Skip to main content
Erschienen in: Journal of Materials Science 16/2021

24.02.2021 | Electronic materials

Synthesis of disorder–order TaON homojunction for photocatalytic hydrogen generation under visible light

verfasst von: Jinsheng Yan, Lanqing Hu, Lingkai Cui, Qianqian Shen, Xuguang Liu, Husheng Jia, Jinbo Xue

Erschienen in: Journal of Materials Science | Ausgabe 16/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Herein, disorder–order TaON homojunction photocatalysts with different concentrations of surface oxygen vacancies were prepared by a simple and novel aluminothermic reduction method. The surface oxygen vacancy defects disrupt the periodicity of the crystal surface and weaken the crystallinity of TaON particles, resulting in a crystalline core and an amorphous shell structure. Introduction of oxygen vacancy plays a pivotal role in regulating the band structure and charge kinetic behaviors of TaON. It renders not only the appearance of defect band level in the forbidden band, which allows drastically broadened and enhanced light absorption of TaON particles, but also the formation of the disorder–order TaON homojunction, which increases the concentration of photogenerated carriers, inhibits the recombination of photogenerated charge and promotes effective surface photocatalytic reaction, thus resulting in significantly improved photocatalytic hydrogen production activity of TaON photocatalyst. The aluminothermic reduction temperature for optimum photocatalytic activity of TaON was 400 °C, giving a hydrogen production activity of 25 μmol g−1 h−1, about twice as pure TaON under visible light. This work could shed light on exploring oxygen vacancy-activated photocatalytic materials with great potential for solar-energy conversion.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Hisatomi T, Domen K (2019) Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat Catal 2:387–399CrossRef Hisatomi T, Domen K (2019) Reaction systems for solar hydrogen production via water splitting with particulate semiconductor photocatalysts. Nat Catal 2:387–399CrossRef
2.
Zurück zum Zitat Wang Q, Domen K (2020) Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem Rev 120:919–985CrossRef Wang Q, Domen K (2020) Particulate photocatalysts for light-driven water splitting: mechanisms, challenges, and design strategies. Chem Rev 120:919–985CrossRef
3.
Zurück zum Zitat Wang Z, Inoue Y, Hisatomi T et al (2018) Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat Catal 1:756–763CrossRef Wang Z, Inoue Y, Hisatomi T et al (2018) Overall water splitting by Ta3N5 nanorod single crystals grown on the edges of KTaO3 particles. Nat Catal 1:756–763CrossRef
4.
Zurück zum Zitat Xing J, Fang W, Zhao H, Yang H (2012) Inorganic photocatalysts for overall water splitting. Chem Asian J 7:642–657CrossRef Xing J, Fang W, Zhao H, Yang H (2012) Inorganic photocatalysts for overall water splitting. Chem Asian J 7:642–657CrossRef
5.
Zurück zum Zitat Chen SS, Takata T, Domen K (2017) Particulate photocatalysts for overall water splitting. Nat Rev Mater 2:17050–17067CrossRef Chen SS, Takata T, Domen K (2017) Particulate photocatalysts for overall water splitting. Nat Rev Mater 2:17050–17067CrossRef
7.
Zurück zum Zitat Ahmed M, Guo XX (2016) A review of metal oxynitrides for photocatalysis. Inorg Chem Front 3:578–590CrossRef Ahmed M, Guo XX (2016) A review of metal oxynitrides for photocatalysis. Inorg Chem Front 3:578–590CrossRef
8.
Zurück zum Zitat Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535CrossRef Hisatomi T, Kubota J, Domen K (2014) Recent advances in semiconductors for photocatalytic and photoelectrochemical water splitting. Chem Soc Rev 43:7520–7535CrossRef
9.
Zurück zum Zitat Tee SY, Win KY, Teo WS, Koh LD, Liu SH, Teng CP, Han MY (2017) Recent progress in energy-driven water splitting. Adv Sci 4:1600337CrossRef Tee SY, Win KY, Teo WS, Koh LD, Liu SH, Teng CP, Han MY (2017) Recent progress in energy-driven water splitting. Adv Sci 4:1600337CrossRef
10.
Zurück zum Zitat Jadhav S, Hasegawa S, Hisatomi T et al (2020) Efficient photocatalytic oxygen evolution using BaTaO2N obtained from nitridation of perovskite-type oxide. J Mater Chem A 8:1127–1130CrossRef Jadhav S, Hasegawa S, Hisatomi T et al (2020) Efficient photocatalytic oxygen evolution using BaTaO2N obtained from nitridation of perovskite-type oxide. J Mater Chem A 8:1127–1130CrossRef
11.
Zurück zum Zitat Higashi M, Domen K, Abe R (2020) Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation. Energy Environ Sci 4:4138–4147CrossRef Higashi M, Domen K, Abe R (2020) Fabrication of efficient TaON and Ta3N5 photoanodes for water splitting under visible light irradiation. Energy Environ Sci 4:4138–4147CrossRef
12.
Zurück zum Zitat Hisatomi T, Yamamoto T, Wang Q, Nakanishi T, Higashi T, Katayama M, Minegishi T, Domen K (2018) Particulate photocatalyst sheets based on nonoxide semiconductor materials for water splitting under visible light irradiation. Catal Sci Technol 8:3918–3925CrossRef Hisatomi T, Yamamoto T, Wang Q, Nakanishi T, Higashi T, Katayama M, Minegishi T, Domen K (2018) Particulate photocatalyst sheets based on nonoxide semiconductor materials for water splitting under visible light irradiation. Catal Sci Technol 8:3918–3925CrossRef
13.
Zurück zum Zitat Takata T, Pan C, Domen K (2015) Recent progress in oxynitride photocatalysts for visible-light-driven water splitting. Sci Technol Adv Mater 16:033506CrossRef Takata T, Pan C, Domen K (2015) Recent progress in oxynitride photocatalysts for visible-light-driven water splitting. Sci Technol Adv Mater 16:033506CrossRef
14.
Zurück zum Zitat Wang Q, Nakabayashi M, Hisatomi T et al (2019) Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nat Mater 18:827–832CrossRef Wang Q, Nakabayashi M, Hisatomi T et al (2019) Oxysulfide photocatalyst for visible-light-driven overall water splitting. Nat Mater 18:827–832CrossRef
15.
Zurück zum Zitat Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111:7851–7861CrossRef Maeda K, Domen K (2007) New non-oxide photocatalysts designed for overall water splitting under visible light. J Phys Chem C 111:7851–7861CrossRef
16.
Zurück zum Zitat Kazuhiko M (2013) (Oxy)nitrides with d0-electronic configuration as photocatalysts and photoanodes that operate under a wide range of visible light for overall water splitting. Phys Chem Chem Phys 15:10537CrossRef Kazuhiko M (2013) (Oxy)nitrides with d0-electronic configuration as photocatalysts and photoanodes that operate under a wide range of visible light for overall water splitting. Phys Chem Chem Phys 15:10537CrossRef
17.
Zurück zum Zitat Inoue Y (2009) Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energ Environ Sci 2:364–386CrossRef Inoue Y (2009) Photocatalytic water splitting by RuO2-loaded metal oxides and nitrides with d0- and d10-related electronic configurations. Energ Environ Sci 2:364–386CrossRef
18.
Zurück zum Zitat Higashi M, Domen K, Abe R (2012) Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. J Am Chem Soc 134:6968–6971CrossRef Higashi M, Domen K, Abe R (2012) Highly stable water splitting on oxynitride TaON photoanode system under visible light irradiation. J Am Chem Soc 134:6968–6971CrossRef
19.
Zurück zum Zitat Pan C, Takata T, Nakabayashi M, Matsumoto T, Shibata N, Ikuhara Y, Domen K (2015) A complex perovskite-type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm. Angew Chem Int Ed 127:2998–3002CrossRef Pan C, Takata T, Nakabayashi M, Matsumoto T, Shibata N, Ikuhara Y, Domen K (2015) A complex perovskite-type oxynitride: the first photocatalyst for water splitting operable at up to 600 nm. Angew Chem Int Ed 127:2998–3002CrossRef
20.
Zurück zum Zitat Feng JY, Luo WJ, Fang T et al (2014) Highly photo-responsive LaTiO2N photoanodes by improvement of charge carrier transport among film particles. Adv Funct Mater 24:3535–3542CrossRef Feng JY, Luo WJ, Fang T et al (2014) Highly photo-responsive LaTiO2N photoanodes by improvement of charge carrier transport among film particles. Adv Funct Mater 24:3535–3542CrossRef
21.
Zurück zum Zitat Ueda K, Minegishi T, Clune J et al (2015) Photoelectrochemical oxidation of water using BaTaO2N photoanodes prepared by particle transfer method. J Am Chem Soc 137:2227–2230CrossRef Ueda K, Minegishi T, Clune J et al (2015) Photoelectrochemical oxidation of water using BaTaO2N photoanodes prepared by particle transfer method. J Am Chem Soc 137:2227–2230CrossRef
22.
Zurück zum Zitat Zhong YJ, Li ZS, Zhao X et al (2016) Enhanced water-splitting performance of perovskite SrTaO2N photoanode film through ameliorating interparticle charge transport. Adv Funct Mater 26:7156–7163CrossRef Zhong YJ, Li ZS, Zhao X et al (2016) Enhanced water-splitting performance of perovskite SrTaO2N photoanode film through ameliorating interparticle charge transport. Adv Funct Mater 26:7156–7163CrossRef
23.
Zurück zum Zitat Zheng C, Chen RZ, Wang LZ, Liu G, Cheng HM (2016) Tantalum (oxy)nitride based photoanodes for solar-driven water oxidation. J Mater Chem A 4:2783–2800CrossRef Zheng C, Chen RZ, Wang LZ, Liu G, Cheng HM (2016) Tantalum (oxy)nitride based photoanodes for solar-driven water oxidation. J Mater Chem A 4:2783–2800CrossRef
24.
Zurück zum Zitat Hitoki G, Takata T, Kondo J, Hara M, Kobayashi H, Domen K (2002) An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ ≤ 500 nm). Chem Commun 33:1698–1699CrossRef Hitoki G, Takata T, Kondo J, Hara M, Kobayashi H, Domen K (2002) An oxynitride, TaON, as an efficient water oxidation photocatalyst under visible light irradiation (λ ≤ 500 nm). Chem Commun 33:1698–1699CrossRef
25.
Zurück zum Zitat Xiao M, Wang SC, Thaweesak S, Luo B, Wang LZ (2017) Tantalum (Oxy)Nitride: narrow bandgap photocatalysts for solar hydrogen generation. Engineering 3:365–378CrossRef Xiao M, Wang SC, Thaweesak S, Luo B, Wang LZ (2017) Tantalum (Oxy)Nitride: narrow bandgap photocatalysts for solar hydrogen generation. Engineering 3:365–378CrossRef
26.
Zurück zum Zitat Takata T, Hitoki G, Kondo J, Hara M, Kobayashi H, Domen K (2007) Visible-light-driven photocatalytic behavior of tantalum-oxynitride and nitride. Res Chem Intermed 33:13–25CrossRef Takata T, Hitoki G, Kondo J, Hara M, Kobayashi H, Domen K (2007) Visible-light-driven photocatalytic behavior of tantalum-oxynitride and nitride. Res Chem Intermed 33:13–25CrossRef
27.
Zurück zum Zitat Takata T, Pan C, Domen K (2016) Design and development of oxynitride photocatalysts for overall water splitting under visible light irradiation. ChemElectroChem 3:31–37CrossRef Takata T, Pan C, Domen K (2016) Design and development of oxynitride photocatalysts for overall water splitting under visible light irradiation. ChemElectroChem 3:31–37CrossRef
28.
Zurück zum Zitat Maeda K, Lu D, Domen K (2013) Direct water splitting into hydrogen and oxygen under visible light by using modified TaON photocatalysts with d0 electronic configuration. Chem Eur J 19:4986–4991CrossRef Maeda K, Lu D, Domen K (2013) Direct water splitting into hydrogen and oxygen under visible light by using modified TaON photocatalysts with d0 electronic configuration. Chem Eur J 19:4986–4991CrossRef
29.
Zurück zum Zitat Hou JG, Yang C, Chen HJ, Jiao SQ, Takeda O, Zhu HM (2014) High-performance p-Cu2O/n-TaON heterojunction nanorod photoanodes passivated with an ultrathin carbon sheath for photoelectrochemical water splitting. Energ Environ Sci 7:3758–3768CrossRef Hou JG, Yang C, Chen HJ, Jiao SQ, Takeda O, Zhu HM (2014) High-performance p-Cu2O/n-TaON heterojunction nanorod photoanodes passivated with an ultrathin carbon sheath for photoelectrochemical water splitting. Energ Environ Sci 7:3758–3768CrossRef
30.
Zurück zum Zitat Chi NTPL, Cam NTD, Thuan DV et al (2019) Synthesis of vanadium doped tantalum oxy-nitride for photocatalytic reduction of carbon dioxide under visible light. Appl Surf Sci 467:1249–1255CrossRef Chi NTPL, Cam NTD, Thuan DV et al (2019) Synthesis of vanadium doped tantalum oxy-nitride for photocatalytic reduction of carbon dioxide under visible light. Appl Surf Sci 467:1249–1255CrossRef
31.
Zurück zum Zitat Gujral SS, Simonov AN, Higashi M, Fang XY, Abe R, Spiccia L (2016) Highly dispersed cobalt oxide on TaON as efficient photoanodes for long-term solar water splitting. ACS Catal 6:3404–3417CrossRef Gujral SS, Simonov AN, Higashi M, Fang XY, Abe R, Spiccia L (2016) Highly dispersed cobalt oxide on TaON as efficient photoanodes for long-term solar water splitting. ACS Catal 6:3404–3417CrossRef
32.
Zurück zum Zitat Pei L, Li TZ, Yuan YJ, Yang T, Zhong JS, Ji ZG, Yan SC, Zou ZG (2019) Schottky junction effect enhanced plasmonic photocatalysis by TaON@Ni NP heterostructures. Chem Commun 55:11754–11757CrossRef Pei L, Li TZ, Yuan YJ, Yang T, Zhong JS, Ji ZG, Yan SC, Zou ZG (2019) Schottky junction effect enhanced plasmonic photocatalysis by TaON@Ni NP heterostructures. Chem Commun 55:11754–11757CrossRef
34.
Zurück zum Zitat Jiang HQ, Zhang W, Zang SY, Zhang WL (2019) Rh nanospheres anchored TaON@Ta2O5 nanophotocatalyst for efficient hydrogen evolution from photocatalytic water splitting under visible light irradiation. Int J Hydrogen Energ 44:24218–24227CrossRef Jiang HQ, Zhang W, Zang SY, Zhang WL (2019) Rh nanospheres anchored TaON@Ta2O5 nanophotocatalyst for efficient hydrogen evolution from photocatalytic water splitting under visible light irradiation. Int J Hydrogen Energ 44:24218–24227CrossRef
35.
Zurück zum Zitat An L, Han X, Li YG, Hou CY, Wang HZ, Zhang QH (2019) ZnS-CdS-TaON nanocomposites with enhanced stability and photocatalytic hydrogen evolution activity. J Sol Gel Sci Techn 91:82–91CrossRef An L, Han X, Li YG, Hou CY, Wang HZ, Zhang QH (2019) ZnS-CdS-TaON nanocomposites with enhanced stability and photocatalytic hydrogen evolution activity. J Sol Gel Sci Techn 91:82–91CrossRef
36.
Zurück zum Zitat Wang SM, Li ZY, Guan Y, Lu L, Shi Z, Weng P, Yan SC, Zou ZG (2019) Visible light driven TaON/V2O5 heterojunction photocatalyst for deep elimination of volatile-aromatic compounds. Appl Catal B 245:220–226CrossRef Wang SM, Li ZY, Guan Y, Lu L, Shi Z, Weng P, Yan SC, Zou ZG (2019) Visible light driven TaON/V2O5 heterojunction photocatalyst for deep elimination of volatile-aromatic compounds. Appl Catal B 245:220–226CrossRef
37.
Zurück zum Zitat Feng JY, Huang HT, Fang T et al (2019) Defect engineering in semiconductors: manipulating nonstoichiometric defects and understanding their impact in oxynitrides for solar energy conversion. Adv Funct Mater 29:1808389CrossRef Feng JY, Huang HT, Fang T et al (2019) Defect engineering in semiconductors: manipulating nonstoichiometric defects and understanding their impact in oxynitrides for solar energy conversion. Adv Funct Mater 29:1808389CrossRef
38.
Zurück zum Zitat Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750CrossRef Chen X, Liu L, Yu PY, Mao SS (2011) Increasing solar absorption for photocatalysis with black hydrogenated titanium dioxide nanocrystals. Science 331:746–750CrossRef
39.
Zurück zum Zitat Song H, Kang G, Kang Y, Han S (2019) The nature of the oxygen vacancy in amorphous oxide semiconductors: shallow versus deep. Phys Status Solidi B 256:1800486CrossRef Song H, Kang G, Kang Y, Han S (2019) The nature of the oxygen vacancy in amorphous oxide semiconductors: shallow versus deep. Phys Status Solidi B 256:1800486CrossRef
40.
Zurück zum Zitat Feng SJ, Wang T, Liu B, Hu CL, Li LL, Zhao ZJ, Gong JL (2020) Enriched surface oxygen vacancies of photoanodes by photoetching with enhanced charge separation. Angew Chem Int Ed 59:2044–2048CrossRef Feng SJ, Wang T, Liu B, Hu CL, Li LL, Zhao ZJ, Gong JL (2020) Enriched surface oxygen vacancies of photoanodes by photoetching with enhanced charge separation. Angew Chem Int Ed 59:2044–2048CrossRef
41.
Zurück zum Zitat Lei FC, Sun YF, Liu KT, Gao S, Liang L, Pan BC, Xie Y (2014) Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J Am Chem Soc 136:6826–6829CrossRef Lei FC, Sun YF, Liu KT, Gao S, Liang L, Pan BC, Xie Y (2014) Oxygen vacancies confined in ultrathin indium oxide porous sheets for promoted visible-light water splitting. J Am Chem Soc 136:6826–6829CrossRef
42.
Zurück zum Zitat Zhang YJ, Xu ZF, Li GY, Huang XJ, Hao WC, Bi YP (2019) Direct observation of oxygen vacancy self-healing on TiO2 photocatalysts for solar water splitting. Angew Chem Int Ed 58:14229–14233CrossRef Zhang YJ, Xu ZF, Li GY, Huang XJ, Hao WC, Bi YP (2019) Direct observation of oxygen vacancy self-healing on TiO2 photocatalysts for solar water splitting. Angew Chem Int Ed 58:14229–14233CrossRef
44.
Zurück zum Zitat Cai JM, Cao A, Huang JJ, Jin WF, Zhang J, Jiang Z, Li XG (2020) Understanding oxygen vacancies in disorder-engineered surface and subsurface of CaTiO3 nanosheets on photocatalytic hydrogen evolution. Appl Catal B 267:118378CrossRef Cai JM, Cao A, Huang JJ, Jin WF, Zhang J, Jiang Z, Li XG (2020) Understanding oxygen vacancies in disorder-engineered surface and subsurface of CaTiO3 nanosheets on photocatalytic hydrogen evolution. Appl Catal B 267:118378CrossRef
45.
Zurück zum Zitat Sun YJ, Wang H, Xing Q, Cui W, Li JY, Wu SJ, Sun LD (2019) The pivotal effects of oxygen vacancy on Bi2MoO6: promoted visible light photocatalytic activity and reaction mechanism. Chin J Catal 40:647–655CrossRef Sun YJ, Wang H, Xing Q, Cui W, Li JY, Wu SJ, Sun LD (2019) The pivotal effects of oxygen vacancy on Bi2MoO6: promoted visible light photocatalytic activity and reaction mechanism. Chin J Catal 40:647–655CrossRef
46.
Zurück zum Zitat Yu SX, Zhang YH, Dong F, Li M, Zhang TR, Huang HW (2019) Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: triple-functional role for efficient visible-light photocatalytic redox performance. Appl Catal B 226:441–450CrossRef Yu SX, Zhang YH, Dong F, Li M, Zhang TR, Huang HW (2019) Readily achieving concentration-tunable oxygen vacancies in Bi2O2CO3: triple-functional role for efficient visible-light photocatalytic redox performance. Appl Catal B 226:441–450CrossRef
47.
Zurück zum Zitat Lv YH, Yao WQ, Zong RL, Zhu YF (2016) Fabrication of wide-range-visible photocatalyst Bi2WO6-x nanoplates via surface oxygen vacancies. Sci Rep 6:19347CrossRef Lv YH, Yao WQ, Zong RL, Zhu YF (2016) Fabrication of wide-range-visible photocatalyst Bi2WO6-x nanoplates via surface oxygen vacancies. Sci Rep 6:19347CrossRef
48.
Zurück zum Zitat Lv YH, Liu YF, Zhu YY, Zhu YF (2014) Surface oxygen vacancy induced photocatalytic performance enhancement of a BiPO4 nanorod. J Mater Chem A 2:1174–1182CrossRef Lv YH, Liu YF, Zhu YY, Zhu YF (2014) Surface oxygen vacancy induced photocatalytic performance enhancement of a BiPO4 nanorod. J Mater Chem A 2:1174–1182CrossRef
49.
Zurück zum Zitat Li H, Li J, Ai ZH, Jia FL, Zhang LZ (2018) Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angew Chem Int Ed 57:122–138CrossRef Li H, Li J, Ai ZH, Jia FL, Zhang LZ (2018) Oxygen vacancy-mediated photocatalysis of BiOCl: reactivity, selectivity, and perspectives. Angew Chem Int Ed 57:122–138CrossRef
50.
Zurück zum Zitat Zu D, Wang HY, Lin S, Ou G, Wei HH, Sun SQ, Wu H (2019) Oxygen-deficient metal oxides: synthesis routes and applications in energy and environment. Nano Res 12:2150–2163CrossRef Zu D, Wang HY, Lin S, Ou G, Wei HH, Sun SQ, Wu H (2019) Oxygen-deficient metal oxides: synthesis routes and applications in energy and environment. Nano Res 12:2150–2163CrossRef
51.
Zurück zum Zitat Lu XJ, Chen AP, Luo YK et al (2016) Conducting interface in oxide homojunction: understanding of superior properties in black TiO2. Nano Lett 16:5751–5755CrossRef Lu XJ, Chen AP, Luo YK et al (2016) Conducting interface in oxide homojunction: understanding of superior properties in black TiO2. Nano Lett 16:5751–5755CrossRef
52.
Zurück zum Zitat Woodhead K, Pascarelli S, Hector AL, Briggs R, Aldermanc N, McMillan PF (2014) High pressure polymorphism of β-TaON. Dalton T 25:9647–9654CrossRef Woodhead K, Pascarelli S, Hector AL, Briggs R, Aldermanc N, McMillan PF (2014) High pressure polymorphism of β-TaON. Dalton T 25:9647–9654CrossRef
53.
Zurück zum Zitat Li JL, Zhang M, Guan ZJ, Li QY, He CQ, Yang JJ (2017) Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Appl Catal B 206:300–307CrossRef Li JL, Zhang M, Guan ZJ, Li QY, He CQ, Yang JJ (2017) Synergistic effect of surface and bulk single-electron-trapped oxygen vacancy of TiO2 in the photocatalytic reduction of CO2. Appl Catal B 206:300–307CrossRef
54.
Zurück zum Zitat Naldoni A, Allieta M, Santangelo S et al (2012) Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 134:7600–7603CrossRef Naldoni A, Allieta M, Santangelo S et al (2012) Effect of nature and location of defects on bandgap narrowing in black TiO2 nanoparticles. J Am Chem Soc 134:7600–7603CrossRef
55.
Zurück zum Zitat Wang GM, Wang HY, Ling YC et al (2011) Hydrogen-Treated TiO2 nanowire arrays for photoelectro-chemical water splitting. Nano Lett 11:3026–3033CrossRef Wang GM, Wang HY, Ling YC et al (2011) Hydrogen-Treated TiO2 nanowire arrays for photoelectro-chemical water splitting. Nano Lett 11:3026–3033CrossRef
56.
Zurück zum Zitat Han QT, Zhou Y, Tang LQ, Li P, Tu WG, Li L, Li HJ, Zou ZG (2016) Synthesis of single-crystalline, porous TaON microspheres toward visible-light photocatalytic conversion of CO2 into liquid hydrocarbon fuels. RSC Adv 6:90792–90796CrossRef Han QT, Zhou Y, Tang LQ, Li P, Tu WG, Li L, Li HJ, Zou ZG (2016) Synthesis of single-crystalline, porous TaON microspheres toward visible-light photocatalytic conversion of CO2 into liquid hydrocarbon fuels. RSC Adv 6:90792–90796CrossRef
57.
Zurück zum Zitat Yu X, Li XW, Li ZH, Liu JW, Hu PG (2017) Defect engineered Ta2O5 nanorod: one-pot synthesis, visible-light driven hydrogen generation and mechanism. Appl Catal B 217:48–56CrossRef Yu X, Li XW, Li ZH, Liu JW, Hu PG (2017) Defect engineered Ta2O5 nanorod: one-pot synthesis, visible-light driven hydrogen generation and mechanism. Appl Catal B 217:48–56CrossRef
58.
Zurück zum Zitat Clabel HJL, Awan IT, Lozano G et al (2020) Understanding the electronic properties of BaTiO3 and Er3+ doped BaTiO3 films through confocal scanning microscopy and XPS: the role of oxygen vacancies. Phys Chem Chem Phys 22:15022–15034CrossRef Clabel HJL, Awan IT, Lozano G et al (2020) Understanding the electronic properties of BaTiO3 and Er3+ doped BaTiO3 films through confocal scanning microscopy and XPS: the role of oxygen vacancies. Phys Chem Chem Phys 22:15022–15034CrossRef
59.
Zurück zum Zitat Fu J, Wang FZ, Xiao YQ et al (2020) Identifying performance-limiting deep traps in Ta3N5 for solar water splitting. ACS Catal 10:10316–10324CrossRef Fu J, Wang FZ, Xiao YQ et al (2020) Identifying performance-limiting deep traps in Ta3N5 for solar water splitting. ACS Catal 10:10316–10324CrossRef
60.
Zurück zum Zitat Chen W, Chu MC, Gao L, Mao LQ, Yuan J, Shangguan WF (2015) Ni(OH)2 loaded on TaON for enhancing photocatalytic water splitting activity under visible light irradiation. Appl Surf Sci 324:432–437CrossRef Chen W, Chu MC, Gao L, Mao LQ, Yuan J, Shangguan WF (2015) Ni(OH)2 loaded on TaON for enhancing photocatalytic water splitting activity under visible light irradiation. Appl Surf Sci 324:432–437CrossRef
61.
Zurück zum Zitat Xu J, Pan C, Takata T, Domen K (2015) Photocatalytic overall water splitting on the perovskite-type transition metal oxynitride CaTaO2N under visible light irradiation. Chem Commun 51:7191–7194CrossRef Xu J, Pan C, Takata T, Domen K (2015) Photocatalytic overall water splitting on the perovskite-type transition metal oxynitride CaTaO2N under visible light irradiation. Chem Commun 51:7191–7194CrossRef
Metadaten
Titel
Synthesis of disorder–order TaON homojunction for photocatalytic hydrogen generation under visible light
verfasst von
Jinsheng Yan
Lanqing Hu
Lingkai Cui
Qianqian Shen
Xuguang Liu
Husheng Jia
Jinbo Xue
Publikationsdatum
24.02.2021
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 16/2021
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-021-05896-0

Weitere Artikel der Ausgabe 16/2021

Journal of Materials Science 16/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.