrossRef Hou J, Chen TL, Zhang S, Huo L, Sista S, Yang Y (2009) An easy and effective method to modulate molecular energy level of Poly(3-alkylthiophene) for high-voc polymer solar cells. Macromolecules 42:9217–9219CrossRef
21.
Zurück zum Zitat Kranthiraja K, Long DX, Sree VG, Cho W, Cho Y-R, Zaheer A, Lee J-C, Noh Y-Y, Jin S-H (2018) Sequential fluorination on napthaleneamide-based conjugated polymers and their impact on charge transport properties. Macromolecules 51:5530–5536CrossRef Kranthiraja K, Long DX, Sree VG, Cho W, Cho Y-R, Zaheer A, Lee J-C, Noh Y-Y, Jin S-H (2018) Sequential fluorination on napthaleneamide-based conjugated polymers and their impact on charge transport properties. Macromolecules 51:5530–5536CrossRef
22.
Zurück zum Zitat Price SC, Stuart AC, Yang L, Zhou H, You W (2011) Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer−fullerene solar cells. J. Am. Chem. Soc. 133:4625–4631CrossRef Price SC, Stuart AC, Yang L, Zhou H, You W (2011) Fluorine substituted conjugated polymer of medium band gap yields 7% efficiency in polymer−fullerene solar cells. J. Am. Chem. Soc. 133:4625–4631CrossRef
23.
Zurück zum Zitat Peng Q, Liu X, Su D, Fu G, Xu J, Dai L (2011) Novel Benzo[1,2-b:4,5-b′]dithiophene-Benzothiadiazole derivatives with variable side chains for high-performance solar cells. Adv. Mater. 23:4554–4558CrossRef Peng Q, Liu X, Su D, Fu G, Xu J, Dai L (2011) Novel Benzo[1,2-b:4,5-b′]dithiophene-Benzothiadiazole derivatives with variable side chains for high-performance solar cells. Adv. Mater. 23:4554–4558CrossRef
24.
Zurück zum Zitat Liu P, Zhang K, Liu F, Jin Y, Liu S, Russell TP, Yip H-L, Huang F, Cao Y (2014) Effect of fluorine content in Thienothiophene-Benzodithiophene copolymers on the morphology and performance of polymer solar cells. Chem. Mater. 26:3009–3017CrossRef Liu P, Zhang K, Liu F, Jin Y, Liu S, Russell TP, Yip H-L, Huang F, Cao Y (2014) Effect of fluorine content in Thienothiophene-Benzodithiophene copolymers on the morphology and performance of polymer solar cells. Chem. Mater. 26:3009–3017CrossRef
25.
Zurück zum Zitat Wang Q, Li M, Zhang X, Qin Y, Wang J, Zhang J, Hou J, Janssen RAJ, Geng Y (2019) Carboxylate-Substituted Polythiophenes for Efficient Fullerene-Free Polymer Solar Cells: The Effect of Chlorination on Their Properties. Macromolecules 52:4464–4474CrossRef Wang Q, Li M, Zhang X, Qin Y, Wang J, Zhang J, Hou J, Janssen RAJ, Geng Y (2019) Carboxylate-Substituted Polythiophenes for Efficient Fullerene-Free Polymer Solar Cells: The Effect of Chlorination on Their Properties. Macromolecules 52:4464–4474CrossRef
26.
Zurück zum Zitat Park CG, Park GE, Lee JH, Kim A, Kim YU, Park SY, Park SH, Cho MJ, Choi DH (2018) Regioisomeric π-conjugated terpolymers bearing carboxylate substituted thienothiophenyl quarterthiophene and their application to fullerene-free polymer solar cells. Polymer 146:142–150CrossRef Park CG, Park GE, Lee JH, Kim A, Kim YU, Park SY, Park SH, Cho MJ, Choi DH (2018) Regioisomeric π-conjugated terpolymers bearing carboxylate substituted thienothiophenyl quarterthiophene and their application to fullerene-free polymer solar cells. Polymer 146:142–150CrossRef
27.
Zurück zum Zitat Wang Q, Dong X, He M, Li M, Tian H, Liu J, Geng Y (2018) Polythiophenes with carboxylate side chains and vinylene linkers in main chain for polymer solar cells. Polymer 140:89–95CrossRef Wang Q, Dong X, He M, Li M, Tian H, Liu J, Geng Y (2018) Polythiophenes with carboxylate side chains and vinylene linkers in main chain for polymer solar cells. Polymer 140:89–95CrossRef
28.
Zurück zum Zitat Chen J, Wang L, Yang J, Yang K, Uddin MA, Tang Y, Zhou X, Liao Q, Yu J, Liu B, Woo HY, Guo X (2018) Backbone Conformation Tuning of Carboxylate-Functionalized Wide Band Gap Polymers for Efficient Non-Fullerene Organic Solar Cells. Macromolecules 52:341–353CrossRef Chen J, Wang L, Yang J, Yang K, Uddin MA, Tang Y, Zhou X, Liao Q, Yu J, Liu B, Woo HY, Guo X (2018) Backbone Conformation Tuning of Carboxylate-Functionalized Wide Band Gap Polymers for Efficient Non-Fullerene Organic Solar Cells. Macromolecules 52:341–353CrossRef
29.
Zurück zum Zitat Zhang M, Guo X, Yang Y, Zhang J, Zhang Z-G, Li Y (2011) Downwards tuning the HOMO level of polythiophene by carboxylate substitution for high open-circuit-voltage polymer solar cells. Polym Chem 2:2900–2906CrossRef Zhang M, Guo X, Yang Y, Zhang J, Zhang Z-G, Li Y (2011) Downwards tuning the HOMO level of polythiophene by carboxylate substitution for high open-circuit-voltage polymer solar cells. Polym Chem 2:2900–2906CrossRef
30.
Zurück zum Zitat Qin Y, Uddin MA, Chen Y, Jang B, Zhao K, Zheng Z, Yu R, Shin TJ, Woo HY, Hou J (2016) Highly Efficient Fullerene-Free Polymer Solar Cells Fabricated with Polythiophene Derivative. Adv. Mater 28:9416–9422CrossRef Qin Y, Uddin MA, Chen Y, Jang B, Zhao K, Zheng Z, Yu R, Shin TJ, Woo HY, Hou J (2016) Highly Efficient Fullerene-Free Polymer Solar Cells Fabricated with Polythiophene Derivative. Adv. Mater 28:9416–9422CrossRef
31.
Zurück zum Zitat Stewart JJ (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J. Mol. Model 13:1173–1213CrossRef Stewart JJ (2007) Optimization of parameters for semiempirical methods V: modification of NDDO approximations and application to 70 elements. J. Mol. Model 13:1173–1213CrossRef
32.
Zurück zum Zitat Garcia A, Papior N, Akhtar A, Artacho E, Blum V, Bosoni E, Brandimarte P, Brandbyge M, Cerda JI, Corsetti F, Cuadrado R, Dikan V, Ferrer J, Gale J, Garcia-Fernandez P, Garcia-Suarez VM, Garcia S, Huhs G, Illera S, Korytar R, Koval P, Lebedeva I, Lin L, Lopez-Tarifa P, Mayo SG, Mohr S, Ordejon P, Postnikov A, Pouillon Y, Pruneda M, Robles R, Sanchez-Portal D, Soler JM, Ullah R, Yu VW, Junquera J (2020) Siesta: Recent developments and applications. J. Chem. Phys. 152:204108CrossRef Garcia A, Papior N, Akhtar A, Artacho E, Blum V, Bosoni E, Brandimarte P, Brandbyge M, Cerda JI, Corsetti F, Cuadrado R, Dikan V, Ferrer J, Gale J, Garcia-Fernandez P, Garcia-Suarez VM, Garcia S, Huhs G, Illera S, Korytar R, Koval P, Lebedeva I, Lin L, Lopez-Tarifa P, Mayo SG, Mohr S, Ordejon P, Postnikov A, Pouillon Y, Pruneda M, Robles R, Sanchez-Portal D, Soler JM, Ullah R, Yu VW, Junquera J (2020) Siesta: Recent developments and applications. J. Chem. Phys. 152:204108CrossRef
33.
Zurück zum Zitat Li Y, Cao Y, Gao J, Wang D, Yu G, Heeger A (2017) Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells. Synth. Met. 99:243–248CrossRef Li Y, Cao Y, Gao J, Wang D, Yu G, Heeger A (2017) Electrochemical properties of luminescent polymers and polymer light-emitting electrochemical cells. Synth. Met. 99:243–248CrossRef
34.
Zurück zum Zitat Cardona CM, Mccarley TD, Kaifer AE (2000) Synthesis, electrochemistry, and interactions with β-cyclodextrin of dendrimers containing a single ferrocene subunit located “off-center”. J. Org. Chem. 65:1857–1864 Cardona CM, Mccarley TD, Kaifer AE (2000) Synthesis, electrochemistry, and interactions with β-cyclodextrin of dendrimers containing a single ferrocene subunit located “off-center”. J. Org. Chem. 65:1857–1864
35.
Zurück zum Zitat McCullough RD, Tristram-Nagle S, Williams SP, Lowe RD, Jayaraman M (1993) Self-orienting head-to-tail poly(3-alkylthiopbenes): New insights on structure-property relationships in conducting polymers. J. Am. Chem. Soc. 115:4910–4911CrossRef McCullough RD, Tristram-Nagle S, Williams SP, Lowe RD, Jayaraman M (1993) Self-orienting head-to-tail poly(3-alkylthiopbenes): New insights on structure-property relationships in conducting polymers. J. Am. Chem. Soc. 115:4910–4911CrossRef
36.
Zurück zum Zitat Eastham ND, Logsdon JL, Manley EF, Aldrich TJ, Leonardi MJ, Wang G, Powers-Riggs NE, Young RM, Chen LX, Wasielewski MR, Melkonyan FS, Chang RPH, Marks TJ (2018) Hole-Transfer Dependence on Blend Morphology and Energy Level Alignment in Polymer: ITIC Photovoltaic Materials. Adv. Mater. 30:1704263CrossRef Eastham ND, Logsdon JL, Manley EF, Aldrich TJ, Leonardi MJ, Wang G, Powers-Riggs NE, Young RM, Chen LX, Wasielewski MR, Melkonyan FS, Chang RPH, Marks TJ (2018) Hole-Transfer Dependence on Blend Morphology and Energy Level Alignment in Polymer: ITIC Photovoltaic Materials. Adv. Mater. 30:1704263CrossRef
37.
Zurück zum Zitat Liang Q, Han J, Song C, Yu X, Smilgies D-M, Zhao K, Liu J, Han Y (2018) Reducing the confinement of PBDB-T to ITIC to improve the crystallinity of PBDB-T/ITIC blends. J. Mater. Chem. A 6:15610–15620CrossRef Liang Q, Han J, Song C, Yu X, Smilgies D-M, Zhao K, Liu J, Han Y (2018) Reducing the confinement of PBDB-T to ITIC to improve the crystallinity of PBDB-T/ITIC blends. J. Mater. Chem. A 6:15610–15620CrossRef
38.
Zurück zum Zitat Bartesaghi D, Perez IDC, Kniepert J, Roland S, Turbiez M, Neher D, Koster LJA (2015) Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nat. Commun. 6:7083 Bartesaghi D, Perez IDC, Kniepert J, Roland S, Turbiez M, Neher D, Koster LJA (2015) Competition between recombination and extraction of free charges determines the fill factor of organic solar cells. Nat. Commun. 6:7083
39.
Zurück zum Zitat Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu L (2010) For the Bright Future - Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%. Adv. Mater. 22:E135-E138 Liang Y, Xu Z, Xia J, Tsai ST, Wu Y, Li G, Ray C, Yu L (2010) For the Bright Future - Bulk Heterojunction Polymer Solar Cells with Power Conversion Efficiency of 7.4%. Adv. Mater. 22:E135-E138
40.
Zurück zum Zitat Ren G, Ahmed E, Jenekhe SA (2011) Non-Fullerene Acceptor-Based Bulk Heterojunction Polymer Solar Cells: Engineering the Nanomorphology via Processing Additives. Adv. Energy Mater. 1:946–953CrossRef Ren G, Ahmed E, Jenekhe SA (2011) Non-Fullerene Acceptor-Based Bulk Heterojunction Polymer Solar Cells: Engineering the Nanomorphology via Processing Additives. Adv. Energy Mater. 1:946–953CrossRef
Metadaten
Titel
Synthesis, molecular structure and photovoltaic performance for polythiophenes with β-carboxylate side chains
verfasst von
Jiabin Zhang
Lingpeng Yan
Hongwei Tan
Xiaochen Liu
Yi Lin
Lianping Zhang
Hongyu Wang
Chang-Qi Ma
Publikationsdatum
01.05.2021
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 5/2021
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-021-02546-6

Weitere Artikel der Ausgabe 5/2021

Journal of Polymer Research 5/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.