Skip to main content

2021 | OriginalPaper | Buchkapitel

15. Synthesis, Properties and Applications of Intermetallic Phases

verfasst von : Ratikant Mishra, Rimpi Dawar

Erschienen in: Handbook on Synthesis Strategies for Advanced Materials

Verlag: Springer Singapore

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Intermetallic phases constitute a unique class of materials composed of two or more metals, sometimes non-metallic elements also, in definite proportions. They have well-defined stoichiometry, crystal structure and can exhibit metallic, covalent or ionic bonding. High mechanical strength, resistance to corrosion and adequate ductility of intermetallic phases make them widely applicable as structural materials for automobiles, aerospace, telecommunication, electronics, transport and heavy industries. There is a huge demand for alloys having high mechanical strength and corrosion resistance at elevated temperatures for energy applications. The physical properties and mechanical strength of alloys are governed by the presence of intermetallic phases in these alloys. The formation of these phases in a given alloy system on other hands is governed by the nature of synthesis of alloys, level of impurity phases present and the heat treatment process. Experimental conditions, like, level of vacuum, annealing temperature, rate of cooling and thermal shock are among the factors that play vital role in tailoring their properties. In the present chapter, types of intermetallic phases, various experimental procedures for their synthesis, processing and their properties will be discussed. Details of synthesis processes including heat treatment in different types of furnaces, mechanical alloying, electrochemical processes, chemical reduction methods will be discussed. Influence of annealing conditions on material properties will also be presented. The knowledge of phase diagram, structure and thermodynamic parameters in fixing the material properties will be brought out. The chapter will also include some of the technologically important intermetallic phases, their method of synthesis, properties and applications.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Mehrer H (2007) Diffusion in solids: fundamentals, methods, materials, diffusion- controlled processes. In: Springer series in solid-state sciences, vol 155. Springer, Berlin, Heidelberg, New York Mehrer H (2007) Diffusion in solids: fundamentals, methods, materials, diffusion- controlled processes. In: Springer series in solid-state sciences, vol 155. Springer, Berlin, Heidelberg, New York
2.
Zurück zum Zitat Westbrook JH (1993) Structural intermetallics. In: Dariola R, Lewendowski JJ, Liu CT, Martin PL, Miracle DB, Nathal MV (eds) TMS, Warrendale, PA, pp 87–96 Westbrook JH (1993) Structural intermetallics. In: Dariola R, Lewendowski JJ, Liu CT, Martin PL, Miracle DB, Nathal MV (eds) TMS, Warrendale, PA, pp 87–96
3.
Zurück zum Zitat Sauthoff G (1995) Intermetallics. Wiley – VCH Verlag GmbH, Weinheim, Germany Sauthoff G (1995) Intermetallics. Wiley – VCH Verlag GmbH, Weinheim, Germany
4.
Zurück zum Zitat Horton JA, Liu CT, George EP (1995) Shape memory properties of a two-phase NiAl plus Fe alloy. Mat Sci Eng A,192–193:873–880 Horton JA, Liu CT, George EP (1995) Shape memory properties of a two-phase NiAl plus Fe alloy. Mat Sci Eng A,192–193:873–880
5.
Zurück zum Zitat Pike LM, Anderson IM, Liu CT, Chang YA (2002) Site occupancies, point defect concentrations, and solid solution hardening in B2 (Ni, Fe)Al. Acta Mater 50:3859–3879CrossRef Pike LM, Anderson IM, Liu CT, Chang YA (2002) Site occupancies, point defect concentrations, and solid solution hardening in B2 (Ni, Fe)Al. Acta Mater 50:3859–3879CrossRef
6.
Zurück zum Zitat He YH, Jiang Y, Xu NP, Zou J, Huang BY, Liu CT, Liaw PK (2007) Fabrication of Ti–Al micro/nanometer-sized porous alloys through the Kirkendall effect. Adv Mater 19:2102–2106CrossRef He YH, Jiang Y, Xu NP, Zou J, Huang BY, Liu CT, Liaw PK (2007) Fabrication of Ti–Al micro/nanometer-sized porous alloys through the Kirkendall effect. Adv Mater 19:2102–2106CrossRef
7.
Zurück zum Zitat Cahn RW (1996) Multiphase intermetallics. In: Cahn RW, Evans AG, McLean M (eds) High-temperature structural materials. Springer, Dordrecht, pp 79–91 Cahn RW (1996) Multiphase intermetallics. In: Cahn RW, Evans AG, McLean M (eds) High-temperature structural materials. Springer, Dordrecht, pp 79–91
8.
Zurück zum Zitat Adeva P (1999) Revista de la Asociacion Espanola de Cientificos 1:1 Adeva P (1999) Revista de la Asociacion Espanola de Cientificos 1:1
9.
Zurück zum Zitat Kurnakov SFZNS, Zasedatelev M (1916) J Inst Met 15:305 Kurnakov SFZNS, Zasedatelev M (1916) J Inst Met 15:305
10.
Zurück zum Zitat Aoki K, Izumi O (1979) Flow and fracture behaviour of Ni3(Al·Ti) single crystals tested in tension. J Mater Sci 14:1800–1806CrossRef Aoki K, Izumi O (1979) Flow and fracture behaviour of Ni3(Al·Ti) single crystals tested in tension. J Mater Sci 14:1800–1806CrossRef
11.
Zurück zum Zitat He Y, Liu Y, Huang B, Qu X, Lei C (1994) Grain refiner for TiAl intermetallic compounds. J Mater Sci Technol 10:205–208 He Y, Liu Y, Huang B, Qu X, Lei C (1994) Grain refiner for TiAl intermetallic compounds. J Mater Sci Technol 10:205–208
12.
Zurück zum Zitat Nieh TG, Wadsworth J, Liu CT (2011) Mechanical properties of nickel beryllides. J Mater Res 4:1347–1353CrossRef Nieh TG, Wadsworth J, Liu CT (2011) Mechanical properties of nickel beryllides. J Mater Res 4:1347–1353CrossRef
13.
Zurück zum Zitat Takeyama M, Liu CT (1989) Grain-boundary contamination and ductility loss in boron-doped Ni3Al. Metall Trans A 20:2017–2023CrossRef Takeyama M, Liu CT (1989) Grain-boundary contamination and ductility loss in boron-doped Ni3Al. Metall Trans A 20:2017–2023CrossRef
14.
Zurück zum Zitat Bewlay BP, Weimer M, Kelly T, Suzuki A, Subramanian PR (2013) The science technology, and implementation of TiAl alloys in commercial aircraft engines. MRS Proc 1516:49–58CrossRef Bewlay BP, Weimer M, Kelly T, Suzuki A, Subramanian PR (2013) The science technology, and implementation of TiAl alloys in commercial aircraft engines. MRS Proc 1516:49–58CrossRef
15.
Zurück zum Zitat Xiao CB, Han YF, Li SS, Song JX (2003) Development of directionally solidified Ni-Al-Mo-B-Y alloy IC6A. Mater Sci Technol 19:1677–1680CrossRef Xiao CB, Han YF, Li SS, Song JX (2003) Development of directionally solidified Ni-Al-Mo-B-Y alloy IC6A. Mater Sci Technol 19:1677–1680CrossRef
16.
Zurück zum Zitat Jackson AG (1991) Handbook of Crystallography: for electron microscopists and others. Spinger, New York Jackson AG (1991) Handbook of Crystallography: for electron microscopists and others. Spinger, New York
17.
Zurück zum Zitat Li Z, Mao H, Korzhavyi PA, Selleby M (2016) Thermodynamic re-assessment of the Co–Cr system supported by first-principles calculations. Calphad 52:7CrossRef Li Z, Mao H, Korzhavyi PA, Selleby M (2016) Thermodynamic re-assessment of the Co–Cr system supported by first-principles calculations. Calphad 52:7CrossRef
18.
Zurück zum Zitat Schmid G (1999) Metal clusters in Chemistry, Braunstein P, Oro LA, Raithby PR (eds), vol 3, pp 1325 Schmid G (1999) Metal clusters in Chemistry, Braunstein P, Oro LA, Raithby PR (eds), vol 3, pp 1325
19.
Zurück zum Zitat Andrews MP, O’Brien SC (1992) Gas-phase “molecular alloys” of bulk immiscible elements: iron-silver (FexAgy). J Phys Chem 96:8233–8241CrossRef Andrews MP, O’Brien SC (1992) Gas-phase “molecular alloys” of bulk immiscible elements: iron-silver (FexAgy). J Phys Chem 96:8233–8241CrossRef
20.
Zurück zum Zitat Yeh JW (2006) Recent progress in high-entropy alloys. Ann Chim Sci Mat 31:633–648CrossRef Yeh JW (2006) Recent progress in high-entropy alloys. Ann Chim Sci Mat 31:633–648CrossRef
21.
Zurück zum Zitat Tong C-J, Chen M-R, Yeh J-W, Lin S-J, Chen S-K, Shun T-T, Chang S-Y (2005) Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A 36:1263–1271CrossRef Tong C-J, Chen M-R, Yeh J-W, Lin S-J, Chen S-K, Shun T-T, Chang S-Y (2005) Mechanical performance of the AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A 36:1263–1271CrossRef
22.
Zurück zum Zitat Herbst JF (1993) Permanent magnets. Am Sci 81:9 Herbst JF (1993) Permanent magnets. Am Sci 81:9
23.
Zurück zum Zitat Li XZ (2009) Thermodynamic analysis of the simple microstructure of AlCrFeNiCu high-entropy alloy with multi-principal elements. Acta Metall Sinica 22:219–224 Li XZ (2009) Thermodynamic analysis of the simple microstructure of AlCrFeNiCu high-entropy alloy with multi-principal elements. Acta Metall Sinica 22:219–224
24.
Zurück zum Zitat Tong C-J, Chen Y-L, Yeh J-W, Lin S-J, Chen S-K, Shun T-T, Tsau C-H, Chang S-Y (2005) Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A 36:881–893CrossRef Tong C-J, Chen Y-L, Yeh J-W, Lin S-J, Chen S-K, Shun T-T, Tsau C-H, Chang S-Y (2005) Microstructure characterization of AlxCoCrCuFeNi high-entropy alloy system with multiprincipal elements. Metall Mater Trans A 36:881–893CrossRef
25.
Zurück zum Zitat Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK (2010) Refractory high-entropy alloys. Intermetallics 18:1758–1765CrossRef Senkov ON, Wilks GB, Miracle DB, Chuang CP, Liaw PK (2010) Refractory high-entropy alloys. Intermetallics 18:1758–1765CrossRef
26.
Zurück zum Zitat del Grosso MF, Bozzolo G, Mosca HO (2012) Determination of the transition to the high entropy regime for alloys of refractory elements. J Alloys Comp 534:25–31CrossRef del Grosso MF, Bozzolo G, Mosca HO (2012) Determination of the transition to the high entropy regime for alloys of refractory elements. J Alloys Comp 534:25–31CrossRef
27.
Zurück zum Zitat Chun Ng, Guo S, Luan J, Shi S, Liu CT (2012) Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy. Intermetallics 31:165–172 Chun Ng, Guo S, Luan J, Shi S, Liu CT (2012) Entropy-driven phase stability and slow diffusion kinetics in an Al0.5CoCrCuFeNi high entropy alloy. Intermetallics 31:165–172
28.
Zurück zum Zitat Tsai M-H (2013) Physical properties of high entropy alloys. Entropy 15:5388–5345CrossRef Tsai M-H (2013) Physical properties of high entropy alloys. Entropy 15:5388–5345CrossRef
29.
Zurück zum Zitat Cheng K-H, Lai C-H, Lin S-J, Yeh J-W (2006) Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets. Ann Chim Sci Mat 31:723–736CrossRef Cheng K-H, Lai C-H, Lin S-J, Yeh J-W (2006) Recent progress in multi-element alloy and nitride coatings sputtered from high-entropy alloy targets. Ann Chim Sci Mat 31:723–736CrossRef
30.
Zurück zum Zitat Chen Y Y, Duval T, Hong U T, Yeh J W, Shih H C, Wang L H, Oung J C (2007) Corrosion properties of a novel bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288 °C high-purity water. Mater Lett 61:2692–2696 Chen Y Y, Duval T, Hong U T, Yeh J W, Shih H C, Wang L H, Oung J C (2007) Corrosion properties of a novel bulk Cu0.5NiAlCoCrFeSi glassy alloy in 288 °C high-purity water. Mater Lett 61:2692–2696
31.
Zurück zum Zitat Singh S, Wanderka N, Murty BS, Glatzel U, Banhart J (2011) Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater 59:182–190CrossRef Singh S, Wanderka N, Murty BS, Glatzel U, Banhart J (2011) Decomposition in multi-component AlCoCrCuFeNi high-entropy alloy. Acta Mater 59:182–190CrossRef
32.
Zurück zum Zitat Tsai M-H, Yeh J-W, Gan J-Y (2008) Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon. Thin Solid Films 516:5527–5530CrossRef Tsai M-H, Yeh J-W, Gan J-Y (2008) Diffusion barrier properties of AlMoNbSiTaTiVZr high-entropy alloy layer between copper and silicon. Thin Solid Films 516:5527–5530CrossRef
33.
Zurück zum Zitat Tsai M-H, Wang C-W, Tsai C-W, Shen W-J, Yeh J-W, Gan J-Y, Wu W-W (2011) Thermal stability and performance of NbSiTaTiZr High-entropy alloy barrier for copper metallization. J Electrochem Soc 158:H1161CrossRef Tsai M-H, Wang C-W, Tsai C-W, Shen W-J, Yeh J-W, Gan J-Y, Wu W-W (2011) Thermal stability and performance of NbSiTaTiZr High-entropy alloy barrier for copper metallization. J Electrochem Soc 158:H1161CrossRef
34.
Zurück zum Zitat Tsai M-H, Yeh J-W (2014) High-entropy alloys: a critical review. Mater Res Lett 2:107–123CrossRef Tsai M-H, Yeh J-W (2014) High-entropy alloys: a critical review. Mater Res Lett 2:107–123CrossRef
35.
Zurück zum Zitat Williams SH (2009) PhD thesis, University of Iowa Williams SH (2009) PhD thesis, University of Iowa
36.
Zurück zum Zitat Azami F (2005) Adv Mater Process 163:37 Azami F (2005) Adv Mater Process 163:37
37.
Zurück zum Zitat Lee S-H, Jung D-H, Jung S-J, Hong S-C, Lee J-J (2006) Low temperature deposition with inductively coupled plasma. Z Met 97:475–479 Lee S-H, Jung D-H, Jung S-J, Hong S-C, Lee J-J (2006) Low temperature deposition with inductively coupled plasma. Z Met 97:475–479
38.
Zurück zum Zitat Yeh CL, Yeh CC (2005) Preparation of CoAl intermetallic compound by combustion synthesis in self-propagating mode. J Alloy Compd 388:241–249CrossRef Yeh CL, Yeh CC (2005) Preparation of CoAl intermetallic compound by combustion synthesis in self-propagating mode. J Alloy Compd 388:241–249CrossRef
39.
Zurück zum Zitat Pithawalla YB, El Shall MS, Deevi SC (2000) Synthesis and characterization of nanocrystalline iron aluminide particles. Intermetallics 8:1225–1231CrossRef Pithawalla YB, El Shall MS, Deevi SC (2000) Synthesis and characterization of nanocrystalline iron aluminide particles. Intermetallics 8:1225–1231CrossRef
40.
Zurück zum Zitat Rajan S, Shukla R, Kumar A, Vyas A, Brajpuriya R (2014) Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy. Int J Mater Res 106:114–126 Rajan S, Shukla R, Kumar A, Vyas A, Brajpuriya R (2014) Structural and magnetic evolution of ball milled nanocrystalline Fe-50 at.% Al alloy. Int J Mater Res 106:114–126
41.
Zurück zum Zitat Khan RBS, Vyas A, Kumar A (2015) Int J Sci Res 4:1243 Khan RBS, Vyas A, Kumar A (2015) Int J Sci Res 4:1243
42.
Zurück zum Zitat Suryanarayana C (2005) Mechanical alloying and milling. Adv Mater 17:2893–2894 Suryanarayana C (2005) Mechanical alloying and milling. Adv Mater 17:2893–2894
43.
Zurück zum Zitat Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184CrossRef Suryanarayana C (2001) Mechanical alloying and milling. Prog Mater Sci 46:1–184CrossRef
44.
Zurück zum Zitat Suryanarayana C (1996) Recent advances in the synthesis of alloy phases by mechanical alloying/milling. Met Mater 2:195–209CrossRef Suryanarayana C (1996) Recent advances in the synthesis of alloy phases by mechanical alloying/milling. Met Mater 2:195–209CrossRef
45.
Zurück zum Zitat Simhadri D (2003) Determination of phase fraction, lattice parameters and crystallite size in mechanically alloyed Fe-Ni powders. University of New Orleans Theses and Dissertations. 56 Simhadri D (2003) Determination of phase fraction, lattice parameters and crystallite size in mechanically alloyed Fe-Ni powders. University of New Orleans Theses and Dissertations. 56
46.
Zurück zum Zitat Azzaza MBS, Aliofkhazraci M (eds) (2016) Hand book of mechanical nanostructuring, 1st edn. Wiley-VCH Verlag GmbH & Co, KGaA Azzaza MBS, Aliofkhazraci M (eds) (2016) Hand book of mechanical nanostructuring, 1st edn. Wiley-VCH Verlag GmbH & Co, KGaA
47.
Zurück zum Zitat Chin ZH, Perng TP (1996) Amorphization of Ni-Si-C ternary alloy powder by mechanical alloying. Mater Sci Forum 235–238:121–126CrossRef Chin ZH, Perng TP (1996) Amorphization of Ni-Si-C ternary alloy powder by mechanical alloying. Mater Sci Forum 235–238:121–126CrossRef
48.
Zurück zum Zitat Maziarz W, Dutkiewicz J, Senderski J (2004) Processing of nanocrystalline FeAlX (X = Ni, Mn) intermetallics using a mechanical alloying and hot pressing techniques. J Mater Sci 39:5425–5429CrossRef Maziarz W, Dutkiewicz J, Senderski J (2004) Processing of nanocrystalline FeAlX (X = Ni, Mn) intermetallics using a mechanical alloying and hot pressing techniques. J Mater Sci 39:5425–5429CrossRef
49.
Zurück zum Zitat Chen D, Chen J, Yan H, Chen Z (2007) Synthesis of binary and ternary intermetallic powders via a novel reaction ball milling technique. Mater Sci Eng A 444:1–5CrossRef Chen D, Chen J, Yan H, Chen Z (2007) Synthesis of binary and ternary intermetallic powders via a novel reaction ball milling technique. Mater Sci Eng A 444:1–5CrossRef
50.
Zurück zum Zitat Chen D, Chen Z, Cai J, Chen Z (2008) Preparation of W-Al intermetallic compound powders by a mechanochemical approach. J Alloys Compd 461:L23–L25CrossRef Chen D, Chen Z, Cai J, Chen Z (2008) Preparation of W-Al intermetallic compound powders by a mechanochemical approach. J Alloys Compd 461:L23–L25CrossRef
51.
Zurück zum Zitat Chen D, Chen G, Ni S, Chen G, Yan H, Chen Z (2008) Phase formation regularities of ultrafine TiAl, NiAl and FeAl intermetallic compound powders during solid–liquid reaction milling. J Alloys Compd 457:292–295CrossRef Chen D, Chen G, Ni S, Chen G, Yan H, Chen Z (2008) Phase formation regularities of ultrafine TiAl, NiAl and FeAl intermetallic compound powders during solid–liquid reaction milling. J Alloys Compd 457:292–295CrossRef
52.
Zurück zum Zitat Bakker H, Zhou GF, Yang H (1995) Mechanically driven disorder and phase transformations in alloys. Prog Mater Sci 39:159–241CrossRef Bakker H, Zhou GF, Yang H (1995) Mechanically driven disorder and phase transformations in alloys. Prog Mater Sci 39:159–241CrossRef
53.
Zurück zum Zitat Negri D, Yavari AR, Deriu A (1999) Deformation induced transformations and grain boundary thickness in nanocrystalline B2 FeAl. Acta Mater 47:4545–4554CrossRef Negri D, Yavari AR, Deriu A (1999) Deformation induced transformations and grain boundary thickness in nanocrystalline B2 FeAl. Acta Mater 47:4545–4554CrossRef
54.
Zurück zum Zitat Yavari AR (1997) Ann Chim Sci Mater 22 Yavari AR (1997) Ann Chim Sci Mater 22
55.
Zurück zum Zitat Yavari AR (1993) Reordering kinetics and magnetic properties of mechanically disordered nanocrystalline Ll2-type Ni3Al + Fe alloys. Acta Metall Mater 41:1391–1403CrossRef Yavari AR (1993) Reordering kinetics and magnetic properties of mechanically disordered nanocrystalline Ll2-type Ni3Al + Fe alloys. Acta Metall Mater 41:1391–1403CrossRef
56.
Zurück zum Zitat Benameur T, Yavari AR (2011) Disordering and amorphization of L12-type alloys by mechanical attrition. J Mater Res 7:2971–2977CrossRef Benameur T, Yavari AR (2011) Disordering and amorphization of L12-type alloys by mechanical attrition. J Mater Res 7:2971–2977CrossRef
57.
Zurück zum Zitat Yavari AR, Gialanella S, Benameur T, Cahn RW, Bochu B (2011) On the bcc, fcc, hcp, and amorphous polymorphs of Zr3Al. J Mater Res 8:242–244CrossRef Yavari AR, Gialanella S, Benameur T, Cahn RW, Bochu B (2011) On the bcc, fcc, hcp, and amorphous polymorphs of Zr3Al. J Mater Res 8:242–244CrossRef
58.
Zurück zum Zitat Singh S, Pappachan AL, Gadiyar HS (1986) Electroproduction of cerium and Ce-Co alloy. J Less Common Metals 120:307–315 Singh S, Pappachan AL, Gadiyar HS (1986) Electroproduction of cerium and Ce-Co alloy. J Less Common Metals 120:307–315
59.
Zurück zum Zitat Singh S, Pappachan AL (1990) Electrodeposition of lanthanum metal from fused chloride bath. Bull Electrochem 6:97–100 Singh S, Pappachan AL (1990) Electrodeposition of lanthanum metal from fused chloride bath. Bull Electrochem 6:97–100
60.
Zurück zum Zitat Lantelme FDR, Cartailler T, Berghoute Y, Hamdani M (2001) Physicochemical properties of lanthanide and yttrium solutions in fused salts and alloy formation with nickel. J Electrochem Soc 148:C604 Lantelme FDR, Cartailler T, Berghoute Y, Hamdani M (2001) Physicochemical properties of lanthanide and yttrium solutions in fused salts and alloy formation with nickel. J Electrochem Soc 148:C604
61.
Zurück zum Zitat Masset P, Konings RJM, Malmbeck R, Serp J, Glatz J-P (2005) Thermochemical properties of lanthanides (Ln=La,Nd) and actinides (An=U,Np,Pu,Am) in the molten LiCl–KCl eutectic. J Nucl Mater 344:173–179 Masset P, Konings RJM, Malmbeck R, Serp J, Glatz J-P (2005) Thermochemical properties of lanthanides (Ln=La,Nd) and actinides (An=U,Np,Pu,Am) in the molten LiCl–KCl eutectic. J Nucl Mater 344:173–179
62.
Zurück zum Zitat Fusselman SP (1999) Thermodynamic properties for rare earths and Americium in pyropartitioning process solvents. J Electrochem Soc 146:2573 Fusselman SP (1999) Thermodynamic properties for rare earths and Americium in pyropartitioning process solvents. J Electrochem Soc 146:2573
63.
Zurück zum Zitat Gao F, Wang C, Liu L, Guo J, Chang S, Chang L, Li R, Ouyang Y (2009) Electrode process of La(III) in molten LiCl-KCl. J Rare Earths 27:986–990CrossRef Gao F, Wang C, Liu L, Guo J, Chang S, Chang L, Li R, Ouyang Y (2009) Electrode process of La(III) in molten LiCl-KCl. J Rare Earths 27:986–990CrossRef
64.
Zurück zum Zitat Vandarkuzhali S, Gogoi N, Ghosh S, Prabhakara Reddy B, Nagarajan K (2012) Electrochemical behaviour of LaCl3 at tungsten and aluminium cathodes in LiCl–KCl eutectic melt. Electrochimica Acta 59:245–255 Vandarkuzhali S, Gogoi N, Ghosh S, Prabhakara Reddy B, Nagarajan K (2012) Electrochemical behaviour of LaCl3 at tungsten and aluminium cathodes in LiCl–KCl eutectic melt. Electrochimica Acta 59:245–255
65.
Zurück zum Zitat Tang H, Pesic B (2014) Electrochemical behavior of LaCl3 and morphology of La deposit on molybdenum substrate in molten LiCl–KCl eutectic salt. Electrochim Acta 119:120–130CrossRef Tang H, Pesic B (2014) Electrochemical behavior of LaCl3 and morphology of La deposit on molybdenum substrate in molten LiCl–KCl eutectic salt. Electrochim Acta 119:120–130CrossRef
66.
Zurück zum Zitat Castrillejo Y, Bermejo MR, Pardo R, Martı́nez AM (2002) Use of electrochemical techniques for the study of solubilization processes of cerium–oxide compounds and recovery of the metal from molten chlorides. J Electroanal Chem 522:124–140 Castrillejo Y, Bermejo MR, Pardo R, Martı́nez AM (2002) Use of electrochemical techniques for the study of solubilization processes of cerium–oxide compounds and recovery of the metal from molten chlorides. J Electroanal Chem 522:124–140
67.
Zurück zum Zitat Sahoo DK, Satpati AK, Krishnamurthy N (2015) Electrochemical properties of Ce(iii) in an equimolar mixture of LiCl–KCl and NaCl–KCl molten salts. RSC Adv 5:33163–33170CrossRef Sahoo DK, Satpati AK, Krishnamurthy N (2015) Electrochemical properties of Ce(iii) in an equimolar mixture of LiCl–KCl and NaCl–KCl molten salts. RSC Adv 5:33163–33170CrossRef
68.
Zurück zum Zitat Bavbande DV, Mishra R, Juneja JM (2004) Studies on the kinetics of synthesis of TiC by calciothermic reduction of TiO2 in presence of carbon. J Thermal Anal Calorimetry 78:775–780CrossRef Bavbande DV, Mishra R, Juneja JM (2004) Studies on the kinetics of synthesis of TiC by calciothermic reduction of TiO2 in presence of carbon. J Thermal Anal Calorimetry 78:775–780CrossRef
69.
Zurück zum Zitat Ahmed HM, Viswanathan NN, Seetharaman S (2016) Gas-condensed phase reactions – a novel route to synthesize slloys and intermetallics involving refractory metals. Mater Today Proc 3(9):2951–2961 Ahmed HM, Viswanathan NN, Seetharaman S (2016) Gas-condensed phase reactions – a novel route to synthesize slloys and intermetallics involving refractory metals. Mater Today Proc 3(9):2951–2961
70.
Zurück zum Zitat Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33:223–315CrossRef Gleiter H (1989) Nanocrystalline materials. Prog Mater Sci 33:223–315CrossRef
71.
Zurück zum Zitat Dingreville R, Qu J, Mohammed C (2005) Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J Mech Phys Solids 53:1827–1854CrossRef Dingreville R, Qu J, Mohammed C (2005) Surface free energy and its effect on the elastic behavior of nano-sized particles, wires and films. J Mech Phys Solids 53:1827–1854CrossRef
72.
Zurück zum Zitat Ningthoujam RS, Sudhakar N, Rajeev KP, Gajbhiye NS (2002) Electrical resistivity study of La, B doped nanocrystalline superconducting vanadium nitride. J Appl Phys 91:6051–6056CrossRef Ningthoujam RS, Sudhakar N, Rajeev KP, Gajbhiye NS (2002) Electrical resistivity study of La, B doped nanocrystalline superconducting vanadium nitride. J Appl Phys 91:6051–6056CrossRef
73.
Zurück zum Zitat Sambles JR, Blackman M (1971) An electron microscope study of evaporating gold particles: the Kelvin equation for liquid gold and the lowering of the melting point of solid gold particles. Proc Roy Soc London. A. Math Phys Sci 324:339–351 Sambles JR, Blackman M (1971) An electron microscope study of evaporating gold particles: the Kelvin equation for liquid gold and the lowering of the melting point of solid gold particles. Proc Roy Soc London. A. Math Phys Sci 324:339–351
74.
Zurück zum Zitat Goldstein AN, Echer CM, Alivisatos AP (1992) Melting in semiconductor nanocrystals. Science 256:1425CrossRef Goldstein AN, Echer CM, Alivisatos AP (1992) Melting in semiconductor nanocrystals. Science 256:1425CrossRef
75.
Zurück zum Zitat Sheng HW, Lu K, Ma E (1998) Melting of embedded Pb nanoparticles monitored using high-temperature in situ XRD. Nanostruc Mater 10:865–873CrossRef Sheng HW, Lu K, Ma E (1998) Melting of embedded Pb nanoparticles monitored using high-temperature in situ XRD. Nanostruc Mater 10:865–873CrossRef
76.
Zurück zum Zitat Peters KF, Cohen JB, Chung Y-W (1998) Melting of Pb nanocrystals. Phys Rev B 57:13430–13438 Peters KF, Cohen JB, Chung Y-W (1998) Melting of Pb nanocrystals. Phys Rev B 57:13430–13438
77.
Zurück zum Zitat Cleveland CL, Luedtke WD, Landman U (1999) Melting of gold clusters. Phys Rev B 60:5065–5077CrossRef Cleveland CL, Luedtke WD, Landman U (1999) Melting of gold clusters. Phys Rev B 60:5065–5077CrossRef
78.
Zurück zum Zitat Pawlow P (1909) Ober die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers (Zusatz.). Z Phys Chem 65:545–548 Pawlow P (1909) Ober die Abhängigkeit des Schmelzpunktes von der Oberflächenenergie eines festen Körpers (Zusatz.). Z Phys Chem 65:545–548
79.
Zurück zum Zitat Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298CrossRef Buffat P, Borel JP (1976) Size effect on the melting temperature of gold particles. Phys Rev A 13:2287–2298CrossRef
80.
Zurück zum Zitat Borel JP (1981) Thermodynamical size effect and the structure of metallic clusters. Surf Sci 106:1–9CrossRef Borel JP (1981) Thermodynamical size effect and the structure of metallic clusters. Surf Sci 106:1–9CrossRef
81.
Zurück zum Zitat Dick K, Dhanasekaran T, Zhang Z, Meisel D (2002) Size-dependent melting of silica-encapsulated gold nanoparticles. J Am Chem Soc 124:2312–2317CrossRef Dick K, Dhanasekaran T, Zhang Z, Meisel D (2002) Size-dependent melting of silica-encapsulated gold nanoparticles. J Am Chem Soc 124:2312–2317CrossRef
82.
Zurück zum Zitat Du YW, Xu MX, Wu J, Shi YB, Lu HX, Xue RH (1991) Magnetic properties of ultrafine nickel particles. J Appl Phys 70:5903–5905 Du YW, Xu MX, Wu J, Shi YB, Lu HX, Xue RH (1991) Magnetic properties of ultrafine nickel particles. J Appl Phys 70:5903–5905
83.
Zurück zum Zitat Zhang D, Klabunde KJ, Sorensen CM, Hadjipanayis GC (1998) Magnetization temperature dependence in iron nanoparticles. Phys Rev B 58:14167–14170CrossRef Zhang D, Klabunde KJ, Sorensen CM, Hadjipanayis GC (1998) Magnetization temperature dependence in iron nanoparticles. Phys Rev B 58:14167–14170CrossRef
84.
Zurück zum Zitat Shir F, Yanik L, Bennett LH, Della Torre E, Shull RD (2003) Room temperature active regenerative magnetic refrigeration: magnetic nanocomposites. J Appl Phys 93:8295–8297 Shir F, Yanik L, Bennett LH, Della Torre E, Shull RD (2003) Room temperature active regenerative magnetic refrigeration: magnetic nanocomposites. J Appl Phys 93:8295–8297
85.
Zurück zum Zitat Castillo JD, Rodríguez VD, Yanes AC, Méndez-Ramos J, Torres ME (2005) Luminescent properties of transparent nanostructured Eu3+doped SnO2–SiO2 glass-ceramics prepared by the sol–gel method. Nanotechnology 16:S300–S303CrossRef Castillo JD, Rodríguez VD, Yanes AC, Méndez-Ramos J, Torres ME (2005) Luminescent properties of transparent nanostructured Eu3+doped SnO2–SiO2 glass-ceramics prepared by the sol–gel method. Nanotechnology 16:S300–S303CrossRef
86.
Zurück zum Zitat Yanes AC, Del Castillo J, Torres M, Peraza J, Rodríguez VD, Méndez-Ramos J (2004) Nanocrystal-size selective spectroscopy in SnO2:Eu3+ semiconductor quantum dots. Appl Phys Lett 85:2343–2345CrossRef Yanes AC, Del Castillo J, Torres M, Peraza J, Rodríguez VD, Méndez-Ramos J (2004) Nanocrystal-size selective spectroscopy in SnO2:Eu3+ semiconductor quantum dots. Appl Phys Lett 85:2343–2345CrossRef
87.
Zurück zum Zitat Yang R, Huang J, Zhao W, Lai W, Zhang X, Zheng J, Li X (2010) Bubble assisted synthesis of Sn–Sb–Cu alloy hollow nanostructures and their improved lithium storage properties. J Power Sources 195:6811–6816CrossRef Yang R, Huang J, Zhao W, Lai W, Zhang X, Zheng J, Li X (2010) Bubble assisted synthesis of Sn–Sb–Cu alloy hollow nanostructures and their improved lithium storage properties. J Power Sources 195:6811–6816CrossRef
88.
Zurück zum Zitat Mishra R, Zemanova A, Kroupa A, Flandorfer H, Ipser H (2012) Synthesis and characterization of Sn-rich Ni–Sb–Sn nanosolders. J Alloys Compounds 513:224–229CrossRef Mishra R, Zemanova A, Kroupa A, Flandorfer H, Ipser H (2012) Synthesis and characterization of Sn-rich Ni–Sb–Sn nanosolders. J Alloys Compounds 513:224–229CrossRef
89.
Zurück zum Zitat Gajbhiye NS, Sharma S, Ningthoujam RS (2008) Synthesis of self-assembled monodisperse 3 nm FePd nanoparticles: phase transition, magnetic study, and surface effect. J Appl Phys 104:123906 Gajbhiye NS, Sharma S, Ningthoujam RS (2008) Synthesis of self-assembled monodisperse 3 nm FePd nanoparticles: phase transition, magnetic study, and surface effect. J Appl Phys 104:123906
90.
Zurück zum Zitat Holmberg K (2004) Surfactant-templated nanomaterials synthesis. J Colloid Interf Sci 274:355–364CrossRef Holmberg K (2004) Surfactant-templated nanomaterials synthesis. J Colloid Interf Sci 274:355–364CrossRef
91.
Zurück zum Zitat Holmberg K, Jönsson B, Kronberg B, Lindaman B (2003) Surfactants and polymers in aqueous solutions, 2nd edn. Wiley, Chichester Holmberg K, Jönsson B, Kronberg B, Lindaman B (2003) Surfactants and polymers in aqueous solutions, 2nd edn. Wiley, Chichester
92.
Zurück zum Zitat Sanchez-Dominguez M, Koleilat H, Boutonnet M, Solans C (2011) Synthesis of Pt nanoparticles in oil-in-water microemulsions: phase behavior and effect of formulation parameters on nanoparticle characteristics. J Dispersion Sci Technol 32:1765–1770CrossRef Sanchez-Dominguez M, Koleilat H, Boutonnet M, Solans C (2011) Synthesis of Pt nanoparticles in oil-in-water microemulsions: phase behavior and effect of formulation parameters on nanoparticle characteristics. J Dispersion Sci Technol 32:1765–1770CrossRef
93.
Zurück zum Zitat US EPA (2002) Health and environmental effects profile for hydrazine and hydrazine sulfate. report no. EPA/600/X-84/332 (NTIS PB88161963), U.S. Environmental Protection Agency: Washington, D.C. (Accessed April 15, 2018) US EPA (2002) Health and environmental effects profile for hydrazine and hydrazine sulfate. report no. EPA/600/X-84/332 (NTIS PB88161963), U.S. Environmental Protection Agency: Washington, D.C. (Accessed April 15, 2018)
94.
Zurück zum Zitat Ström L, Ström H, Carlsson P-A, Skoglundh M, Härelind H (2018) Catalytically active Pd–Ag alloy nanoparticles synthesized in microemulsion template. Langmuir 34:9754–9761CrossRef Ström L, Ström H, Carlsson P-A, Skoglundh M, Härelind H (2018) Catalytically active Pd–Ag alloy nanoparticles synthesized in microemulsion template. Langmuir 34:9754–9761CrossRef
95.
Zurück zum Zitat Nandini P, Akash K, Rohit G, Vipul S, Palani IA (2017) Investigations on the influence of liquid-assisted laser ablation of NiTi rotating target to improve the formation efficiency of spherical alloyed NiTi nanoparticles. J Mater Eng Perform 26:4707–4717CrossRef Nandini P, Akash K, Rohit G, Vipul S, Palani IA (2017) Investigations on the influence of liquid-assisted laser ablation of NiTi rotating target to improve the formation efficiency of spherical alloyed NiTi nanoparticles. J Mater Eng Perform 26:4707–4717CrossRef
96.
Zurück zum Zitat Chen Q, Song H, Zhang F, Zhang H, Yu Y, Chen Z, Wei R, Dai Y, Qiu J (2017) A strategy for fabrication of controllable 3D pattern containing clusters and nanoparticles inside a solid material. Nanoscale 9:9083–9088CrossRef Chen Q, Song H, Zhang F, Zhang H, Yu Y, Chen Z, Wei R, Dai Y, Qiu J (2017) A strategy for fabrication of controllable 3D pattern containing clusters and nanoparticles inside a solid material. Nanoscale 9:9083–9088CrossRef
97.
Zurück zum Zitat Fujita Y, Aubert R, Walke P, Yuan H, Kenens B, Inose T, Steuwe C, Toyouchi S, Fortuni B, Chamtouri M, Janssen KPF, De Feyter S, Roeffaers MBJ, Uji-i H (2017) Highly controllable direct femtosecond laser writing of gold nanostructures on titanium dioxide surfaces. Nanoscale 9:13025–13033CrossRef Fujita Y, Aubert R, Walke P, Yuan H, Kenens B, Inose T, Steuwe C, Toyouchi S, Fortuni B, Chamtouri M, Janssen KPF, De Feyter S, Roeffaers MBJ, Uji-i H (2017) Highly controllable direct femtosecond laser writing of gold nanostructures on titanium dioxide surfaces. Nanoscale 9:13025–13033CrossRef
98.
Zurück zum Zitat Sarker MSI, Nakamura TZ, Herbani Y, Sato S (2013) Fabrication of Rh based solid-solution bimetallic alloy nanoparticles with fully-tunable composition through femtosecond laser irradiation in aqueous solution. Appl Phys A 110:145–152 Sarker MSI, Nakamura TZ, Herbani Y, Sato S (2013) Fabrication of Rh based solid-solution bimetallic alloy nanoparticles with fully-tunable composition through femtosecond laser irradiation in aqueous solution. Appl Phys A 110:145–152
99.
Zurück zum Zitat Assis M, Cordoncillo E, Torres-Mendieta R, Beltrán-Mir H, Mínguez-Vega G, Oliveira R, Leite ER, Foggi CC, Vergani CE, Longo E, Andrés J (2018) Towards the scale-up of the formation of nanoparticles on α-Ag2WO4 with bactericidal properties by femtosecond laser irradiation. Sci Reports 8:1884 Assis M, Cordoncillo E, Torres-Mendieta R, Beltrán-Mir H, Mínguez-Vega G, Oliveira R, Leite ER, Foggi CC, Vergani CE, Longo E, Andrés J (2018) Towards the scale-up of the formation of nanoparticles on α-Ag2WO4 with bactericidal properties by femtosecond laser irradiation. Sci Reports 8:1884
100.
Zurück zum Zitat Machado TR, Macedo NG, Assis M, Doñate-Buendia C, Mínguez-Vega G, Teixeira MM, Foggi CC, Vergani CE, Beltrán-Mir H, Andrés J, Cordoncillo E, Longo E (2018) From complex inorganic oxides to Ag–Bi nanoalloy: synthesis by femtosecond laser irradiation. ACS Omega 3:9880–9887CrossRef Machado TR, Macedo NG, Assis M, Doñate-Buendia C, Mínguez-Vega G, Teixeira MM, Foggi CC, Vergani CE, Beltrán-Mir H, Andrés J, Cordoncillo E, Longo E (2018) From complex inorganic oxides to Ag–Bi nanoalloy: synthesis by femtosecond laser irradiation. ACS Omega 3:9880–9887CrossRef
101.
Zurück zum Zitat Bönnemann H, Richards RM (2001) Nanoscopic metal particles—synthetic methods and potential applications. Eur J Inorg Chem 2455–2480 Bönnemann H, Richards RM (2001) Nanoscopic metal particles—synthetic methods and potential applications. Eur J Inorg Chem 2455–2480
102.
Zurück zum Zitat Braunstein JRP (1999) Metal clusters in Chemistry, Braunstein P, Oro LA, Raithby PR (eds), Wiley-VCH: Weinheim, vol 2, p 616 Braunstein JRP (1999) Metal clusters in Chemistry, Braunstein P, Oro LA, Raithby PR (eds), Wiley-VCH: Weinheim, vol 2, p 616
103.
Zurück zum Zitat Esumi K, Tano T, Torigoe K, Meguro K (1990) Preparation and characterization of bimetallic palladium-copper colloids by thermal decomposition of their acetate compounds in organic solvents. Chem Mater 2:564–567CrossRef Esumi K, Tano T, Torigoe K, Meguro K (1990) Preparation and characterization of bimetallic palladium-copper colloids by thermal decomposition of their acetate compounds in organic solvents. Chem Mater 2:564–567CrossRef
104.
Zurück zum Zitat Bradley JS, Via GH, Bonneviot L, Hill EW (1996) Infrared and EXAFS study of compositional effects in nanoscale colloidal palladium−copper alloys. Chem Mater 8:1895–1903CrossRef Bradley JS, Via GH, Bonneviot L, Hill EW (1996) Infrared and EXAFS study of compositional effects in nanoscale colloidal palladium−copper alloys. Chem Mater 8:1895–1903CrossRef
105.
Zurück zum Zitat Thomas JM, Johnson BFG, Raja R, Sankar G, Midgley PA (2003) High-performance nanocatalysts for single-step hydrogenations. Acc Chem Res 36:20–30CrossRef Thomas JM, Johnson BFG, Raja R, Sankar G, Midgley PA (2003) High-performance nanocatalysts for single-step hydrogenations. Acc Chem Res 36:20–30CrossRef
106.
Zurück zum Zitat Kolay S, Kumar M, Wadawale A, Das D, Jain VK (2014) Cyclopalladation of telluro ether ligands: synthesis, reactivity and structural characterization. Dalton Trans 43:16056–16065CrossRef Kolay S, Kumar M, Wadawale A, Das D, Jain VK (2014) Cyclopalladation of telluro ether ligands: synthesis, reactivity and structural characterization. Dalton Trans 43:16056–16065CrossRef
107.
Zurück zum Zitat Mann S (2001) Biomineralization: principles and concepts. In: Bioinorganic materials Chemistry. Oxford University Press, Oxford Mann S (2001) Biomineralization: principles and concepts. In: Bioinorganic materials Chemistry. Oxford University Press, Oxford
108.
Zurück zum Zitat Mann S (1996) Biomimetic materials Chemistry. VCH, New York Mann S (1996) Biomimetic materials Chemistry. VCH, New York
109.
Zurück zum Zitat Brayner R, Coradin T, Fiévet-Vincent F, Livage J, Fiévet F (2005) Algal polysaccharide capsule-templated growth of magnetic nanoparticles. New J Chem 29:681–685CrossRef Brayner R, Coradin T, Fiévet-Vincent F, Livage J, Fiévet F (2005) Algal polysaccharide capsule-templated growth of magnetic nanoparticles. New J Chem 29:681–685CrossRef
110.
Zurück zum Zitat Srivastava S, Samanta B, Arumugam P, Han G, Rotello VM (2007) DNA-mediated assembly of iron platinum (FePt) nanoparticles. J Mater Chem 17:52–55CrossRef Srivastava S, Samanta B, Arumugam P, Han G, Rotello VM (2007) DNA-mediated assembly of iron platinum (FePt) nanoparticles. J Mater Chem 17:52–55CrossRef
111.
Zurück zum Zitat Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Current Opinion in Biotechnol 12:248–253CrossRef Lloyd JR, Lovley DR (2001) Microbial detoxification of metals and radionuclides. Current Opinion in Biotechnol 12:248–253CrossRef
112.
Zurück zum Zitat Macaskie LE, Baxter-Plant VS, Creamer NJ, Humphries AC, Mikheenko IP, Mikheenko PM, Penfold DW, Yong P (2005) Applications of bacterial hydrogenases in waste decontamination, manufacture of novel bionanocatalysts and in sustainable energy. Biochem Soc Trans 33:76–79CrossRef Macaskie LE, Baxter-Plant VS, Creamer NJ, Humphries AC, Mikheenko IP, Mikheenko PM, Penfold DW, Yong P (2005) Applications of bacterial hydrogenases in waste decontamination, manufacture of novel bionanocatalysts and in sustainable energy. Biochem Soc Trans 33:76–79CrossRef
113.
Zurück zum Zitat Remita S, Mostafavi M, Delcourt MO (1996) Bimetallic Ag-Pt and Au-Pt aggregates synthesized by radiolysis. Radiat Phys Chem 47:275–279CrossRef Remita S, Mostafavi M, Delcourt MO (1996) Bimetallic Ag-Pt and Au-Pt aggregates synthesized by radiolysis. Radiat Phys Chem 47:275–279CrossRef
114.
Zurück zum Zitat Belloni MMJ, Remita H, Marignier J-L, Delcourt M-O (1998) Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New J Chem 22:1239–1255 Belloni MMJ, Remita H, Marignier J-L, Delcourt M-O (1998) Radiation-induced synthesis of mono- and multi-metallic clusters and nanocolloids. New J Chem 22:1239–1255
115.
Zurück zum Zitat Belloni MMJ (1999) Metal clusters in Chemistry, Braunstein P, Oro LA, Raithby PR (eds) vol 2. Wiley-VCH, Weinheim, p 1213 Belloni MMJ (1999) Metal clusters in Chemistry, Braunstein P, Oro LA, Raithby PR (eds) vol 2. Wiley-VCH, Weinheim, p 1213
116.
Zurück zum Zitat Treguer M, de Cointet C, Remita H, Khatouri J, Mostafavi M, Amblard J, Belloni J, de Keyzer R (1998) Dose rate effects on radiolytic synthesis of gold−silver bimetallic clusters in solution. J Phys Chem B 102:4310–4321CrossRef Treguer M, de Cointet C, Remita H, Khatouri J, Mostafavi M, Amblard J, Belloni J, de Keyzer R (1998) Dose rate effects on radiolytic synthesis of gold−silver bimetallic clusters in solution. J Phys Chem B 102:4310–4321CrossRef
117.
Zurück zum Zitat Doudna CM, Bertino MF, Tokuhiro AT (2002) Structural investigation of Ag−Pd clusters synthesized with the radiolysis method. Langmuir 18:2434–2435CrossRef Doudna CM, Bertino MF, Tokuhiro AT (2002) Structural investigation of Ag−Pd clusters synthesized with the radiolysis method. Langmuir 18:2434–2435CrossRef
118.
Zurück zum Zitat Doudna CM, Bertino MF, Blum FD, Tokuhiro AT, Lahiri-Dey D, Chattopadhyay S, Terry J (2003) Radiolytic synthesis of bimetallic Ag−Pt nanoparticles with a high aspect ratio. J Phys Chem B 107:2966–2970CrossRef Doudna CM, Bertino MF, Blum FD, Tokuhiro AT, Lahiri-Dey D, Chattopadhyay S, Terry J (2003) Radiolytic synthesis of bimetallic Ag−Pt nanoparticles with a high aspect ratio. J Phys Chem B 107:2966–2970CrossRef
119.
Zurück zum Zitat Jiang Y, He YH, Xu NP, Zou J, Huang BY, Liu CT (2008) Effects of the Al content on pore structures of porous Ti–Al alloys. Intermetallics 16:327–332CrossRef Jiang Y, He YH, Xu NP, Zou J, Huang BY, Liu CT (2008) Effects of the Al content on pore structures of porous Ti–Al alloys. Intermetallics 16:327–332CrossRef
120.
Zurück zum Zitat Jiang Y, Deng C, He Y, Zhao Y, Xu N, Zou J, Huang B, Liu CT (2009) Reactive synthesis of microporous titanium-aluminide membranes. Mater Lett 63:22–24CrossRef Jiang Y, Deng C, He Y, Zhao Y, Xu N, Zou J, Huang B, Liu CT (2009) Reactive synthesis of microporous titanium-aluminide membranes. Mater Lett 63:22–24CrossRef
121.
Zurück zum Zitat Liang W, Jiang Y, Hongxing D, He Y, Xu N, Zou J, Huang B, Liu CT (2011) The corrosion behavior of porous Ni3Al intermetallic materials in strong alkali solution. Intermetallics 19:1759–1765 Liang W, Jiang Y, Hongxing D, He Y, Xu N, Zou J, Huang B, Liu CT (2011) The corrosion behavior of porous Ni3Al intermetallic materials in strong alkali solution. Intermetallics 19:1759–1765
122.
Zurück zum Zitat Dong HX, Jiang Y, He YH, Zou J, Xu NP, Huang BY, Liu CT, Liaw PK (2010) Oxidation behavior of porous NiAl prepared through reactive synthesis. Mater Chem Phys 122:417–423CrossRef Dong HX, Jiang Y, He YH, Zou J, Xu NP, Huang BY, Liu CT, Liaw PK (2010) Oxidation behavior of porous NiAl prepared through reactive synthesis. Mater Chem Phys 122:417–423CrossRef
123.
Zurück zum Zitat Gao HY, He YH, Shen PZ, Zou J, Xu NP, Jiang Y, Huang BY, Liu CT (2011) Congenerous and heterogeneous brazing of porous FeAl intermetallics. Powder Metall 54:142–147CrossRef Gao HY, He YH, Shen PZ, Zou J, Xu NP, Jiang Y, Huang BY, Liu CT (2011) Congenerous and heterogeneous brazing of porous FeAl intermetallics. Powder Metall 54:142–147CrossRef
124.
Zurück zum Zitat Liu X, Jiang Y, Zhang H, Yu L, Kang J, He Y (2015) Porous Ti3SiC2 fabricated by mixed elemental powders reactive synthesis. J Eur Ceram Soc 35:1349–1353CrossRef Liu X, Jiang Y, Zhang H, Yu L, Kang J, He Y (2015) Porous Ti3SiC2 fabricated by mixed elemental powders reactive synthesis. J Eur Ceram Soc 35:1349–1353CrossRef
125.
Zurück zum Zitat Wu L, He Y-H, Jiang Y, Zeng Y, Xiao Y-F, Nan B (2014) Effect of pore structures on corrosion resistance of porous Ni3Al intermetallics. Trans Nonferrous Met Soc China 24:3509–3516CrossRef Wu L, He Y-H, Jiang Y, Zeng Y, Xiao Y-F, Nan B (2014) Effect of pore structures on corrosion resistance of porous Ni3Al intermetallics. Trans Nonferrous Met Soc China 24:3509–3516CrossRef
126.
Zurück zum Zitat Jiang Y, He YH, Huang BY, Zou J, Huang H, Xu NP, Liu CT (2011) Criterion to control self-propagation high temperature synthesis for porous Ti–Al intermetallics. Powder Metall 54:404–407CrossRef Jiang Y, He YH, Huang BY, Zou J, Huang H, Xu NP, Liu CT (2011) Criterion to control self-propagation high temperature synthesis for porous Ti–Al intermetallics. Powder Metall 54:404–407CrossRef
127.
Zurück zum Zitat Chen MR, Jiang Y, He YH, Lin LW, Huang BY, Liu CT (2012) Pore evolution regulation in synthesis of open pore structured Ti–Al intermetallic compounds by solid diffusion. J Alloys Compd 521:12–15CrossRef Chen MR, Jiang Y, He YH, Lin LW, Huang BY, Liu CT (2012) Pore evolution regulation in synthesis of open pore structured Ti–Al intermetallic compounds by solid diffusion. J Alloys Compd 521:12–15CrossRef
128.
Zurück zum Zitat Frenkel JJ (1945) Viscous flow of crystalline bodies under the action of surface tension. J Phys 9:385–391 Frenkel JJ (1945) Viscous flow of crystalline bodies under the action of surface tension. J Phys 9:385–391
129.
Zurück zum Zitat Ristic MM, Milosević SĐ (2006) Frenkel’s theory of sintering. Sci Sinter 38:7–11CrossRef Ristic MM, Milosević SĐ (2006) Frenkel’s theory of sintering. Sci Sinter 38:7–11CrossRef
130.
Zurück zum Zitat Hoge CE, Pask JA (1977) Thermodynamic and geometric considerations of solid state sintering. Ceramurg Int 3:95–99CrossRef Hoge CE, Pask JA (1977) Thermodynamic and geometric considerations of solid state sintering. Ceramurg Int 3:95–99CrossRef
131.
Zurück zum Zitat Maulik O, Kumar V (2015) Synthesis of AlFeCuCrMgx (x=0, 0.5, 1, 1.7) alloy powders by mechanical alloying. Mater Charact 110:116–125 Maulik O, Kumar V (2015) Synthesis of AlFeCuCrMgx (x=0, 0.5, 1, 1.7) alloy powders by mechanical alloying. Mater Charact 110:116–125
132.
Zurück zum Zitat Kumar S, Kumar D, Maulik O, Pradhan AK, Kumar V, Patniak A (2018) Synthesis and air jet erosion study of AlXFe1.5CrMnNi0.5 (x = 0.3, 0.5) high-entropy alloys. Metall Mater Trans A 49:5607–5618 Kumar S, Kumar D, Maulik O, Pradhan AK, Kumar V, Patniak A (2018) Synthesis and air jet erosion study of AlXFe1.5CrMnNi0.5 (x = 0.3, 0.5) high-entropy alloys. Metall Mater Trans A 49:5607–5618
133.
Zurück zum Zitat Tunes MA, Vishnyakov VM, Donnelly SE (2018) Synthesis and characterisation of high-entropy alloy thin films as candidates for coating nuclear fuel cladding alloys. Thin Solid Films 649:115–120CrossRef Tunes MA, Vishnyakov VM, Donnelly SE (2018) Synthesis and characterisation of high-entropy alloy thin films as candidates for coating nuclear fuel cladding alloys. Thin Solid Films 649:115–120CrossRef
134.
Zurück zum Zitat Li RX, Liaw PK, Zhang Y (2017) Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides. Mater Sci Eng A 707:668–673 Li RX, Liaw PK, Zhang Y (2017) Synthesis of AlxCoCrFeNi high-entropy alloys by high-gravity combustion from oxides. Mater Sci Eng A 707:668–673
135.
Zurück zum Zitat Ye X, Ma M, Cao Y, Liu W, Ye X, Gu Y (2011) The property research on high-entropy alloy AlxFeCoNiCuCr coating by laser cladding. Phys Procedia 12:303–312CrossRef Ye X, Ma M, Cao Y, Liu W, Ye X, Gu Y (2011) The property research on high-entropy alloy AlxFeCoNiCuCr coating by laser cladding. Phys Procedia 12:303–312CrossRef
136.
Zurück zum Zitat Zeng C, Tian W, Liao WH, Hua L (2016) Microstructure and porosity evaluation in laser-cladding deposited Ni-based coatings. Surf Coat Technol 294:122–130CrossRef Zeng C, Tian W, Liao WH, Hua L (2016) Microstructure and porosity evaluation in laser-cladding deposited Ni-based coatings. Surf Coat Technol 294:122–130CrossRef
137.
Zurück zum Zitat Zhang M, Zhou X, Yu X, Li J (2017) Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding. Surf Coat Technol 311:321–329CrossRef Zhang M, Zhou X, Yu X, Li J (2017) Synthesis and characterization of refractory TiZrNbWMo high-entropy alloy coating by laser cladding. Surf Coat Technol 311:321–329CrossRef
138.
Zurück zum Zitat Qiu X-W, Zhang Y-P, He L, Liu C-G (2013) Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy. J Alloys Compd 549:195–199CrossRef Qiu X-W, Zhang Y-P, He L, Liu C-G (2013) Microstructure and corrosion resistance of AlCrFeCuCo high entropy alloy. J Alloys Compd 549:195–199CrossRef
139.
Zurück zum Zitat Basuki EA, Prajitno DH, Muhammad F (2017) Alloys developed for high temperature applications. AIP Conf Proc 1805:020003-1–020003-15 Basuki EA, Prajitno DH, Muhammad F (2017) Alloys developed for high temperature applications. AIP Conf Proc 1805:020003-1–020003-15
140.
Zurück zum Zitat Mouritz AP (2012) Superalloys for gas turbine engines. In: Mouritz AP (ed) Introduction to aerospace materials. Woodhead Publishing, pp 251–267 Mouritz AP (2012) Superalloys for gas turbine engines. In: Mouritz AP (ed) Introduction to aerospace materials. Woodhead Publishing, pp 251–267
141.
Zurück zum Zitat Mousavi T, Hong Z, Morrison A, London A, Grant P S, Grovenor, Speller S C (2017) A new approach to fabricate superconducting NbTi alloys. Supercond Sci Technol 30:09001 Mousavi T, Hong Z, Morrison A, London A, Grant P S, Grovenor, Speller S C (2017) A new approach to fabricate superconducting NbTi alloys. Supercond Sci Technol 30:09001
142.
Zurück zum Zitat Narushima T., Ueda K., Alfirano (2015) Co-Cr Alloys as Effective Metallic Biomaterials. In: Niinomi M., Narushima T., Nakai M. (eds) Advances in Metallic Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 3. Springer, Berlin, Heidelberg Narushima T., Ueda K., Alfirano (2015) Co-Cr Alloys as Effective Metallic Biomaterials. In: Niinomi M., Narushima T., Nakai M. (eds) Advances in Metallic Biomaterials. Springer Series in Biomaterials Science and Engineering, vol 3. Springer, Berlin, Heidelberg
143.
Zurück zum Zitat Elias C.N., Lima J.H.C., Valiev R. Meyers M A (2008) Biomedical applications of titanium and its alloys. JOM 60:46–49 Elias C.N., Lima J.H.C., Valiev R. Meyers M A (2008) Biomedical applications of titanium and its alloys. JOM 60:46–49
144.
Zurück zum Zitat do Prado RF, Esteves GC, Santos ELDS, Bueno DAG, Cairo CAA, Vasconcellos LGOD (2018) In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy. PLoS ONE 13(5): e0196169 do Prado RF, Esteves GC, Santos ELDS, Bueno DAG, Cairo CAA, Vasconcellos LGOD (2018) In vitro and in vivo biological performance of porous Ti alloys prepared by powder metallurgy. PLoS ONE 13(5): e0196169
Metadaten
Titel
Synthesis, Properties and Applications of Intermetallic Phases
verfasst von
Ratikant Mishra
Rimpi Dawar
Copyright-Jahr
2021
Verlag
Springer Singapore
DOI
https://doi.org/10.1007/978-981-16-1892-5_15

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.