Skip to main content
Erschienen in: Journal of Materials Science 25/2022

17.06.2022 | Metals & corrosion

Tailoring thermal and electrical conductivities of a Ni-Ti-Hf-based shape memory alloy by microstructure design

verfasst von: Michal Keret-Klainer, Royi Padan, Yuri Khoptiar, Yaron Kauffmann, Yaron Amouyal

Erschienen in: Journal of Materials Science | Ausgabe 25/2022

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

Shape memory alloys (SMAs) exhibit unique properties, including the ability to restore their original shape by temperature variations. One of the grand challenges of the aerospace industry is to develop SMAs with transformation temperatures above 100 ºC with high thermal conductivity. This study focuses on the effects of heat treatments on the microstructure, thermal and electrical conductivities of the Ni50.9Ti29.6Hf19.5 SMA that features good combination between transformation temperatures and physical properties desirable for aerospace applications, such as actuators. We found that heat treatments at 550 °C or 700 °C for 3 or 50 h affect the microstructure significantly, leading to formation of nanometer-size Hf-rich precipitates. As a result, the Martensite-to-Austenite phase transformation temperature is shifted from 100 °C up to 205 °C. Moreover, these heat treatments affect the electrical and thermal conductivities. The maximum room-temperature values of both thermal and electrical conductivities were recorded after heat treatment at 700 ºC for 3 h and are as high as \(\kappa =13.1\pm 0.4\mathrm{ W }{\mathrm{m}}^{-1} {\mathrm{K}}^{-1}\) and \(\sigma =(9\pm 0.27)\times {10}^{3}\mathrm{ S }{\mathrm{cm}}^{-1}\), respectively. The correlation between transformation temperature, microstructure, and thermal and electrical conductivities provides us with useful knowledge required for high temperature SMA design.

Graphical Abstract

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Literatur
1.
Zurück zum Zitat Stoeckel D (2000) Nitinol medical devices and implants. Minim Invasive Ther Allied Technol 9:81–88CrossRef Stoeckel D (2000) Nitinol medical devices and implants. Minim Invasive Ther Allied Technol 9:81–88CrossRef
2.
Zurück zum Zitat Duerig T, Pelton A, Sto D (1999) An overview of nitinol medical applications. Mater Sci Eng A273–275:149–160CrossRef Duerig T, Pelton A, Sto D (1999) An overview of nitinol medical applications. Mater Sci Eng A273–275:149–160CrossRef
3.
Zurück zum Zitat Costanza G, Tata ME (2020) Developments and New Applications. Mater 3:1–16 Costanza G, Tata ME (2020) Developments and New Applications. Mater 3:1–16
4.
Zurück zum Zitat Doroftei I, Stirbu B (2014) Application of Ni-Ti shape memory alloy actuators in a walking micro-robot. Mechanika 20:70–79CrossRef Doroftei I, Stirbu B (2014) Application of Ni-Ti shape memory alloy actuators in a walking micro-robot. Mechanika 20:70–79CrossRef
5.
Zurück zum Zitat Chang-Jun Q, Pei-Sun M, Qin Y (2004) A prototype micro-wheeled-robot using SMA actuator. Sens Actuators 113:94–99CrossRef Chang-Jun Q, Pei-Sun M, Qin Y (2004) A prototype micro-wheeled-robot using SMA actuator. Sens Actuators 113:94–99CrossRef
6.
Zurück zum Zitat Kim B, Lee MG, Lee YP, Kim Y, Lee G (2006) An earthworm-like micro robot using shape memory alloy actuator. Sens Actuators 125:429–437CrossRef Kim B, Lee MG, Lee YP, Kim Y, Lee G (2006) An earthworm-like micro robot using shape memory alloy actuator. Sens Actuators 125:429–437CrossRef
7.
Zurück zum Zitat Chang SH, Wu SK (2007) Internal friction of B2 → B19 martensitic transformation of Ti 50 Ni 50 shape memory alloy under isothermal conditions. Mater Sci Eng A 454–455:379–383CrossRef Chang SH, Wu SK (2007) Internal friction of B2 → B19 martensitic transformation of Ti 50 Ni 50 shape memory alloy under isothermal conditions. Mater Sci Eng A 454–455:379–383CrossRef
8.
Zurück zum Zitat Potapov PL, Da Silva EP (2000) Time response of shape memory alloy actuators. J Intell Mater Syst Struct 11:125–134CrossRef Potapov PL, Da Silva EP (2000) Time response of shape memory alloy actuators. J Intell Mater Syst Struct 11:125–134CrossRef
9.
Zurück zum Zitat FT Calkins, JH Mabe, RT Ruggeri (2008) Overview of boeing’s shape memory alloy based morphing aerostructures in: SMASIS2008–648. FT Calkins, JH Mabe, RT Ruggeri (2008) Overview of boeing’s shape memory alloy based morphing aerostructures in: SMASIS2008–648.
10.
Zurück zum Zitat CL Packer Software staff dominate ’88 hospital budgets., Hospitals (Lond). 62 (1988). CL Packer Software staff dominate ’88 hospital budgets., Hospitals (Lond). 62 (1988).
11.
Zurück zum Zitat Faulkner MG, Amalraj JJ, Bhattacharyya A (2000) Experimental determination of thermal and electrical properties of Ni-Ti shape memory wires. Smart Mater Struct 9:632–639CrossRef Faulkner MG, Amalraj JJ, Bhattacharyya A (2000) Experimental determination of thermal and electrical properties of Ni-Ti shape memory wires. Smart Mater Struct 9:632–639CrossRef
12.
Zurück zum Zitat Rondelli G (1996) Corrosion resistance tests on NiTi shape memory alloy. Biomaterials 17:2003–2008CrossRef Rondelli G (1996) Corrosion resistance tests on NiTi shape memory alloy. Biomaterials 17:2003–2008CrossRef
14.
Zurück zum Zitat Buchheit TE, Susan DF, Massad JE, McElhanon JR, Noebe RD (2016) Mechanical and functional behavior of high-temperature Ni-Ti-Pt shape memory alloys Metall. Mater Trans A Phys Metall Mater Sci 47:1587–1599CrossRef Buchheit TE, Susan DF, Massad JE, McElhanon JR, Noebe RD (2016) Mechanical and functional behavior of high-temperature Ni-Ti-Pt shape memory alloys Metall. Mater Trans A Phys Metall Mater Sci 47:1587–1599CrossRef
15.
Zurück zum Zitat Kumar PK, Lagoudas DC, Zanca KJ, Lagoudas MZ (2006) Thermomechanical characterization of high temperature SMA actuators Smart Struct Mater 2006. Act Mater Behav Mech. 6170:617012 Kumar PK, Lagoudas DC, Zanca KJ, Lagoudas MZ (2006) Thermomechanical characterization of high temperature SMA actuators Smart Struct Mater 2006. Act Mater Behav Mech. 6170:617012
16.
Zurück zum Zitat Saghaian SM, Karaca HE, Tobe H, Turabi AS, Saedi S, Saghaian SE, Chumlyakov YI, Noebe RD (2017) High strength NiTiHf shape memory alloys with tailorable properties. Acta Mater 134:211CrossRef Saghaian SM, Karaca HE, Tobe H, Turabi AS, Saedi S, Saghaian SE, Chumlyakov YI, Noebe RD (2017) High strength NiTiHf shape memory alloys with tailorable properties. Acta Mater 134:211CrossRef
17.
Zurück zum Zitat Karakoc O, Hayrettin C, Bass M, Wang SJ, Canadinc D, Mabe JH, Lagoudas DC, Karaman I (2017) Effects of upper cycle temperature on the actuation fatigue response of NiTiHf high temperature shape memory alloys. Acta Mater 138:185–197CrossRef Karakoc O, Hayrettin C, Bass M, Wang SJ, Canadinc D, Mabe JH, Lagoudas DC, Karaman I (2017) Effects of upper cycle temperature on the actuation fatigue response of NiTiHf high temperature shape memory alloys. Acta Mater 138:185–197CrossRef
18.
Zurück zum Zitat Karaca HE, Acar E, Tobe H, Saghaian SM, Acar E, Tobe H, Nitihf- SMS, Karaca HE, Acar E, Tobe H, Saghaian SM (2014) NiTiHf-based shape memory alloys. Mater Sci Technol 30(13):1530–1544CrossRef Karaca HE, Acar E, Tobe H, Saghaian SM, Acar E, Tobe H, Nitihf- SMS, Karaca HE, Acar E, Tobe H, Saghaian SM (2014) NiTiHf-based shape memory alloys. Mater Sci Technol 30(13):1530–1544CrossRef
19.
Zurück zum Zitat Benafan O, Bigelow GS, Garg A, Noebe RD, Gaydosh DJ, Rogers RB (2021) Processing and Scalability of NiTiHf High - Temperature Shape Memory Alloys. Shape Memory and Superelasticity 7:109–165CrossRef Benafan O, Bigelow GS, Garg A, Noebe RD, Gaydosh DJ, Rogers RB (2021) Processing and Scalability of NiTiHf High - Temperature Shape Memory Alloys. Shape Memory and Superelasticity 7:109–165CrossRef
20.
Zurück zum Zitat Hornbuckle BC, Sasaki TT, Bigelow GS, Noebe RD, Weaver ML, Thompson GB (2015) Structure-property relationships in a precipitation strengthened Ni-297Ti-20Hf (at%) shape memory alloy. Mater Sci Eng A 637:63–69CrossRef Hornbuckle BC, Sasaki TT, Bigelow GS, Noebe RD, Weaver ML, Thompson GB (2015) Structure-property relationships in a precipitation strengthened Ni-297Ti-20Hf (at%) shape memory alloy. Mater Sci Eng A 637:63–69CrossRef
21.
Zurück zum Zitat Evirgen A, Karaman I, Santamarta R, Pons J, Noebe RD (2015) Microstructural characterization and shape memory characteristics of the Ni503Ti347Hf15 shape memory alloy. Acta Mater 83:48–60CrossRef Evirgen A, Karaman I, Santamarta R, Pons J, Noebe RD (2015) Microstructural characterization and shape memory characteristics of the Ni503Ti347Hf15 shape memory alloy. Acta Mater 83:48–60CrossRef
22.
Zurück zum Zitat Ded GS (2010) Characterization of Ni-rich NiTiHf based high temperature shape memory alloys. University of Kentucky, Kentucky Ded GS (2010) Characterization of Ni-rich NiTiHf based high temperature shape memory alloys. University of Kentucky, Kentucky
23.
Zurück zum Zitat Evirgen A, Karaman I, Santamarta R, Pons J, Hayrettin C, Noebe RD (2016) Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys. Acta Mater 121:374–383CrossRef Evirgen A, Karaman I, Santamarta R, Pons J, Hayrettin C, Noebe RD (2016) Relationship between crystallographic compatibility and thermal hysteresis in Ni-rich NiTiHf and NiTiZr high temperature shape memory alloys. Acta Mater 121:374–383CrossRef
24.
Zurück zum Zitat Buytoz S, Dagdelen F, Qader IN, Kok M, Tanyildizi B (2021) Microstructure analysis and thermal characteristics of NiTiHf shape memory alloy with different composition. Met Mater Int 27:767–778 Buytoz S, Dagdelen F, Qader IN, Kok M, Tanyildizi B (2021) Microstructure analysis and thermal characteristics of NiTiHf shape memory alloy with different composition. Met Mater Int 27:767–778
25.
Zurück zum Zitat Tong Y, Liu Y, Miao J, Zhao L (2005) Characterization of a nanocrystalline NiTiHf high temperature shape memory alloy thin film. Scr Mater 52:983–987CrossRef Tong Y, Liu Y, Miao J, Zhao L (2005) Characterization of a nanocrystalline NiTiHf high temperature shape memory alloy thin film. Scr Mater 52:983–987CrossRef
26.
Zurück zum Zitat Evirgen A, Karaman I, Santamarta R, Pons J, Noebe RD (2015) Microstructural characterization and shape memory characteristics of the. Acta Mater 83:48–60CrossRef Evirgen A, Karaman I, Santamarta R, Pons J, Noebe RD (2015) Microstructural characterization and shape memory characteristics of the. Acta Mater 83:48–60CrossRef
27.
Zurück zum Zitat Babacan N, Bilal M, Hayrettin C, Liu J, Benafan O, Karaman I (2018) Effects of cold and warm rolling on the shape memory response of Ni 50 Ti 30 Hf 20 high-temperature shape memory alloy. Acta Mater 157:228CrossRef Babacan N, Bilal M, Hayrettin C, Liu J, Benafan O, Karaman I (2018) Effects of cold and warm rolling on the shape memory response of Ni 50 Ti 30 Hf 20 high-temperature shape memory alloy. Acta Mater 157:228CrossRef
28.
Zurück zum Zitat Zarinejad M, Liu Y, White TJ (2008) The crystal chemistry of martensite in NiTiHf shape memory alloys. Intermetallics 16:876–883CrossRef Zarinejad M, Liu Y, White TJ (2008) The crystal chemistry of martensite in NiTiHf shape memory alloys. Intermetallics 16:876–883CrossRef
29.
Zurück zum Zitat Elahinia M, Shayesteh Moghaddam N, Amerinatanzi A, Saedi S, Toker GP, Karaca H, Bigelow GS, Benafan O (2018) Additive manufacturing of NiTiHf high temperature shape memory alloy. Scr Mater 145:90CrossRef Elahinia M, Shayesteh Moghaddam N, Amerinatanzi A, Saedi S, Toker GP, Karaca H, Bigelow GS, Benafan O (2018) Additive manufacturing of NiTiHf high temperature shape memory alloy. Scr Mater 145:90CrossRef
30.
Zurück zum Zitat Atli KC, Karaman I, Noebe RD, Bigelow G, Gaydosh D (2015) Work production using the two-way shape memory effect in NiTi and a Ni-rich NiTiHf high-temperature shape memory alloy. Smart Mater Struct 24(12):12503CrossRef Atli KC, Karaman I, Noebe RD, Bigelow G, Gaydosh D (2015) Work production using the two-way shape memory effect in NiTi and a Ni-rich NiTiHf high-temperature shape memory alloy. Smart Mater Struct 24(12):12503CrossRef
31.
Zurück zum Zitat Karaca HE, Saghaian SM, Ded G, Tobe H, Basaran B, Maier HJ, Noebe RD, Chumlyakov YI (2013) Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Mater 61:7422–7431CrossRef Karaca HE, Saghaian SM, Ded G, Tobe H, Basaran B, Maier HJ, Noebe RD, Chumlyakov YI (2013) Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Mater 61:7422–7431CrossRef
32.
Zurück zum Zitat S Dhwanil, RD Noebe, AP Stebner (2013) Empirical Study of the Multiaxial Thermomechanical Behavior of NiTiHf Shape Memory Alloys. S Dhwanil, RD Noebe, AP Stebner (2013) Empirical Study of the Multiaxial Thermomechanical Behavior of NiTiHf Shape Memory Alloys.
33.
Zurück zum Zitat Stebner AP, Bigelow GS, Yang J, Shukla DP, Saghaian SM, Rogers R, Garg A, Karaca HE, Chumlyakov Y, Bhattacharya K, Noebe RD (2014) ScienceDirect Transformation strains and temperatures of a nickel – titanium – hafnium high temperature shape memory alloy. Acta Mater 76:40–53CrossRef Stebner AP, Bigelow GS, Yang J, Shukla DP, Saghaian SM, Rogers R, Garg A, Karaca HE, Chumlyakov Y, Bhattacharya K, Noebe RD (2014) ScienceDirect Transformation strains and temperatures of a nickel – titanium – hafnium high temperature shape memory alloy. Acta Mater 76:40–53CrossRef
34.
Zurück zum Zitat Ma J, Karaman I, Noebe RD, Ma J, Karaman I, Noebe RD (2021) High temperature shape memory alloys High temperature shape memory alloys. Acta Mater 218:1–8 Ma J, Karaman I, Noebe RD, Ma J, Karaman I, Noebe RD (2021) High temperature shape memory alloys High temperature shape memory alloys. Acta Mater 218:1–8
35.
Zurück zum Zitat Meng XL, Cai W, Chen F, Zhao LC (2006) Effect of aging on martensitic transformation and microstructure in Ni-rich TiNiHf shape memory alloy. Scr Mater 54:1599–1604CrossRef Meng XL, Cai W, Chen F, Zhao LC (2006) Effect of aging on martensitic transformation and microstructure in Ni-rich TiNiHf shape memory alloy. Scr Mater 54:1599–1604CrossRef
36.
Zurück zum Zitat Karaca HE, Saghaian SM, Ded G, Tobe H, Basaran B, Maier HJ (2013) Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Mater 61:7422–7431CrossRef Karaca HE, Saghaian SM, Ded G, Tobe H, Basaran B, Maier HJ (2013) Effects of nanoprecipitation on the shape memory and material properties of an Ni-rich NiTiHf high temperature shape memory alloy. Acta Mater 61:7422–7431CrossRef
37.
Zurück zum Zitat Hite N, Sharar DJ, Trehern W, Umale T, Atli KC, Wilson AA, Leff AC, Karaman I (2021) NiTiHf shape memory alloys as phase change thermal storage materials. Acta Mater 218:117175CrossRef Hite N, Sharar DJ, Trehern W, Umale T, Atli KC, Wilson AA, Leff AC, Karaman I (2021) NiTiHf shape memory alloys as phase change thermal storage materials. Acta Mater 218:117175CrossRef
38.
Zurück zum Zitat Yang F, Coughlin DR, Phillips PJ, Yang L, Devaraj A, Kovarik L, Noebe RD, Mills MJ (2013) Structure analysis of a precipitate phase in an Ni-rich high-temperature NiTiHf shape memory alloy. Acta Mater 61:3335–3346CrossRef Yang F, Coughlin DR, Phillips PJ, Yang L, Devaraj A, Kovarik L, Noebe RD, Mills MJ (2013) Structure analysis of a precipitate phase in an Ni-rich high-temperature NiTiHf shape memory alloy. Acta Mater 61:3335–3346CrossRef
39.
Zurück zum Zitat Jain A, Goodson KE (2008) Measurement of the thermal conductivity and heat capacity of freestanding shape memory thin films using the 3ω method. J Heat Transfer 130:1–7CrossRef Jain A, Goodson KE (2008) Measurement of the thermal conductivity and heat capacity of freestanding shape memory thin films using the 3ω method. J Heat Transfer 130:1–7CrossRef
40.
Zurück zum Zitat Sheskin A, Schwarz T, Yu Y, Zhang S, Abdellaoui L, Gault B, Cojocaru-Mirédin O, Scheu C, Raabe D, Wuttig M, Amouyal Y (2018) Tailoring Thermoelectric Transport Properties of Ag-Alloyed PbTe: Effects of Microstructure Evolution. ACS Appl Mater Interfaces 10:38994–39001CrossRef Sheskin A, Schwarz T, Yu Y, Zhang S, Abdellaoui L, Gault B, Cojocaru-Mirédin O, Scheu C, Raabe D, Wuttig M, Amouyal Y (2018) Tailoring Thermoelectric Transport Properties of Ag-Alloyed PbTe: Effects of Microstructure Evolution. ACS Appl Mater Interfaces 10:38994–39001CrossRef
41.
Zurück zum Zitat Tang W, Sundman B, Sandström R, Qiu C (1999) New modelling of the B2 phase and its associated martensitic transformation in the Ti-Ni system. Acta Mater 47:3457–3468CrossRef Tang W, Sundman B, Sandström R, Qiu C (1999) New modelling of the B2 phase and its associated martensitic transformation in the Ti-Ni system. Acta Mater 47:3457–3468CrossRef
42.
Zurück zum Zitat Khalil-Allafi J, Dlouhy A, Eggeler G (2002) Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Mater 50:4255–4274CrossRef Khalil-Allafi J, Dlouhy A, Eggeler G (2002) Ni4Ti3-precipitation during aging of NiTi shape memory alloys and its influence on martensitic phase transformations. Acta Mater 50:4255–4274CrossRef
43.
Zurück zum Zitat Evirgen A, Pons J, Karaman I, Santamarta R, Noebe RD (2018) H-Phase Precipitation and Martensitic Transformation in Ni-rich Ni–Ti–Hf and Ni–Ti-Zr High-Temperature Shape Memory Alloys. Shape Mem Superelasticity 4:85–92CrossRef Evirgen A, Pons J, Karaman I, Santamarta R, Noebe RD (2018) H-Phase Precipitation and Martensitic Transformation in Ni-rich Ni–Ti–Hf and Ni–Ti-Zr High-Temperature Shape Memory Alloys. Shape Mem Superelasticity 4:85–92CrossRef
44.
Zurück zum Zitat Evirgen A, Basner F, Karaman I, Noebe RD, Pons J, Santamarta R (2012) Effect of aging on the martensitic transformation characteristics of a Ni-Rich NiTiHf high temperature shape memory alloy. Funct Mater Lett 5(4):12500CrossRef Evirgen A, Basner F, Karaman I, Noebe RD, Pons J, Santamarta R (2012) Effect of aging on the martensitic transformation characteristics of a Ni-Rich NiTiHf high temperature shape memory alloy. Funct Mater Lett 5(4):12500CrossRef
45.
Zurück zum Zitat Zarnetta R, Takahashi R, Young ML, Savan A, Furuya Y, Thienhaus S, Maaß B, Rahim M, Frenzel J, Brunken H, Chu YS, Srivastava V, James RD, Takeuchi I, Eggeler G, Ludwig A (2010) Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv Funct Mater 20:1917–1923CrossRef Zarnetta R, Takahashi R, Young ML, Savan A, Furuya Y, Thienhaus S, Maaß B, Rahim M, Frenzel J, Brunken H, Chu YS, Srivastava V, James RD, Takeuchi I, Eggeler G, Ludwig A (2010) Identification of quaternary shape memory alloys with near-zero thermal hysteresis and unprecedented functional stability. Adv Funct Mater 20:1917–1923CrossRef
46.
Zurück zum Zitat C Kittel (1986) Introduction to Solid State Physics John Wiley & Sons Inc, USA. C Kittel (1986) Introduction to Solid State Physics John Wiley & Sons Inc, USA.
47.
Zurück zum Zitat Ingale BD, Wei WC, Chang PC, Kuo YK, Wu SK (2011) Anomalous transport and thermal properties of NiTi and with Cu and Fe-doped shape memory alloys near the martensitic transition. J Appl Phys 110:113721CrossRef Ingale BD, Wei WC, Chang PC, Kuo YK, Wu SK (2011) Anomalous transport and thermal properties of NiTi and with Cu and Fe-doped shape memory alloys near the martensitic transition. J Appl Phys 110:113721CrossRef
48.
Zurück zum Zitat Amouyal Y (2014) Reducing Lattice Thermal Conductivity of the Thermoelectric Compound AgSbTe2 (P4/mmm) by Lanthanum Substitution: Computational and Experimental Approaches. J Electron Mater 43:3772–3779CrossRef Amouyal Y (2014) Reducing Lattice Thermal Conductivity of the Thermoelectric Compound AgSbTe2 (P4/mmm) by Lanthanum Substitution: Computational and Experimental Approaches. J Electron Mater 43:3772–3779CrossRef
49.
Zurück zum Zitat Mason, SF (1979) Crystal structure determinations. Nature 282:346 Mason, SF (1979) Crystal structure determinations. Nature 282:346
50.
Zurück zum Zitat Krug ME, Dunand DC, Seidman DN (2011) Effects of Li additions on precipitation-strengthened Al – Sc and Al – Sc – Yb alloys. Acta Mater 59:1700–1715CrossRef Krug ME, Dunand DC, Seidman DN (2011) Effects of Li additions on precipitation-strengthened Al – Sc and Al – Sc – Yb alloys. Acta Mater 59:1700–1715CrossRef
51.
Zurück zum Zitat Lapovok R, Amouyal Y, Qi Y, Berner A (2020) & C corrosion Enhancement of electrical conductivity in aluminum single crystals by boron treatment in solid state. J Mater Sci 55:2564–2577CrossRef Lapovok R, Amouyal Y, Qi Y, Berner A (2020) & C corrosion Enhancement of electrical conductivity in aluminum single crystals by boron treatment in solid state. J Mater Sci 55:2564–2577CrossRef
52.
Zurück zum Zitat Prabhu TR (2017) Effects of ageing time on the mechanical and conductivity properties for various round bar diameters of AA 2219 Al alloy. Eng Sci Technol an Int J 20:133–142CrossRef Prabhu TR (2017) Effects of ageing time on the mechanical and conductivity properties for various round bar diameters of AA 2219 Al alloy. Eng Sci Technol an Int J 20:133–142CrossRef
Metadaten
Titel
Tailoring thermal and electrical conductivities of a Ni-Ti-Hf-based shape memory alloy by microstructure design
verfasst von
Michal Keret-Klainer
Royi Padan
Yuri Khoptiar
Yaron Kauffmann
Yaron Amouyal
Publikationsdatum
17.06.2022
Verlag
Springer US
Erschienen in
Journal of Materials Science / Ausgabe 25/2022
Print ISSN: 0022-2461
Elektronische ISSN: 1573-4803
DOI
https://doi.org/10.1007/s10853-022-07383-6

Weitere Artikel der Ausgabe 25/2022

Journal of Materials Science 25/2022 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.