Skip to main content
Erschienen in: Journal of Polymer Research 12/2021

01.12.2021 | Original paper

Tandem catalysis of Atom Transfer Radical Polymerization of acrylonitrile based on simultaneous use of two copper complexes

verfasst von: Sergey A. Stakhi, Dmitry F. Grishin, Ivan D. Grishin

Erschienen in: Journal of Polymer Research | Ausgabe 12/2021

Einloggen

Aktivieren Sie unsere intelligente Suche, um passende Fachinhalte oder Patente zu finden.

search-config
loading …

Abstract

The novel approach for conducting ARGET ATRP based on simultaneous use of two copper complexes based on tris[2-(dimethylamino)ethyl]amine (Me6TREN), 2,2’-bipyridine (bipy) and tris(2-pyridylmethyl)amine (TPMA) in one pot is proposed. This approach allows to increase the rate of polymerization of acrylonitrile and to achieve polymers with high molecular weights. The performed electrochemical studies allowed establishing the possible mechanism of tandem catalysis where the more reducing complex mostly acts as activator determining the high polymerization rate while the second one reversible deactivates polymer chain preserving the control over the process. The influence of initiator nature and the ratio between copper catalysts on the polymerization rate and the molecular weight parameters of the samples was studied. It was shown that the proposed system may be applied for obtaining well-defined copolymers of acrylonitrile with methyl acrylate and dimethyl itaconate via ARGET ATRP mechanism using low copper concentrations.

Sie haben noch keine Lizenz? Dann Informieren Sie sich jetzt über unsere Produkte:

Springer Professional "Wirtschaft+Technik"

Online-Abonnement

Mit Springer Professional "Wirtschaft+Technik" erhalten Sie Zugriff auf:

  • über 102.000 Bücher
  • über 537 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Finance + Banking
  • Management + Führung
  • Marketing + Vertrieb
  • Maschinenbau + Werkstoffe
  • Versicherung + Risiko

Jetzt Wissensvorsprung sichern!

Springer Professional "Technik"

Online-Abonnement

Mit Springer Professional "Technik" erhalten Sie Zugriff auf:

  • über 67.000 Bücher
  • über 390 Zeitschriften

aus folgenden Fachgebieten:

  • Automobil + Motoren
  • Bauwesen + Immobilien
  • Business IT + Informatik
  • Elektrotechnik + Elektronik
  • Energie + Nachhaltigkeit
  • Maschinenbau + Werkstoffe




 

Jetzt Wissensvorsprung sichern!

Anhänge
Nur mit Berechtigung zugänglich
Literatur
1.
Zurück zum Zitat Corrigan N, Jung K, Moad G, Hawker CJ, Matyjaszewski K, Boyer C (2020) Reversible-deactivation radical polymerization (Controlled/living radical polymerization): from discovery to materials design and applications. Prog in Polym Sci 111:101311CrossRef Corrigan N, Jung K, Moad G, Hawker CJ, Matyjaszewski K, Boyer C (2020) Reversible-deactivation radical polymerization (Controlled/living radical polymerization): from discovery to materials design and applications. Prog in Polym Sci 111:101311CrossRef
2.
Zurück zum Zitat Grishin DF, Grishin ID (2021) Modern trends in controlled synthesis of functional polymers: fundamental aspects and practical applications. Russ Chem Rev 90:231-264PCrossRef Grishin DF, Grishin ID (2021) Modern trends in controlled synthesis of functional polymers: fundamental aspects and practical applications. Russ Chem Rev 90:231-264PCrossRef
3.
Zurück zum Zitat Nicolas J, Guillaneuf Y, Lefay C, Bertin D, Gigmes D, Charleux B (2013) Nitroxide-mediated polymerization. Prog in Polym Sci 38:63–235CrossRef Nicolas J, Guillaneuf Y, Lefay C, Bertin D, Gigmes D, Charleux B (2013) Nitroxide-mediated polymerization. Prog in Polym Sci 38:63–235CrossRef
4.
Zurück zum Zitat Xian C, Yuan Q, Bao Z, Liu G, Wu J (2020) Progress on intelligent hydrogels based on RAFT polymerization: design strategy, fabrication and the applications for controlled drug delivery. Chin Chem Lett 31:19–27CrossRef Xian C, Yuan Q, Bao Z, Liu G, Wu J (2020) Progress on intelligent hydrogels based on RAFT polymerization: design strategy, fabrication and the applications for controlled drug delivery. Chin Chem Lett 31:19–27CrossRef
5.
Zurück zum Zitat Ribelli TG, Lorandi F, Fantin M, Matyjaszewski K (2018) Atom transfer radical polymerization: billion times more active catalysts and new initiation systems. Macromol Rapid Commun 40:1800616CrossRef Ribelli TG, Lorandi F, Fantin M, Matyjaszewski K (2018) Atom transfer radical polymerization: billion times more active catalysts and new initiation systems. Macromol Rapid Commun 40:1800616CrossRef
6.
Zurück zum Zitat Ouchi M, Sawamoto M (2018) Sequence-controlled polymers via reversible-deactivation radical polymerization. Polym J 50:83–94CrossRef Ouchi M, Sawamoto M (2018) Sequence-controlled polymers via reversible-deactivation radical polymerization. Polym J 50:83–94CrossRef
7.
Zurück zum Zitat Krys P, Matyjaszewski K (2017) Kinetics of atom transfer radical polymerization. Eur Polym J 89:482–523CrossRef Krys P, Matyjaszewski K (2017) Kinetics of atom transfer radical polymerization. Eur Polym J 89:482–523CrossRef
8.
Zurück zum Zitat Ribelli TG, Fantin M, Daran JC, Augustine KF, Poli R, Matyjaszewski K (2018) Synthesis and characterization of the most active copper ATRP catalyst based on tris[(4-dimethylaminopyridyl)methyl]amine. J Am Chem Soc 140:1525–1534CrossRef Ribelli TG, Fantin M, Daran JC, Augustine KF, Poli R, Matyjaszewski K (2018) Synthesis and characterization of the most active copper ATRP catalyst based on tris[(4-dimethylaminopyridyl)methyl]amine. J Am Chem Soc 140:1525–1534CrossRef
9.
Zurück zum Zitat Liu J, Huang Y, Yuan Y, Zhang X, Wang Y, Wang C (2018) Synthesis and properties of acrylonitrile-methyl itaconate copolymers as spun carbon fiber precursors. Fibers Polym 15:1583–1588CrossRef Liu J, Huang Y, Yuan Y, Zhang X, Wang Y, Wang C (2018) Synthesis and properties of acrylonitrile-methyl itaconate copolymers as spun carbon fiber precursors. Fibers Polym 15:1583–1588CrossRef
10.
Zurück zum Zitat Han N, Zhang XX, Wang XC (2010) Various comonomers in acrylonitrile based copolymers: effects on thermal behavior. Iran Polym J 19:243–253 Han N, Zhang XX, Wang XC (2010) Various comonomers in acrylonitrile based copolymers: effects on thermal behavior. Iran Polym J 19:243–253
11.
Zurück zum Zitat Stakhi SA, Grishin DF, Grishin ID (2020) Determination of monomer reactivity ratios in controlled copolymerization of acrylonitrile with unsaturated methyl esters. Polym Sci Ser B 62:169–175CrossRef Stakhi SA, Grishin DF, Grishin ID (2020) Determination of monomer reactivity ratios in controlled copolymerization of acrylonitrile with unsaturated methyl esters. Polym Sci Ser B 62:169–175CrossRef
12.
Zurück zum Zitat Grishin ID, Stakhi SA, Kurochkina DY, Grishin DF (2018) Controlled copolymerization of acrylonitrile with methyl acrylate and dimethyl itaconate via ARGET ATRP mechanism. J Polym Res 25:261CrossRef Grishin ID, Stakhi SA, Kurochkina DY, Grishin DF (2018) Controlled copolymerization of acrylonitrile with methyl acrylate and dimethyl itaconate via ARGET ATRP mechanism. J Polym Res 25:261CrossRef
13.
Zurück zum Zitat Dong H, Tang W, Matyjaszewski K (2007) Well-defined high-molecular-weight polyacrylonitrile via activators regenerated by electron transfer ATRP. Macromol 40:2974–2977CrossRef Dong H, Tang W, Matyjaszewski K (2007) Well-defined high-molecular-weight polyacrylonitrile via activators regenerated by electron transfer ATRP. Macromol 40:2974–2977CrossRef
14.
Zurück zum Zitat Liu XH, Zhang GB, Li BX, Bai YG, Li YS (2010) Copper(0)-mediated living radical polymerization of acrylonitrile: SET-LRP or AGET-ATRP. J Polym Sci A Polym Chem 48:5439–5445CrossRef Liu XH, Zhang GB, Li BX, Bai YG, Li YS (2010) Copper(0)-mediated living radical polymerization of acrylonitrile: SET-LRP or AGET-ATRP. J Polym Sci A Polym Chem 48:5439–5445CrossRef
15.
Zurück zum Zitat Liu XH, Wang J, Yang JS, An SL, Ren YL, Yu YH, Chen P (2012) Fast copper catalyzed living radical polymerization of acrylonitrile utilizing a high concentration of radical initiator. J Polym Sci A Polym Chem 50:1933–1940CrossRef Liu XH, Wang J, Yang JS, An SL, Ren YL, Yu YH, Chen P (2012) Fast copper catalyzed living radical polymerization of acrylonitrile utilizing a high concentration of radical initiator. J Polym Sci A Polym Chem 50:1933–1940CrossRef
16.
Zurück zum Zitat Liu XH, Wang J, Zhang FJ, An SL, Ren YL, Yu YH, Chen P, Xie S (2012) Copper-mediated initiators for continuous activator regeneration atom transfer radical polymerization of acrylonitrile. J Polym Sci A Polym Chem 50:4358–4364 CrossRef Liu XH, Wang J, Zhang FJ, An SL, Ren YL, Yu YH, Chen P, Xie S (2012) Copper-mediated initiators for continuous activator regeneration atom transfer radical polymerization of acrylonitrile. J Polym Sci A Polym Chem 50:4358–4364 CrossRef
17.
Zurück zum Zitat Huang Z, Chen J, Zhang L, Cheng Z, Zhu X (2016) ICAR ATRP of acrylonitrile under ambient and high pressure. Polymers 8:59CrossRef Huang Z, Chen J, Zhang L, Cheng Z, Zhu X (2016) ICAR ATRP of acrylonitrile under ambient and high pressure. Polymers 8:59CrossRef
18.
Zurück zum Zitat Chen H, Liu D, Chen L, Qu R (2011) Use of 1-alkyl-3-methylimidazolium l-lactates as both ligand and reaction media for AGET ATRP of acrylonitrile. Mat Chem Phys 128:331–335CrossRef Chen H, Liu D, Chen L, Qu R (2011) Use of 1-alkyl-3-methylimidazolium l-lactates as both ligand and reaction media for AGET ATRP of acrylonitrile. Mat Chem Phys 128:331–335CrossRef
19.
Zurück zum Zitat Hou C, Liang Y, Liu D, Tan Z, Zhang S, Zheng M, Qu R (2010) AGET ATRP of acrylonitrile with ionic liquids as reaction medium without any additional ligand. Mat Sci Eng C 30:605–609CrossRef Hou C, Liang Y, Liu D, Tan Z, Zhang S, Zheng M, Qu R (2010) AGET ATRP of acrylonitrile with ionic liquids as reaction medium without any additional ligand. Mat Sci Eng C 30:605–609CrossRef
20.
Zurück zum Zitat Chen H, Yang L, Liang Y, Hao Z, Lu Z (2009) ARGET ATRP of acrylonitrile catalyzed by FeCl3/isophthalic acid in the presence of air. J Polym Sci A Polym Chem 47:3202–3207CrossRef Chen H, Yang L, Liang Y, Hao Z, Lu Z (2009) ARGET ATRP of acrylonitrile catalyzed by FeCl3/isophthalic acid in the presence of air. J Polym Sci A Polym Chem 47:3202–3207CrossRef
21.
Zurück zum Zitat Peng J, Ding M, Cheng Z, Zhang L, Zhu X (2015) Iron-mediated AGET ATRP with crown ether as both ligand and solvent. RSC Adv 5:104–733 Peng J, Ding M, Cheng Z, Zhang L, Zhu X (2015) Iron-mediated AGET ATRP with crown ether as both ligand and solvent. RSC Adv 5:104–733
22.
Zurück zum Zitat Chen H, Chen L, Wang C, Qu R (2011) Atom transfer radical polymerization using activators regenerated by electron transfer of acrylonitrile in 1-(1-ethoxycarbonylethyl)-3-methylimidazolium hexafluorophospate. J Polym Sci A Polym Chem 49:1046–1049CrossRef Chen H, Chen L, Wang C, Qu R (2011) Atom transfer radical polymerization using activators regenerated by electron transfer of acrylonitrile in 1-(1-ethoxycarbonylethyl)-3-methylimidazolium hexafluorophospate. J Polym Sci A Polym Chem 49:1046–1049CrossRef
23.
Zurück zum Zitat Chen H, Liu D, Ji N, Tan Z, ZongD QuR, Wang C (2011) Samarium(III)-based AGET ATRP of acrylonitrile using ascorbic acid as reducing agent. J Macromol Sci A 48:284–290CrossRef Chen H, Liu D, Ji N, Tan Z, ZongD QuR, Wang C (2011) Samarium(III)-based AGET ATRP of acrylonitrile using ascorbic acid as reducing agent. J Macromol Sci A 48:284–290CrossRef
24.
Zurück zum Zitat Vogel AI (1974) Practical organic chemistry including qualitative organic analysis. Longman Group, London Vogel AI (1974) Practical organic chemistry including qualitative organic analysis. Longman Group, London
25.
Zurück zum Zitat Tyeklar Z, Jacobson RR, Wei N, Murthy NN, Zubieta J, Karlin KD (1993) Reversible reaction of dioxygen (and carbon monoxide) with a copper(I) complex. X-ray structures of relevant mononuclear Cu(I) precursor adducts and the trans-(.mu.-1,2-peroxo)dicopper(II) product. J Am Chem Soc 115:2677–2689CrossRef Tyeklar Z, Jacobson RR, Wei N, Murthy NN, Zubieta J, Karlin KD (1993) Reversible reaction of dioxygen (and carbon monoxide) with a copper(I) complex. X-ray structures of relevant mononuclear Cu(I) precursor adducts and the trans-(.mu.-1,2-peroxo)dicopper(II) product. J Am Chem Soc 115:2677–2689CrossRef
26.
Zurück zum Zitat Brandup J, Immergut EH, Grulke EA (1999) Polymer handbook, 4th edn. John Wiley & Sons, New York Brandup J, Immergut EH, Grulke EA (1999) Polymer handbook, 4th edn. John Wiley & Sons, New York
27.
Zurück zum Zitat Matyjaszewski K, Tsarevsky NV, Braunecker WA, Dong H, Huang J, Jakubowski W, Kwak Y, Nicolay R, Tang W, Yoon JA (2007) Role of Cu0 in Controlled/“Living” Radical Polymerization. Macromol 40:7795–7806CrossRef Matyjaszewski K, Tsarevsky NV, Braunecker WA, Dong H, Huang J, Jakubowski W, Kwak Y, Nicolay R, Tang W, Yoon JA (2007) Role of Cu0 in Controlled/“Living” Radical Polymerization. Macromol 40:7795–7806CrossRef
28.
Zurück zum Zitat Zerk TJ, Martinez M, Bernhardt PV (2016) A kinetico-mechanistic study on Cu(II) deactivators employed in atom transfer radical polymerization. Inorg Chem 55:9848–9857CrossRef Zerk TJ, Martinez M, Bernhardt PV (2016) A kinetico-mechanistic study on Cu(II) deactivators employed in atom transfer radical polymerization. Inorg Chem 55:9848–9857CrossRef
29.
Zurück zum Zitat Tang W, Kwak Y, Braunecker W, Tsarevsky NV, Coote ML, Matyjaszewski K (2008) Understanding atom transfer radical polymerization: effect of ligand and initiator structures on the equilibrium constants. J Am Chem Soc 130:10702–10713CrossRef Tang W, Kwak Y, Braunecker W, Tsarevsky NV, Coote ML, Matyjaszewski K (2008) Understanding atom transfer radical polymerization: effect of ligand and initiator structures on the equilibrium constants. J Am Chem Soc 130:10702–10713CrossRef
30.
Zurück zum Zitat Kaur A, Ribelli TG, Schröder K, Matyjaszewski K, Pintauer T (2015) Properties and ATRP activity of copper complexes with substituted tris(2-pyridylmethyl)amine-based ligands. Inorg Chem 54:1474–1486CrossRef Kaur A, Ribelli TG, Schröder K, Matyjaszewski K, Pintauer T (2015) Properties and ATRP activity of copper complexes with substituted tris(2-pyridylmethyl)amine-based ligands. Inorg Chem 54:1474–1486CrossRef
31.
Zurück zum Zitat Tsarevsky NV, Braunecker WA, Matyjaszewski K (2007) Electron transfer reactions relevant to atom transfer radical polymerization. J Organomet Chem 692:3212–3222CrossRef Tsarevsky NV, Braunecker WA, Matyjaszewski K (2007) Electron transfer reactions relevant to atom transfer radical polymerization. J Organomet Chem 692:3212–3222CrossRef
32.
Zurück zum Zitat Fujimura K, Ouchi M, Sawamoto M (2012) Ferrocene cocatalysis in metal-catalyzed living radical polymerization: concerted redox for highly active catalysis. ACS Macro Lett 1:321–323CrossRef Fujimura K, Ouchi M, Sawamoto M (2012) Ferrocene cocatalysis in metal-catalyzed living radical polymerization: concerted redox for highly active catalysis. ACS Macro Lett 1:321–323CrossRef
33.
Zurück zum Zitat Fujimura K, Ouchi M, Sawamoto M (2015) Ferrocene cocatalysis for iron-catalyzed living radical polymerization: active, robust, and sustainable system under concerted catalysis by two iron complexes. Macromol 48:4294–4300CrossRef Fujimura K, Ouchi M, Sawamoto M (2015) Ferrocene cocatalysis for iron-catalyzed living radical polymerization: active, robust, and sustainable system under concerted catalysis by two iron complexes. Macromol 48:4294–4300CrossRef
Metadaten
Titel
Tandem catalysis of Atom Transfer Radical Polymerization of acrylonitrile based on simultaneous use of two copper complexes
verfasst von
Sergey A. Stakhi
Dmitry F. Grishin
Ivan D. Grishin
Publikationsdatum
01.12.2021
Verlag
Springer Netherlands
Erschienen in
Journal of Polymer Research / Ausgabe 12/2021
Print ISSN: 1022-9760
Elektronische ISSN: 1572-8935
DOI
https://doi.org/10.1007/s10965-021-02821-6

Weitere Artikel der Ausgabe 12/2021

Journal of Polymer Research 12/2021 Zur Ausgabe

    Marktübersichten

    Die im Laufe eines Jahres in der „adhäsion“ veröffentlichten Marktübersichten helfen Anwendern verschiedenster Branchen, sich einen gezielten Überblick über Lieferantenangebote zu verschaffen.